We present a survey of the nonconforming Trefftz virtual element method for the Laplace and Helmholtz equations. As for the latter, we show a new abstract analysis, based on weaker assumptions on the stabilization, and numerical results on the dispersion analysis, including comparison with the plane wave discontinuous Galerkin method.
Mascotto, L., Perugia, I., Pichler, A. (2022). The Nonconforming Trefftz Virtual Element Method: General Setting, Applications, and Dispersion Analysis for the Helmholtz Equation. In P.F. Antonietti, L. Beirão da Veiga, G. Manzini (a cura di), The Virtual Element Method and its Applications (pp. 363-410). Springer [10.1007/978-3-030-95319-5_9].
The Nonconforming Trefftz Virtual Element Method: General Setting, Applications, and Dispersion Analysis for the Helmholtz Equation
Mascotto, L
;
2022
Abstract
We present a survey of the nonconforming Trefftz virtual element method for the Laplace and Helmholtz equations. As for the latter, we show a new abstract analysis, based on weaker assumptions on the stabilization, and numerical results on the dispersion analysis, including comparison with the plane wave discontinuous Galerkin method.File | Dimensione | Formato | |
---|---|---|---|
Mascotto-Perugia-Pichler-2022-The Virtual Element Method and its Applications-Book Chapter-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
908.3 kB
Formato
Adobe PDF
|
908.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Mascotto-Perugia-Pichler-2022-The Virtual Element Method and its Applications-Book Chapter-Arxiv-Preprint.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Creative Commons
Dimensione
926.41 kB
Formato
Adobe PDF
|
926.41 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.