In the present paper, the problem of estimating the contingent cone to the solution set associated with certain set-valued inclusions is addressed by variational analysis methods and tools. As a main result, inner (resp. outer) approximations, which are expressed in terms of outer (resp. inner) prederivatives of the set-valued term appearing in the inclusion problem, are provided. For the analysis of inner approximations, the evidence arises that the metric increase property for set-valued mappings turns out to play a crucial role. Some of the results obtained in this context are then exploited for formulating necessary optimality conditions for constrained problems, whose feasible region is defined by a set-valued inclusion.
Uderzo, A. (2022). On tangential approximations of the solution set of set-valued inclusions. JOURNAL OF APPLIED ANALYSIS, 28(1), 11-33 [10.1515/jaa-2021-2049].
On tangential approximations of the solution set of set-valued inclusions
Uderzo, A.
2022
Abstract
In the present paper, the problem of estimating the contingent cone to the solution set associated with certain set-valued inclusions is addressed by variational analysis methods and tools. As a main result, inner (resp. outer) approximations, which are expressed in terms of outer (resp. inner) prederivatives of the set-valued term appearing in the inclusion problem, are provided. For the analysis of inner approximations, the evidence arises that the metric increase property for set-valued mappings turns out to play a crucial role. Some of the results obtained in this context are then exploited for formulating necessary optimality conditions for constrained problems, whose feasible region is defined by a set-valued inclusion.File | Dimensione | Formato | |
---|---|---|---|
10281-393448_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
763.17 kB
Formato
Adobe PDF
|
763.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.