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Abstract: In the present paper, the problem of estimating the contingent cone to the solution set associated
with certain set-valued inclusions is addressed by variational analysis methods and tools. As a main result,
inner (resp. outer) approximations, which are expressed in terms of outer (resp. inner) prederivatives of the
set-valued term appearing in the inclusion problem, are provided. For the analysis of inner approximations,
the evidence arises that the metric increase property for set-valued mappings turns out to play a crucial role.
Some of the results obtained in this context are then exploited for formulating necessary optimality condi-
tions for constrained problems, whose feasible region is defined by a set-valued inclusion.
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1 Introduction and problem statement
The present work aims at providing elements for a first-order analysis of the solutions to set-valued inclu-
sions. By set-valued inclusion the following problem is meant: given a set-valued mapping F : ℝn 󴁂󴀱 ℝm,
a nonempty closed set S ⊆ ℝn, and a closed, convex and pointed cone C ⊆ ℝm, with C ̸= {0},

find x ∈ S such that F(x) ⊆ C. (SVI)

The solution set to (SVI) will be denoted throughout the paper by

Sol(SVI) = {x ∈ S : F(x) ⊆ C}.

Somemotivations for considering such problems as (SVI), mainly coming from the robust approach to uncer-
tain optimization as well as from mathematical economics, are discussed in [25, 26]. It is clear that Sol(SVI)
can be nominally expressed in terms of upper inverse image of C through F, i.e. F+1(C) = {x ∈ ℝn : F(x) ⊆ C},
resulting in Sol(SVI) = F+1(C) ∩ S. In spite of such a simple reformulation, Sol(SVI)may happen to be a rather
involved set, as reflecting the complicated nature that set-valued mappings may often exhibit. Therefore, in
order to glean information on the local geometry of Sol(SVI), it becomes crucial to undertake a systematic
study of first-order approximations of it. In the present paper, such a task will be pursued by focusing on the
contingent (a.k.a. Bouligand–Severi tangent) cone to Sol(SVI). Among many local conic approximations of
sets currently at disposal in set-valued analysis, this is one of the mostly employed and widely investigated.
It plays an essential role in constructing derivatives for set-valued mappings through a graphical approach
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(see, for instance, [2, 23]) and it emerges as a basic tool in formulating first-order optimality conditions (see,
among others, [11, 18, 23]).

The line of thought behind the analysis here proposed is that a workable representation of the contingent
cone to F+1(C) ∩ S could be obtained by the upper inverse image of C through a first-order approximation of F.
In other words, this amounts to considering the interchange of two operations of different nature: namely,
on one hand the approximation of sets and mappings and, on the other hand, the operation of taking the
upper inverse. It is worth noting that the approach stemming from this line of thought shares the spirit of the
celebrated Lyusternik theorem about the representation of the tangent space to a smooth manifold, which is
expressed by an equation system (see [16]). In its modern formulation, suitable for problems of the form

find x ∈ S such that f(x) ∈ C, (1.1)

where f : ℝn → ℝm is a given single-valued mapping, this theorem states that, under proper regularity
assumptions valid at a solution x̄ ∈ f−1(C) ∩ S, the representation

T(f−1(C) ∩ S; x̄) = D f(x̄)−1(T(C; f(x̄))) ∩ T(S; x̄) (1.2)

holds, where D f(x̄) stands for the strict derivative of f at x̄ (see [23, Theorem11.4.4]). In a similarmanner, the
present investigations explore the possibility of exploiting the upper inverse image of first-order approxima-
tions of F for providing representations of T(F+1(C) ∩ S; x̄). IfH : ℝn 󴁂󴀱 ℝm acts as a first-order approximation
of F near x̄, one expects that geometric properties of H result in an easy geometry of the set H+1(C). For
example, it is well known that if H is positively homogeneous, then H+1(C) is a cone; if H is concave (in
the sense of [26, Definition 2.3]), then H+1(C) is a convex set. Such correspondences evidently contribute to
a better understanding of the local structure of Sol(SVI).

In developing the above proposed approach of analysis, passing from such problems as (1.1) to (SVI),
a methodological question to face is which approximation tool is to be used for the term F. Since the fact that
x̄ ∈ S is a solution to (SVI) involves all elements in F(x̄), such an approximation tool should not be based
on the local behavior of F around a reference element of its graph (as it happens with graphical deriva-
tives and coderivatives [2, 12, 17]), but should take into account the whole set F(x̄). For this reason, the
present approach utilizes the notion of prederivative (see [13, 14, 20]). The splitting of this notion into an
outer and an inner version allows one to study separately the question of inner and outer tangential approxi-
mation of Sol(SVI). Prederivatives are not the only set-oriented derivative-like notion for set-valuedmappings,
that is able to take into account the whole image of F at a reference point. A different construction, which
relies on the Rådström embedding theorem, can be found in [5]. An intrinsic limitation of the notion of
π-differentiability there proposed consists in referring tomappingswith convex and bounded values. Since in
the present analysis the set-valuedmapping F considered in (SVI) will not be required to satisfy that assump-
tion, a line of research exploiting π-differentiability is left open for future investigations, which will focus on
more particular classes of (SVI).

To the best of the author’s knowledge, the study of the solution analysis of (SVI) was initiated in [9].
Some advances in this direction, already including representations of the contingent cone to Sol(SVI), have
been recently obtained in [26], under assumptions of concavity of F and boundedness of its values. A feature
distinguishing thepresent investigations is the essential employment of themetric C-increaseproperty for set-
valued mappings, while avoiding any concavity assumption on F. This property describes a certain behavior
of mappings that links the metric structure of the domain with the cone C appearing in (SVI). Roughly speak-
ing, it can be viewed as a counterpart, valid in partially ordered vector spaces, of the so-called decrease
principle for scalar functions, in use in variational analysis (see [7, Chapter 3.6] and [21, Chapter 1.6]). It is
well known that for traditional equation systemsand, to a certain extent, for generalized equations of the form
(1.1), open covering (and hence,metric regularity) is themain property formappings ensuring local solvabil-
ity and, as such, it became the key concept to achieve tangential approximations of solution sets. In a similar
manner, themetric C-increase property turns out to be a key concept in order to establish a proper error bound
for (SVI) and, through such kind of estimate, to get the inner tangential approximation of Sol(SVI).

The contents of the paper are arranged in the subsequent sections as follows. In Section 2, the major
analysis tools needed to develop the approach analysis summarized above are presented with references.
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Essentially, all of them are well-known notions and facts from set-valued analysis and generalized differenti-
ation, with the only exception of the metric C-increase property, to which a specific subsection is devoted. In
Section 3, the main contributions of the paper, which concern inner and outer tangential approximations of
Sol(SVI), are established anddiscussed. In Section4, optimizationproblems,whose feasible region is defined
by set-valued inclusions (SVI), are considered and some of the results achieved in Section 3 are exploited for
deriving necessary optimality conditions suitable for problems of that form. Such an application may serve
as an evidence of the fact that “the calculus of tangents is one of the main techniques of optimization" (as
stated in [15]).

2 Analysis tools
The notation in use throughout the paper is standard: ℕ and ℝ denote the natural and the real number
set, respectively, ℝm+ denotes the nonnegative orthant in the Euclidean space ℝm, whose (Euclidean) norm
is indicated by | ⋅ |. The null vector in any Euclidean space is indicated by 0. Given an element x of a met-
ric space (X, d) and a nonnegative real r, B(x, r) = {z ∈ X : d(z, x) ≤ r} denotes the closed ball with center
x and radius r. In particular, if X = ℝn, then 𝔹 = B(0, 1) and 𝕊 = {v ∈ 𝔹 : |v| = 1} stand for the unit ball
and the unit sphere, respectively. Given a subset S of an Euclidean space, by int S and bd S the topolog-
ical interior and the boundary of S are denoted, respectively, whereas co S denotes the convex hull of S.
By dist(x, S) = infz∈S d(z, x) the distance of x from a subset S ⊆ ℝn is denoted, with the convention that
dist(x,⌀) = +∞. The r-enlargement of a set S ⊆ ℝn is indicated by B(S, r) = {x ∈ ℝn : dist(x, S) ≤ r}. Given
a pair of subsets S1, S2 ⊆ X, the symbol exc(S1, S2) = sups∈S1 dist(s, S2) denotes the excess of S1 over S2,
where the convention supx∈⌀ = −∞ is accepted. The symbol Haus(S1, S2) = max{exc(S1, S2), exc(S2, S1)}
indicates the Pompeiu–Hausdorff distance between S1 and S2.

Whenever F : ℝn 󴁂󴀱 ℝm is a set-valued mapping,

gph F = {(x, y) ∈ ℝn × ℝm : y ∈ F(x)} and dom F = {x ∈ ℝn : F(x) ̸= ⌀}

denote the graph and the domain of F, respectively. All set-valued mappings appearing in the paper will
be supposed to take closed values, unless otherwise stated. This fact will be implicitly assumed, in par-
ticular, with reference to mappings resulting from the sum of set-valued mappings. Moreover, L(ℝn;ℝm)
indicates the space of all linear mappings acting from ℝn to ℝm, endowed with the operator norm ‖ ⋅ ‖. If
Λ ∈ L(ℝn;ℝm), then Λ⊤ denotes the adjoint operator to Λ. Given a function φ : X → ℝ ∪ {±∞}, where X
is a given set, [φ ≤ 0] = φ−1([−∞, 0]) and [φ > 0] = φ−1((0, +∞]) stand for the 0-sublevel and the strict
0-superlevel set of φ, respectively. Other notations will be explained contextually to their use.

Throughout the text, the acronyms l.s.c. and p.h. stand for lower semicontinuous and positively homo-
geneous, respectively.

2.1 Elements of set-valued and variational analysis

Let us recall that a set-valued mapping F : ℝn 󴁂󴀱 ℝm is said to be l.s.c. at x̄ ∈ ℝn if for every open set O ⊆ ℝm

such that F(x̄) ∩ O ̸= ⌀ there exists δO > 0 such that

F(x) ∩ O ̸= ⌀ for all x ∈ B(x̄, δO).

The mapping F : ℝn 󴁂󴀱 ℝm is said to be Lipschitz (continuous) with constant κ ≥ 0 if

Haus(F(x1), F(x2)) ≤ κ|x1 − x2| for all x1, x2 ∈ ℝn .

A known fact which is relevant to the present analysis is that if a set-valued mapping F : ℝn 󴁂󴀱 ℝm is l.s.c. at
eachpoint ofℝn, then F+1(C) is a closed set for every closed set C (see, for instance, [1, Lemma17.5]). This fact
makes it clear that, under the assumptionsmade on the problemdata of (SVI) (namely, S closed and C closed,
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convex and pointed cone), if F is a l.s.c. set-valued mapping, then the solution set Sol(SVI) = S ∩ F+1(C) is
a closed subset (possibly empty) ofℝn.

In studying the variational behavior of set-valued mappings, a basic tool of analysis is the excess of a set
over another. The following remark gathers several known facts concerning the behavior of the excess, which
will be employed in the subsequent analysis (for their proof, whenever not trivial, one can refer to [25]).

Remark 2.1. Let S ⊆ ℝm be nonempty and let C ⊆ ℝm be a closed, convex cone.
(i) If exc(S, C) > 0, for any r > 0 it holds exc(B(S, r), C) = exc(S, C) + r (additive behavior of the excess with

respect to enlargements).
(ii) If S ⊆ ℝm, it holds exc(S + C, C) = exc(S, C) (invariance of the excess under conic extension).
(iii) Let r > 0. It holds exc(r𝔹, C) = supx∈r𝔹 infc∈C|x − c| ≤ supx∈r𝔹|x| = r.

Remark 2.2. (i) Given a set-valuedmapping F : ℝn 󴁂󴀱 ℝm, it is known that the aforementioned semicontinu-
ity property of F implies a corresponding semicontinuity property of the excess function ϕ : ℝn → ℝ ∪ {±∞},
which is associated with F and C, namely

ϕ(x) = exc(F(x), C). (2.1)

In other words, if F is l.s.c. at x̄, then ϕ is l.s.c. at x̄ (the proof can be found in [25, Lemma 2.3]).
(ii) Since C is a closed set, it is clear that F(x) ⊆ C if and only if ϕ(x) ≤ 0. Therefore, the solution set to

(SVI) can be characterized, via the function ϕ, in the following terms: Sol(SVI) = [ϕ ≤ 0] ∩ S.

Themain result of this paperwill be achieved bymeans of an error bound estimate for the solution set to (SVI).
The technique of proof of the latter one relies on the characterization of error bounds for l.s.c. functions on
a complete metric space through the notion of strong slope (see, among others, [3, 4]). Let us recall that,
after [10], given a function φ : X → ℝ ∪ {±∞} defined on a metric space (X, d) and x̄ ∈ φ−1(ℝ), the strong
slope of φ at x̄ is defined as the quantity

|∇φ|(x̄) =
{{
{{
{

0 if x̄ is a local minimizer of φ,

lim sup
x→x̄

φ(x̄) − φ(x)
d(x, x̄) otherwise.

Notice that, if as ametric space X one takes a closed subset S ⊆ ℝm containing x̄, the above definition becomes

|∇φ|(x̄) =
{{
{{
{

0 if x̄ is a local minimizer of φ over S,

inf
r>0

sup
x∈B(x̄,r)∩S\{x̄}

φ(x̄) − φ(x)
|x − x̄|

otherwise.

For the purposes of the present work, the following general condition for an error bound, which can be
obtained as a special case of [3, Corollary 3.1], will be employed.

Proposition 2.3. Let (X, d) be a complete metric space, let φ : X → [0, +∞] be a function l.s.c. on X, and let
x̄ ∈ [φ ≤ 0]. Suppose that σ > 0 and r > 0 are such that

|∇φ|(x) ≥ σ for all x ∈ B(x̄, 2r) ∩ [φ > 0].

Then it holds
dist(x, [φ ≤ 0]) ≤ φ(x)

σ
for all x ∈ B(x̄, r).

2.2 The metric C-increase property

The next definition introduces themain property of set-valuedmappings, onwhich the proposed approach to
the solution analysis of (SVI) relies. It postulates a behavior of mappings that links themetric structure of the
domain with the partial ordering induced on the range space by the cone C in the standard way (henceforth
denoted by ≤C), i.e. y1 ≤C y2 if and only if y2 − y1 ∈ C.
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Definition 2.4 (Metrically C-increasing mapping). Let S ⊆ ℝn be a nonempty closed set and let C ⊆ ℝm be
a closed, convex cone, with C ̸= {0}. Consider a set-valued mapping F : ℝn 󴁂󴀱 ℝm:
(i) F is said to be metrically C-increasing around x̄ ∈ dom F relative to S if there exist δ > 0 and α > 1 such

that

{
for all x ∈ B(x̄, δ) ∩ S and all r ∈ (0, δ) there exists z ∈ B(x, r) ∩ S
such that B(F(z), αr) ⊆ B(F(x) + C, r).

(2.2)

The quantity

incC(F; S; x̄) = sup{α > 1 : there exists δ > 0 for which the inclusion in (2.2) holds}

is called exact bound of metric C-increase of F around x̄, relative to S.
(ii) F is said to be globally metrically C-increasing if there exists α > 1 such that

for all x ∈ ℝn and all r > 0 there exists z ∈ B(x, r) such that B(F(z), αr) ⊆ B(F(x) + C, r). (2.3)

The quantity
incC(F) = sup{α > 1 : the inclusion in (2.3) holds}

is called global exact bound of metric C-increase of F.

As a comment to the above property, let us observe that the behavior that it describes can be regarded as
a set-valued version of a phenomenon, which in the case of scalar functions is known as decrease principle
of variational analysis. By this term, any condition is denotedwhich ensures the existence of a constant κ > 0
such that

inf
x∈B(x̄,r)

φ(x) ≤ φ(x̄) − κr,

where φ : X → ℝ ∪ {+∞} is a l.s.c. and bounded from below function defined on a proper (at least, metric)
space, x̄ ∈ X is a reference point and r > 0. Often, such a condition finds a formulation in terms of Fréchet
subdifferential, provided that X is a Fréchet smooth Banach space (see [7, Theorem 3.6.2]), or, more gener-
ally, in terms of strong slope, if X is a complete metric space (see [21]). The decrease principle appeared as
a fundamental tool in the analysis of error bounds and solution stability for inequalities and, as such, it plays
a key role in establishing implicit multifunction theorems (see [7]). This led the author to employ the term
“metric C-increase” in [25].

Remark 2.5. (i) Whenever x̄ ∈ int S, the notion of metric C-increase around x̄, relative to S, reduces to the
notion of local metric C-increase around x̄, as defined in [25].

(ii) An equivalent reformulation of the inclusion (2.2) that will be useful is clearly

for all x ∈ B(x̄, δ) ∩ S and all r ∈ (0, δ) there exists z ∈ B(x, r) ∩ S
such that F(z) + αr𝔹 ⊆ F(x) + C + r𝔹.

Example 2.6. Let F : ℝ 󴁂󴀱 ℝ2 be defined by

F(x) = {y = (y1, y2) ∈ ℝ2 : min{y1, y2} = x}

and let C = ℝ2+. By a direct check of Definition 2.4 (ii), one can see that the set-valued mapping F is globally
metricallyℝ2+-increasing, with incC(F) = 2.

Other examples of classes of metrically C-increasing set-valued mappings, along with verifiable conditions
for detecting such property, will be provided in the next subsection. Further examples can be found in [25].

Below, the aforementioned error bound condition, instrumental to the solution analysis of (SVI), is
established. Such a condition can be viewed as a refinement of [25, Theorem 4.3]. It is presented here with
its full proof, because it turns out that, by using a more adequate technique of proof, one assumption made
in the mentioned theorem can be dropped out and the whole argument gains in clearness.
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Lemma 2.7 (Local error bound under metric C-increase). Suppose that F : ℝn 󴁂󴀱 ℝm is a set-valued mapping,
C ⊆ ℝm is a closed convex cone, and S is a closed set defining a problem (SVI), with x̄ ∈ Sol(SVI). Suppose the
following conditions:
(i) F is l.s.c. in B(x̄, δ) ∩ S for some δ > 0.
(ii) F is metrically C-increasing around x̄, relatively to S.
Then, for every α ∈ (1, incC(F; S; x̄)), there exists δα > 0 such that

dist(x, Sol(SVI)) ≤ exc(F(x), C)
α − 1 for all x ∈ B(x̄, δα) ∩ S. (2.4)

Proof. Consider the function ϕ : S → [0, +∞], defined as in (2.1). According to Remark 2.2 (i), ϕ is l.s.c. on
B(x̄, δ) ∩ S by virtue of hypothesis (i). Take α ∈ (1, incC(F; S; x̄)). Without any loss of generality, it is possible
to assume that δ is smaller than the value of δ appearing in inclusion (2.2) of Definition 2.4. Now, fix an
arbitrary x ∈ B(x̄, δ) ∩ S ∩ [ϕ > 0]. Then, according to hypothesis (ii), taken any r > 0 such that

r < min{δ, ϕ(x)
α − 1},

there exists zr ∈ B(x, r) ∩ S such that

B(F(zr), αr) ⊆ B(F(x) + C, r). (2.5)

Notice that zr ̸= x must hold. This is evident if ϕ(zr) = 0 because x ∈ [ϕ > 0]. In the case ϕ(zr) > 0, if it were
zr = x, on account of inclusion (2.5), by recalling Remark 2.1 (i) and (ii), one would obtain

ϕ(x) + αr = exc(F(x), C) + αr
= exc(B(F(x), αr), C)
≤ exc(B(F(x) + C, r), C)
= exc(F(x), C) + r
= ϕ(x) + r,

whence α ≤ 1, in contradiction to the assumption on the value of α. Furthermore, again by Remark 2.1 (i)
and (ii), and inclusion (2.5), it is possible to observe that

ϕ(zr) = exc(B(F(zr), αr), C) − αr
≤ exc(B(F(x) + C, r), C) − αr
= exc(F(x) + C, C) + r − αr
= ϕ(x) + (1 − α)r.

The last inequality chain implies

ϕ(x) − ϕ(zr) ≥ (α − 1)r ≥ (α − 1)|x − zr|,

so x can not be a local minimizer of ϕ over S. By consequence, when calculating the strong slope of ϕ at x in
the metric space S, one finds

|∇ϕ|(x) = lim sup
z

S
󳨀→x

ϕ(x) − ϕ(z)
|x − z|

= inf
r>0

sup
z∈B(x,r)∩S\{x}

ϕ(x) − ϕ(z)
|x − z|

≥ inf
r>0

ϕ(x) − ϕ(zr)
|x − zr|

≥ α − 1.

This shows that
|∇ϕ|(x) ≥ α − 1 for all x ∈ B(x̄, δ) ∩ S ∩ [ϕ > 0].
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Since S, as a closed subset ofℝn, is a complete metric space, Proposition 2.3 guarantees that

dist(x, Sol(SVI)) = dist(x, [ϕ ≤ 0] ∩ S) ≤ ϕ(x)
α − 1 for all x ∈ B(x̄, δ2) ∩ S.

Thus, it suffices to set δα = δ
2 to achieve the thesis.

The following example illustrates the essential role played by the metric C-increase property for the validity
of the error bound (2.4).

Example 2.8 (Error bound failure). Consider the set-valued mapping F : ℝ 󴁂󴀱 ℝ defined by

F(x) = [−x2, +∞),

and take S = ℝ, C = ℝ+ and x̄ = 0. With these data, the resulting (SVI) evidently admits {0} as a solution set.
Therefore, one has

dist(x, Sol(SVI)) = |x| for all x ∈ ℝ.

On the other hand, one sees that it is

exc(F(x),ℝ+) = x2 for all x ∈ ℝ.

As a consequence, for any α > 1, the error bound inequality

dist(x, Sol(SVI)) = |x| ≤ x2

α − 1 =
exc(F(x),ℝ+)

α − 1
fails to hold in any interval (−δα , δα), whatever the value of δα > 0 is. Observe that F is l.s.c. in a neighborhood
of 0, so hypothesis (i) of Lemma 2.7 is fulfilled. Instead, F is not metrically ℝ+-increasing around 0, relative
toℝ (in other terms, locally metricallyℝ+-increasing around 0).

2.3 Generalized differentiation tools

Let S ⊆ ℝn be a nonempty closed set and let x̄ ∈ S. As a first-order approximation of S near x̄, the following
different cones will be used:

T(S; x̄) = {v ∈ ℝn : there exist (vn)n with vn → v and (tn)n with tn ↓ 0 such that x̄ + tnvn ∈ S for all n ∈ ℕ},
I(S; x̄) = {v ∈ ℝn : there exists δ > 0 such that x̄ + tv ∈ S for all t ∈ (0, δ)},

Iw(S; x̄) = {v ∈ ℝn : for all ϵ > 0 there exists tϵ ∈ (0, ϵ) such that x̄ + tϵv ∈ S},
TCl(S; x̄) = {v ∈ ℝn : for all ϵ > 0 there exists τ > 0 such that for all x ∈ B(x̄, τ) and all t ∈ (0, τ)

there exists v󸀠 ∈ B(v, ϵ) such that x + tv󸀠 ∈ S}.

They are called the contingent cone, the feasible direction cone, the weak feasible direction cone and the
Clarke tangent cone to S at x̄, respectively (see, for instance, [2, 11, 23]). It is to be noted that the above
definition of Clarke tangent cone is actually an equivalent reformulation provided in [11, Proposition 2.2] of
the original notion. The following relations of inclusion are known to hold in general:

I(S; x̄) ⊆ Iw(S; x̄) ⊆ T(S; x̄) and TCl(S; x̄) ⊆ T(S; x̄).

When, in particular, S is locally convex around x̄, i.e. there exists r > 0 such that S ∩ B(x̄, r) is convex, then

cl I(S; x̄) = cl Iw(S; x̄) = T(S; x̄)

(see, for instance, [23, Proposition 11.1.2 (d)]). The Clarke tangent cone is always closed and convex (see
[11, Proposition 2.3]). The contingent cone, introduced in [8, 24], will be the main object of study in the
present analysis. It follows from its very definition that it is determined only by the geometric shape of a set
near the reference point, namely for any r > 0 it is

T(S; x̄) = T(S ∩ B(x̄, r); x̄). (2.6)

Of course, whenever S is a closed convex cone, one finds T(S;0) = S.
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Remark 2.9. Given a nonempty S ⊆ ℝn and x̄ ∈ S, the following characterization of T(S; x̄) in terms of the
Dini lower derivative of the function x 󳨃→ dist(x, S) at x̄ will be useful:

T(S; x̄) = {v ∈ ℝn : lim inf
t↓0

dist(x̄ + tv, S)
t

= 0}

(see [23, Proposition 11.1.5] and [2], where the above equality actually appears as a definition of the contin-
gent cone to S at x̄).

Given a cone C ⊆ ℝm, let us recall that the set

C⊖ = {v ∈ ℝm : ⟨v, c⟩ ≤ 0 for all c ∈ C}

is called (negative) dual cone of C. Whenever S is locally convex around x̄ (and hence T(S; x̄) is convex), such
an operator is connected with the normal cone to S at x̄ in the sense of convex analysis by the following
well-known relation:

N(S; x̄) = T(S; x̄)⊖.

Let φ : ℝn → ℝ ∪ {±∞} be a function which is finite around x̄ ∈ ℝn. Following [17], the sets

∂̂φ(x̄) = {v ∈ ℝn : lim inf
x→x̄

φ(x) − φ(x̄) − ⟨v, x − x̄⟩
|x − x̄|

≥ 0}

and
∂̂+φ(x̄) = {v ∈ ℝn : lim sup

x→x̄

φ(x) − φ(x̄) − ⟨v, x − x̄⟩
|x − x̄|

≤ 0}

are called the Fréchet subdifferential of φ at x̄ and the Fréchet upper subdifferential of φ at x̄, respectively.
It is readily seen that, whenever φ is (Fréchet) differentiable at x̄, then ∂̂φ(x̄) = ∂̂+φ(x̄) = {∇φ(x̄)}, whereas
whenever φ : ℝn → ℝ is convex (resp. concave), the set ∂̂φ(x̄) (resp. ∂̂+φ(x̄)) reduces to the subdifferential
(resp. superdifferential) of φ at x̄ in the sense of convex analysis.

Remark 2.10. The following variational description of the Fréchet upper subdifferential of φ at x̄ will be
exploited in the sequel: for every v ∈ ∂̂+φ(x̄) there exists a function σ : ℝn → ℝ, differentiable at x̄ and with
φ(x̄) = σ(x̄), such that φ(x) ≤ σ(x) for every x ∈ ℝn and ∇σ(x̄) = v (see [17, Theorem 1.88]).

While cones are the basic objects for approximating sets, positively homogeneous set-valued mappings are
the basic tools for approximatingmultifunctions. Recall that a set-valuedmapping H : ℝn 󴁂󴀱 ℝm is positively
homogeneous (for short, p.h.) if 0 ∈ H(0) and

H(λx) = λH(x) for all λ > 0 and all x ∈ ℝn .

Within the class of p.h. set-valuedmappings, fanswill play a prominent role in the present analysis (see [14]).

Definition 2.11 (Fan). A set-valued mapping H : ℝn 󴁂󴀱 ℝm is said to be a fan if it fulfils the following condi-
tions:
(i) It is p.h.
(ii) It is convex-valued.
(iii) It holds

H(x1 + x2) ⊆ H(x1) + H(x2) for all x1, x2 ∈ ℝn .

Fans are set-valuedmappingswith a useful geometric structure, arising in a large variety of contexts. It is clear
that the class of all fans acting betweenℝn andℝm includes, as a very special case, the spaceL(ℝn;ℝm). An
important class of fan, playing a role in the present analysis, is discussed below.

Example 2.12 (Fans generated by linear mappings). Let G ⊆ L(ℝn;ℝm) be a nonempty, convex and closed
set. The set-valued mapping H : ℝn 󴁂󴀱 ℝm defined by

H(x) = {Λx : Λ ∈ G}

is known to be a fan (see [14]). In such a circumstance, the set G will be called a generator for H. In par-
ticular, whenever G is a polytope in L(ℝn;ℝm), the fan generated by G will be said to be finitely-generated.
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For example, in the case m = n, one may take the class of all linear mappings represented by n × n doubly
stochastic matrices. After the Birkhoff–von Neumann theorem, this class is known to be a polytope, resulting
from the convex hull of all the permutation matrices, which are its extreme elements (see [6]). Note that any
finitely-generated fan takes compact values which are polytopes in the range space ℝm. In general, for any
fan H generated by linear mappings it must be H(0) = {0}.

Example 2.13. The set-valued mapping H : ℝ 󴁂󴀱 ℝ, defined by

H(x) =
{{{
{{{
{

−ℝ+ if x < 0,
ℝ if x = 0,
ℝ+ if x > 0,

is a fan. Since H(0) = ℝ holds, it is clear that H can not be generated by any set G ⊆ L(ℝ;ℝ).

Further examples of fans are provided in [26].
According to the present approach of analysis, the upper inverse image of C through a given fan will

be a key element to express the tangential approximation of Sol(SVI). In this perspective, the next remark
gathers some elementary algebraic/topological properties of such a set.

Remark 2.14. (i) It is plain to see that if H : ℝn 󴁂󴀱 ℝm is a fan and C ⊆ ℝm is a closed convex cone, then the
setH+1(C) is a convex cone (possibly empty). Notice that, in general,H+1(C)mayhappen to be not closed. For
example, if taking C = ℝ+ and such a fan H : ℝ 󴁂󴀱 ℝ as defined in Example 2.13, one finds H+1(C) = (0, +∞)
(consistently, H fails to be l.s.c. at 0).

(ii) It is worth noting that, in the case of a fan generated by a set G ⊆ L(ℝn;ℝm), it results in

H+1(C) = ⋂
Λ∈G

Λ−1(C).

As an immediate consequence of the last equality, one deduces that the convex cone H+1(C) is closed when-
ever H is a fan generated by linear mappings. Furthermore, if a fan H is finitely-generated, i.e.

G = co{Λ1, . . . , Λp},

with Λi ∈ L(ℝn;ℝm), for = 1, . . . , p, then it results in

H+1(C) =
p
⋂
i=1

Λ−1i (C).

In this case, each set Λ−1i (C) turns out to be polyhedral, provided that C is so, and therefore H+1(C) inherits
a polyhedral cone structure.

(iii) Whenever H : ℝn 󴁂󴀱 ℝm is a fan generated by a bounded set G ⊆ L(ℝn;ℝm), it turns out to be
Lipschitz. More precisely, if l = sup{‖Λ‖ : Λ ∈ G} < +∞, it holds

Haus(H(x1), H(x2)) ≤ l|x1 − x2| for all x1, x2 ∈ ℝn .

Indeed, since for any y ∈ ℝm it is
dist(y, H(x2)) = inf

Λ∈G
|y − Λx2|,

then, if y = Λ̃x1 for some Λ̃ ∈ G, it results in

dist(Λ̃x1, H(x2)) = inf
Λ∈G
|Λ̃x1 − Λx2| ≤ |Λ̃x1 − Λ̃x2| ≤ ‖Λ̃‖|x1 − x2|.

It follows

exc(H(x1), H(x2)) = sup
y∈H(x1)

dist(y, H(x2))

= sup
Λ∈G

dist(Λx1, H(x2))

≤ sup
Λ∈G
‖Λ‖|x1 − x2|

≤ l|x1 − x2| for all x1, x2 ∈ ℝn .
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In particular, all finitely-generated fans are Lipschitz continuous and, if G = co{Λ1, . . . , Λp}, it results in
l = maxi=1,...,p‖Λi‖.

The aforementioned features motivate the choice of fans as a possible tool for approximating more general
and less structured set-valued mappings.

In viewof the employment of themetric C-increase property in thepresent approach, thenext proposition
provides conditions for a fan to be globallymetrically C-increasing. Its proofmakes use of awell-known order
cancellation law, saying that whenever A ⊆ ℝm is nonempty, B ⊆ ℝm is nonempty convex and bounded, and
C ⊆ ℝm is nonempty closed and convex, then the following implication holds (see [19, Theorem 3.2.1]):

A + B ⊆ C + B implies A ⊆ C.

Proposition 2.15. Let H : ℝn 󴁂󴀱 ℝm be a fan. If

there exist η > 0 and u ∈ 𝔹 such that H(u) + η𝔹 ⊆ C, (2.7)

then H is globally metrically C-increasing and incC(H) ≥ η + 1. Conversely, if the fan H : ℝn 󴁂󴀱 ℝm takes com-
pact values, then condition (2.7) is also necessary for H to be globally metrically C-increasing.

Proof. Take arbitrary x ∈ ℝn and r > 0. Letting u ∈ 𝔹 and η > 0 as in condition (2.7) and setting z = x + ru,
one has that z ∈ B(x, r) and obtains

H(z) + (η + 1)r𝔹 ⊆ H(x) + rH(u) + ηr𝔹 + r𝔹
= H(x) + r(H(u) + η𝔹) + r𝔹
⊆ H(x) + C + r𝔹.

According to Definition 2.4 (ii) and Remark 2.5, this proves that H is globally metrically C-increasing.
Conversely, observe first of all that if H takes compact values, then it must be H(0) = {0}. Indeed, as H is

p.h., one has λH(0) = H(λ0) = H(0) for any λ > 0, so H(0) is a cone, but {0} is the only compact cone. Now,
if H is globally metrically C-increasing, for some α ∈ (1, incC(H)), taking x = 0 and r = 1, there exists v ∈ 𝔹
such that

H(v) + α𝔹 ⊆ H(0) + C + 𝔹 = C + 𝔹.

Since it is α𝔹 = (α − 1)𝔹 + 𝔹, by virtue of the order cancellation law, from the last inclusion one obtains

H(v) + (α − 1)𝔹 ⊆ H(0) + C,

so condition (2.7) is shown to be satisfied with η = α − 1 > 0.

Remark 2.16. (i) Notice that the condition formetric C-increase expressed by (2.7) requires that int C ̸= ⌀. As
a consequence, whenever working with finitely generated fans, which are supposed to be globally metrically
C-increasing, one is forced to assume that int C ̸= ⌀.

(ii) Condition (2.7) may be read in terms of strict positivity. Take into account that, with reference to
the partial order induced by C, the elements in C are the positive ones. Thus, condition (2.7) postulates the
existence of a direction, along which H takes strictly positive values only.

Example 2.17. According to Definition 2.4, the fan H considered in Example 2.13 fails to be metrically
ℝ+-increasing around each point of ℝ, relative to S = ℝ. Observe that, consistently, condition (2.7) is not
satisfied.

From condition (2.7) one can derive a sufficient condition for the global metric C-increase property, which
is specific for fans generated by regular linear mappings. Recall that if Λ ∈ L(ℝn;ℝm) is regular (i.e. onto, or
equivalently it is an epimorphism), then there exists η > 0 such that Λ𝔹 ⊇ η𝔹. The quantity

sur(Λ) = sup{η > 0 : Λ𝔹 ⊇ η𝔹}

is called exact openness bound of Λ and is used to provide a measure of the regularity (openness or
covering) of Λ. For more details on the notion of openness of linear mappings, the reader is referred to
[17, Section 1.2.3]. In particular, for exact estimates of sur(Λ), see [17, Corollary 1.58].
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Corollary 2.18. Let H : ℝn 󴁂󴀱 ℝm be a fan generated by G ⊆ L(ℝn;ℝm). Suppose that

inf
Λ∈G

sur(Λ) > 0.

If
int( ⋂

Λ∈G
Λ−1(C)) ̸= ⌀,

then H is globally metrically C-increasing.

Proof. By hypothesis, there exist u ∈ ℝn and ϵ > 0 such that

u + ϵ𝔹 ⊆ ⋂
Λ∈G

Λ−1(C).

Notice that it is possible to assume without loss of generality that u ̸= 0, because if it is

0 ∈ int(⋂
Λ∈G

Λ−1(C)),

that is,
ϵ𝔹 ⊆ ⋂

Λ∈G
Λ−1(C),

then there must exist x ̸= 0 such that

Λx ∈ C and Λ(−x) ∈ C for all Λ ∈ G.

Since C is a pointed cone, the above inclusions imply Λx = 0, so x ∈ Λ−1(C) for every Λ ∈ G, whence

x + ϵ𝔹 ⊆ ⋂
Λ∈G

Λ−1(C).

Furthermore, since ⋂Λ∈GΛ−1(C) is a cone, it is possible to assume that u ∈ 𝔹. Letting 0 < η < infΛ∈G sur(Λ),
since sur(Λ) > η for every Λ ∈ G, one has

Λ(ϵ𝔹) ⊇ ϵη𝔹 for all Λ ∈ G.

Therefore, it holds
Λu + ϵη𝔹 ⊆ Λ(u + ϵ𝔹) ⊆ C for all Λ ∈ G.

According to the definition of H, it follows that H(u) + ϵη𝔹 ⊆ C, so the sufficient condition (2.7) for a fan to
be globally metrically C-increasing is satisfied. The thesis follows from Proposition 2.15.

In order to utilize p.h. set-valuedmappings and, in particular, fans as an approximation tool for generalmulti-
valued mappings, a concept of differentiation is needed. Among various proposals extending differential
calculus to a set-valued context, motivated by the specific features of the subject under study, the notion
of prederivative is employed here, as found in [14]. Such a notion has been recently considered for different
purposes in the variational analysis literature also in [13, 20].

Definition 2.19 (Prederivative). Let F : ℝn 󴁂󴀱 ℝm be a set-valued mapping and let x̄ ∈ dom F. A p.h. set-
valued mapping H : ℝn 󴁂󴀱 ℝm is said to be a
(i) outer prederivative of F at x̄ if for every ϵ > 0 there exists δ > 0 such that

F(x) ⊆ F(x̄) + H(x − x̄) + ϵ|x − x̄|𝔹 for all x ∈ B(x̄, δ);

(ii) inner prederivative of F at x̄ if for every ϵ > 0 there exists δ > 0 such that

F(x̄) + H(x − x̄) ⊆ F(x) + ϵ|x − x̄|𝔹 for all x ∈ B(x̄, δ);

(iii) prederivative of F at x̄ if H is both, an outer and an inner prederivative of F at x̄.

It is clear that, whenever a set-valued mapping F happens to be single-valued in a neighborhood of x̄ and H
is a p.h. mapping, then all cases (i), (ii), and (iii) in Definition 2.19 coincide with the notion of Bouligand
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derivative (a.k.a. B-derivative), as introduced in [22]. In particular, if H ∈ L(ℝn;ℝm), then the above three
notions collapse to the notion of Fréchet differentiability for mappings. In full analogy with the calculus for
single-valued smooth mappings, in the current context a strict variant of the notion of prederivative, which
will be employed in the sequel, may be formulated as follows [13, 20].

Definition 2.20 (Strict prederivative). Let F : ℝn 󴁂󴀱 ℝm be a set-valuedmapping and let x̄ ∈ dom F. A p.h. set-
valuedmappingH : ℝn 󴁂󴀱 ℝm is said to be a strict prederivative of F at x̄ ∈ dom F if for every ϵ > 0 there exists
δ > 0 such that

F(x2) ⊆ F(x1) + H(x2 − x1) + ϵ|x2 − x1|𝔹 for all x1, x2 ∈ B(x̄, δ).

An articulated discussion on the existence of prederivatives and strict prederivative, on their calculus rules
and connections with regularity properties, can be found in [13, 20].

Remark 2.21. The reader should notice that the notion in Definition 2.19 (ii) and, consequently, the one in
Definition 2.19 (iii) are different from the notion of inner T-derivative and of T-derivative, respectively, as
proposed in [20]. This happens because the termH(x − x̄) appears on the left-hand side of the inclusion inDef-
inition 2.19 (ii). Such a choice entails that a strict prederivative in the sense of Definition 2.20 could fail to be
aprederivative of the same set-valuedmapping. This fact is in contrastwithwhat happens for T-derivative and
strict T-derivative, and therefore it causes a shortcoming in the resulting theory. Nevertheless, such a choice
seems to be unavoidable in order to obtain the outer tangential approximation of Sol(SVI), where the values
of Hmust be included in T(C; ȳ) for ȳ ∈ F(x̄) (see the proof of Theorem 3.5). In this regard, it could be relevant
to observe that in [14, Definition 9.1] (where F is single-valued), the p.h. term appears on the left-hand side
of the inclusion defining the inner prederivative.

The next result shows how local approximations expressed by certain prederivatives can be exploited in order
to formulate a condition for the metric C-increase property of set-valued mappings around a reference point,
relative to a given set.

Proposition 2.22 (Metric C-increase via strict prederivative). Let F : ℝn 󴁂󴀱 ℝm be a set-valued mapping, let
S ⊆ ℝn be a closed set and let x̄ ∈ dom F ∩ S. Suppose the following conditions:
(i) F admits a strict prederivative H : ℝn 󴁂󴀱 ℝm at x̄.
(ii) There exist η > 0 and u ∈ TCl(S; x̄) ∩ 𝔹 such that H(u) + η𝔹 ⊆ C.
(iii) H is Lipschitz with constant κ ≥ 0.
Then F is metrically C-increasing around x̄ relative to S with

incC(F; S; x̄) ≥
η

4(κ + 1) + 1.

Proof. Let η and u be as in hypothesis (ii). Notice that, without any loss of generality, it is possible to assume
that η ∈ (0, 1). Moreover, by the positive homogeneity of H, one has

H(u2) +
η
2𝔹 =

1
2 [H(u) + η𝔹] ⊆

1
2C = C. (2.8)

Since u
2 ∈ TCl(S; x̄)holds, according to the definition of Clarke tangent cone, corresponding to η/4(κ + 1) there

must exist τ > 0 such that for every x ∈ B(x̄, τ) and for every t ∈ (0, τ) there is v ∈ B( u2 , η/4(κ + 1)) such that
x + tv ∈ S. In view of subsequent estimates, it is useful to observe that, by virtue of the Lipschitz continuity
of H, it holds

H(v) ⊆ H(u2) + κ
󵄨󵄨󵄨󵄨󵄨󵄨v −

u
2
󵄨󵄨󵄨󵄨󵄨󵄨𝔹

⊆ H(u2) +
κη

4(κ + 1)𝔹

⊆ H(u2) +
η
4𝔹. (2.9)

Fix ϵ > 0 in such a way that
0 < ϵ < min{1, η

4(κ + 1)}.
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According to hypothesis (i), there exists δϵ > 0 such that

F(x1) ⊆ F(x2) + H(x1 − x2) + ϵ|x1 − x2|𝔹 for all x1, x2 ∈ B(x̄, δϵ). (2.10)

Now, choose δ∗ ∈ (0, min{τ, δϵ/3}) and take arbitrary x ∈ B(x̄, δ∗) ∩ S and r ∈ (0, δ∗).
Since, in particular, x ∈ B(x̄, τ) and r ∈ (0, τ), there is v ∈ B( u2 , η/4(κ + 1)) such that x + rv ∈ S. Thus, let

us define z = x + rv. By recalling that η < 1, it results in

|z − x̄| ≤ |z − x| + |x − x̄|
≤ r|v| + δ∗ < (|v| + 1)δ∗

≤ (
1
2 +

η
4(κ + 1) + 1)δ∗

≤ (
1
2 +

1
4 + 1)δ∗

< 2δ∗
< δϵ .

Thismeans that x, z ∈ B(x̄, δϵ), so it is possible to apply inclusion (2.10),with x1 = z and x2 = x. Furthermore,
it is also useful to remark that

r|v| < r(12 +
η

4(κ + 1)) < r(
1
2 +

1
4) < r. (2.11)

Consequently, by taking into account inclusions (2.8), (2.9) and (2.11), one obtains

F(z) + ( η
4(κ + 1) + 1 − ϵ)r𝔹 ⊆ F(x) + rH(v) + ϵr|v|𝔹 + (

η
4(κ + 1) + 1 − ϵ)r𝔹

⊆ F(x) + r[H(u2) +
η
4𝔹] +

ηr
4(κ + 1)𝔹 + [ϵr + (1 − ϵ)r]𝔹

⊆ F(x) + r[H(u2) +
η
2𝔹] + r𝔹

⊆ F(x) + rC + r𝔹
= F(x) + C + r𝔹.

By inequality (2.11), it is true that z ∈ B(x, r) ∩ S. Therefore, since
η

4(κ + 1) + 1 − ϵ > 1,

the last inclusion shows that F is metrically C-increasing around x̄ relative to S. The arbitrariness of ϵ > 0
enables one to get the quantitative estimate of incC(F; S; x̄) in the thesis.

The condition appearing in hypothesis (ii) can be regarded as a localization of condition (2.7). This shows
that the approximation apparatus based on prederivatives transforms properties of approximations into cor-
responding properties of the mappings to be approximated, as it happens with classical differential calculus
and certain specific properties such as metric regularity (see [14, 17]).

3 Main achievements
The main result of the paper, about a tangential approximation of Sol(SVI) near one of its elements, is
established below.

Theorem 3.1 (Inner tangential approximation under C-increase). With reference to problem (SVI), suppose
x̄ ∈ Sol(SVI). Suppose the following conditions:
(i) F is l.s.c. in a neighborhood of x̄.
(ii) F is metrically C-increasing around x̄ relative to S.
(iii) F admits H : ℝn 󴁂󴀱 ℝm as an outer prederivative at x̄.
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Then the following inclusion holds:

H+1(C) ∩ Iw(S; x̄) ⊆ T(Sol(SVI); x̄). (3.1)

If, in addition,
(iv) the outer prederivative H of F at x̄ is Lipschitz,
then the following stronger inclusion holds:

H+1(C) ∩ T(S; x̄) ⊆ T(Sol(SVI); x̄). (3.2)

Proof. Take an arbitrary v ∈ H+1(C) ∩ Iw(S; x̄). If v = 0, then it is obviously v ∈ T(Sol(SVI); x̄). So, let us
suppose henceforth v ̸= 0. Observe that, since H+1(C), Iw(S; x̄) and T(Sol(SVI); x̄) are all cones (remember
Remark2.14 (i)), it is possible to assumewithout any loss of generality that |v| = 1.According to the character-
ization of elements in the contingent cone mentioned in Remark 2.9, in order to prove that v ∈ T(Sol(SVI); x̄)
it suffices to show that

lim inf
t↓0

dist(x̄ + tv, Sol(SVI))
t

= sup
τ>0

inf
t∈(0,τ)

dist(x̄ + tv, Sol(SVI))
t

= 0. (3.3)

This means that for every τ > 0 and ϵ > 0 there must exist t ∈ (0, τ) such that
dist(x̄ + tv, Sol(SVI))

t
≤ ϵ. (3.4)

So, fix positive τ and ϵ. According to Lemma 2.7, by virtue of hypotheses (i) and (ii), a local error bound for
(SVI) is valid, so corresponding to α ∈ (1, incC(F; S; x̄)) there exists δα > 0 such that inequality (2.4) holds.

On the other hand, by virtue of hypothesis (iii), corresponding to ϵ there exists δϵ > 0 such that

F(x) ⊆ F(x̄) + H(x − x̄) + ϵ(α − 1)|x − x̄|𝔹 for all x ∈ B(x̄, δϵ). (3.5)

Now, take δ∗ in such a way that
0 < δ∗ < min{δα , δϵ , τ}.

Since v ∈ Iw(S; x̄), there exists t∗ ∈ (0, δ∗)with the property that x̄ + t∗v ∈ S ∩ B(x̄, δ∗) . As a consequence of
inclusion (3.5), taking into account that v ∈ H+1(C), one finds

F(x̄ + t∗v) ⊆ F(x̄) + t∗H(v) + ϵ(α − 1)t∗𝔹
⊆ C + t∗C + ϵ(α − 1)t∗𝔹
= C + ϵ(α − 1)t∗𝔹.

From the last inclusion, on account of what was recalled in Remark 2.1 (iii), it follows that

exc(F(x̄ + t∗v), C) ≤ exc(C + ϵ(α − 1)t∗𝔹, C)
= exc(ϵ(α − 1)t∗𝔹, C)
≤ ϵ(α − 1)t∗.

Therefore, by exploiting the error bound inequality (2.4), what is possible to do inasmuch as

x̄ + t∗v ∈ B(x̄, δα) ∩ S,

one obtains
dist(x̄ + t∗v, Sol(SVI))

t∗
≤
exc(F(x̄ + t∗v), C)
(α − 1)t∗

≤ ϵ.

As the last inequality shows that condition (3.4) is satisfied for t = t∗ ∈ (0, τ), inclusion (3.1) is proved.
In order to prove the second inclusion in the thesis, observe first that, since the function

x 󳨃→ dist(x, Sol(SVI))

is Lipschitz, it holds

lim inf
t↓0

dist(x̄ + tv, Sol(SVI))
t

= lim inf
w→v
t↓0

dist(x̄ + tw, Sol(SVI))
t

.
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By consequence, in order to show that v ∈ H+1(C) ∩ T(S; x̄) implies v ∈ T(Sol(SVI); x̄) by means of the char-
acterization in (3.3), it suffices to prove the existence of sequences (vn)n with vn → v and (tn)n with tn ↓ 0 as
n →∞ such that

lim
n→∞

dist(x̄ + tnvn , Sol(SVI))
tn

= 0. (3.6)

Again, one can assume that |v| = 1 (the case v = 0 being trivial). Since v ∈ H+1(C) ∩ T(S; x̄), there exist (vn)n
with vn → v and (tn)n with tn ↓ 0 such that x̄ + tnvn ∈ S for every n ∈ ℕ. As a consequence of hypothesis (iv),
one finds that for some κ > 0 it must hold

H(vn) ⊆ H(v) + κ|vn − v|𝔹 for all n ∈ ℕ.

Fix ϵ > 0. Correspondingly, by hypothesis (iii) there exists δϵ > 0 such that the following inclusion holds true:

F(x) ⊆ F(x̄) + H(x − x̄) + |x − x̄|(α − 1κ + 2 )ϵ𝔹 for all x ∈ B(x̄, δϵ). (3.7)

Take δ∗ ∈ (0, min{δα , δϵ}), where δα > 0 and α have the same meaning as in the first part of the proof and
do exist by hypotheses (i) and (ii) and by Lemma 2.7. Since x̄ + tnvn → x̄ as n →∞, there exists n∗ ∈ ℕ such
that

x̄ + tnvn ∈ B(x̄, δ∗)

and
|vn − v| <

(α − 1)ϵ
κ + 2 , |vn| < 2 for all n ∈ ℕ, n ≥ n∗.

Thus, by recalling that v ∈ H+1(C), in the light of inclusion (3.7), which can be used because

x̄ + tnvn ∈ B(x̄, δϵ) for every n ≥ n∗,

one obtains

F(x̄ + tnvn) ⊆ F(x̄) + tnH(vn) + tn|vn|(
α − 1
κ + 2 )ϵ𝔹

⊆ C + tn[H(v) + κ|vn − v|𝔹] + tn|vn|(
α − 1
κ + 2 )ϵ𝔹

⊆ C + tnC + tn
κ

κ + 2 (α − 1)ϵ𝔹 + tn
2

κ + 2 (α − 1)ϵ𝔹

= C + tn(
κ

κ + 2 +
2

κ + 2)(α − 1)ϵ𝔹,

= C + tn(α − 1)ϵ𝔹 for all n ∈ ℕ, n ≥ n∗.

Now, by passing to the excess function, on account of Remark 2.1 (ii) and (iii) from the last inclusions, one
deduces

exc(F(x̄ + tnvn), C) ≤ exc(C + tn(α − 1)ϵ𝔹, C)
≤ exc(tn(α − 1)ϵ𝔹, C)
≤ tn(α − 1)ϵ for all n ∈ ℕ, n ≥ n∗.

Since x̄ + tnvn ∈ B(x̄, δ∗) ∩ S for every n ∈ ℕ with n ≥ n∗, by virtue of the error bound inequality valid in
B(x̄, δα) ∩ S, it results in

dist(x̄ + tnvn , Sol(SVI))
tn

≤
exc(F(x̄ + tnvn), C)
(α − 1)tn

≤ ϵ for all n ∈ ℕ, n ≥ n∗.

The last inequality, by arbitrariness of ϵ, allows one to conclude that equality (3.6) holds true, thereby com-
pleting the proof.

Inclusions (3.1) and (3.2) provide a convenient description of (in the general case) some elements in
T(Sol(SVI); x̄). Theorem 3.1 ensures that, as far as working with solutions of the approximated (actually,
homogenized) set-valued inclusion

find x ∈ Iw(S; x̄) such that H(x) ⊆ C,
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one keeps within the conic (contingent) approximation of Sol(SVI) near x̄. The reader should notice that,
very often, finding all solutions of problem (SVI) turns out to be a hard problem. Consequently, the set
T(Sol(SVI); x̄) can not be calculated explicitly starting from Sol(SVI). On the other hand, since S and C are
problem data, while the structure of H is supposed to be simpler than the one of F, cones H+1(C) and Iw(S; x̄),
or T(S; x̄), can be calculated more easily. This fact is more evident when H is a fan generated by linear map-
pings and, in particular, is finitely generated (remember indeed Remark 2.14 (ii)). With such a reading,
Theorem 3.1 can be considered as a modern version of an implicit function theorem.

Since outer prederivatives are only one-side approximation tools, one can not expect that any inclu-
sion achieved through them, such as (3.1), could be reverted to get an equality. A simple counterexample
is discussed below.

Example 3.2 (Strict inclusion may hold). Let us consider the set-valued mapping F : ℝ 󴁂󴀱 ℝ2 introduced
in Example 2.6. Take S = ℝ, C = ℝ2+ and x̄ = 0. As F is globally metrically ℝ2+-increasing, it is metrically
ℝ2+-increasing relative toℝ around 0. It is plain to check that F is l.s.c. onℝ. FromDefinition 2.19 (i) it follows
that the constant mapping H : ℝ 󴁂󴀱 ℝ2, defined by H(x) = ℝ2 for every x ∈ ℝ, is an outer prederivative of F
at 0. As one readily sees, it holds Sol(SVI) = F+1(ℝ2+) = [0, +∞). Thus, it results in T(Sol(SVI); 0) = [0, +∞).
On the other hand, it is clear that H+1(ℝ2+) = ⌀. So, in the current case it happens that

H+1(ℝ2+) ∩ Iw(S; 0) = ⌀ ̸= [0, +∞) = T(Sol(SVI); 0).

Now, to work with a more reasonable approximation of F at 0, one may consider the set-valued mapping
H : ℝ 󴁂󴀱 ℝ2, defined by

H(x) = (x, x) + O,

where O = {y = (y1, y2) ∈ ℝ2 : y1y2 = 0}. Clearly, H is p.h. because, as O is a cone, it holds

H(λx) = (λx, λx) + O
= λ(x, x) + λO
= λ[(x, x) + O]
= λH(x) for all λ > 0 and all x ∈ ℝ.

Moreover, since it is
F(x) ⊆ H(x) for all x ∈ ℝ and (0, 0) ∈ F(0),

for every ϵ > 0 one has

F(x) ⊆ F(0) + H(x) ⊆ F(0) + H(x) + ϵ|x|𝔹 for all x ∈ ℝ.

Consequently, H is an outer prederivative of F at 0, so all the hypotheses of Theorem 3.1 are fulfilled. Since

H(x) ̸⊆ ℝ2+ for all x ∈ ℝ,

it happens that H+1(ℝ2+) = ⌀. So, again one has

H+1(ℝ2+) ∩ Iw(S; 0) = ⌀ ̸= [0, +∞) = T(Sol(SVI); 0).

In the particular casewhere F admits a strict prederivative at x̄, fromTheorem3.1 the following inner approxi-
mation of Sol(SVI) can be derived.

Corollary 3.3. With reference to problem (SVI), let x̄ ∈ Sol(SVI). Suppose the following conditions:
(i) F is l.s.c. in a neighborhood of x̄.
(ii) F admits a strict prederivative H : ℝn 󴁂󴀱 ℝm at x̄.
(iii) There exist η > 0 and u ∈ TCl(S; x̄) ∩ 𝔹 such that H(u) + η𝔹 ⊆ C.
(iv) H is Lipschitz.
Then inclusion (3.2) holds true.

Proof. In the light of Proposition 2.22, under hypotheses (ii), (iii) and (iv), F turns out to be metrically
C-increasing around x̄, relative to S. Then it suffices to apply Theorem 3.1.
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Besides an inner tangential approximation of the solution set to (SVI), which is already useful in applications
to optimization (see Section 4), it seems to be worthwhile to consider also an outer tangential approximation
of this set. In doing so, the following remark is relevant.

Remark 3.4. Under the assumption that F is Hausdorff C-u.s.c. at x̄, which seems to be reasonable for the
problem at the issue, if there exists η > 0 such that F(x̄) + η𝔹 ⊆ C (strong satisfaction of the set-valued inclu-
sion), then one has x̄ ∈ int F+1(C). Indeed, corresponding with η, there exists δ > 0 such that

F(x) ⊆ F(x̄) + C + η𝔹 ⊆ C + C = C for all x ∈ B(x̄, δ).

Therefore, whenever it happens that x̄ ∈ int S, one obtains

x̄ ∈ int F+1(C) ∩ int S = int Sol(SVI).

Consequently, it results in
T(Sol(SVI); x̄) = ℝn .

In such a circumstance, it is clear that an outer description of the contingent cone is no longer interesting.

In the light of Remark 3.4, the below analysis is focussed on the case F(x̄) ∩ bd C ̸= ⌀. Such a choice clearly
excludes the case F(x̄) ⊆ int C. It is worth noting that, whenever F(x̄) fails to be a compact set, the latter case
is more general than the one considered in Remark 3.4 (strong satisfaction of the set-valued inclusion).

Theorem 3.5 (Outer tangential approximation by fans). With reference to problem (SVI), let x̄ ∈ Sol(SVI). Sup-
pose the following conditions:
(i) F(x̄) ∩ bd C ̸= ⌀.
(ii) F admits an inner prederivative H : ℝn 󴁂󴀱 ℝm at x̄.
(iii) H is a fan generated by a bounded set G ⊆ L(ℝn ,ℝm).
Then it holds

T(Sol(SVI); x̄) ⊆ [ ⋂
y∈F(x̄)∩bd C

H+1(T(C; y))] ∩ T(S; x̄).

Proof. It is clear that
0 ∈ [ ⋂

y∈F(x̄)∩bd C
H+1(T(C; y))] ∩ T(S; x̄).

Indeed, 0 ∈ T(S; x̄) and, since H is generated by linear mappings, H(0) = {0}, with the consequence that
0 ∈ H+1(T(C; y)) for every y ∈ F(x̄) ∩ bd C. Now, let v ̸= 0 be an arbitrary element of T(Sol(SVI); x̄). As already
done above, in consideration of the conical nature of all involved sets, it is possible to assume that |v| = 1.
Then there exist (vn)n with vn → v and (tn)n with tn ↓ 0 as n →∞ such that

x̄ + tnvn ∈ Sol(SVI) = F+1(C) ∩ S for every n ∈ ℕ.

This fact immediately implies that v ∈ T(S; x̄). By virtue of hypothesis (ii), for every ϵ > 0 there exists δϵ > 0
such that

F(x̄) + H(x − x̄) ⊆ F(x) + ϵ|x − x̄|𝔹 for all x ∈ B(x̄, δϵ). (3.8)

According to what was noted in Remark 2.14 (iii), since H is generated by a bounded set, it is Lipschitz, so
there exists κ > 0 such that

H(x1) ⊆ H(x2) + κ|x1 − x2|𝔹 for all x1, x2 ∈ ℝn . (3.9)

Fix an element ȳ ∈ F(x̄) ∩ bd C and ϵ > 0. Without any loss of generality, it is possible to assume that

δϵ <
ϵ
κ
.

Since the sequence (x̄ + tnvn)n converges to x̄, starting with a proper n∗ ∈ ℕ it must be x̄ + tnvn ∈ B(x̄, δϵ) for
every n ≥ n∗. Thus, from inclusion (3.8) it follows

ȳ + tnH(vn) ⊆ F(x̄ + tnvn) + ϵtn|vn|𝔹 for all n ≥ n∗,
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whence, by recalling that x̄ + tnvn ∈ Sol(SVI), one gets

tnH(vn) ⊆ F(x̄ + tnvn) − ȳ + ϵtn|vn|𝔹 ⊆ C − ȳ + ϵtn|vn|𝔹 for all n ≥ n∗.

Since it is vn → v, by increasing, if needed, the value of n∗, it is possible to assume that

|vn| < 2 and |v − vn| <
ϵ
κ

for all n ≥ n∗.

From the last inclusion, one obtains

H(vn) ⊆
C − ȳ
tn
+ 2ϵ𝔹 for all n ≥ n∗. (3.10)

By recalling inclusion (3.9), one deduces

H(v) ⊆ H(vn) + κ|v − vn|𝔹 ⊆ H(vn) + ϵ𝔹 for all n ≥ n∗.

On account of (3.10), the last obtained inclusion gives

H(v) ⊆ C − ȳ
tn
+ 3ϵ𝔹 for all n ≥ n∗.

According to this, for each w ∈ H(v) there exist sequences (cn)n with cn ∈ C and (bn)n with bn ∈ 𝔹 such that

w = cn − ȳ
tn
+ 3ϵbn for all n ≥ n∗.

Since, up to a sequence relabeling, it is bn → b ∈ 𝔹 for some b ∈ 𝔹 as n →∞,𝔹 being compact, it must result
in

zn =
cn − ȳ
tn
→ z ∈ T(C; ȳ) as n →∞.

As it is ȳ + tnzn ∈ C for every n ≥ n∗, thismeans thatw ∈ T(C; ȳ) + 3ϵ𝔹. By arbitrariness ofw ∈ H(v), the above
argument shows that

H(v) ⊆ T(C; ȳ) + 3ϵ𝔹. (3.11)

Since H(v) is a closed set, T(C; ȳ) is a closed cone and inclusion (3.11) remains true for every ϵ > 0 (notice,
indeed, that v has been fixed before fixing ϵ), it is possible to assert that H(v) ⊆ T(C; ȳ), or, equivalently,
v ∈ H+1(T(C; ȳ)). By arbitrariness of ȳ ∈ F(x̄) ∩ bd C, the above argument shows that

v ∈ ⋂
y∈F(x̄)∩bd C

H+1(T(C; y)),

and thus allows one to conclude that

T(Sol(SVI); x̄) ⊆ ⋂
y∈F(x̄)∩bd C

H+1(T(C; y)).

The proof is complete.

In the special case in which 0 ∈ F(x̄), by exploiting the bilateral approximation of a set-valued mapping pro-
vided by prederivatives, one can achieve the following characterization on the contingent cone to the solution
set of an (SVI).

Theorem 3.6 (Tangential approximation of Sol(SVI)). With reference to problem (SVI), let x̄ ∈ Sol(SVI). Sup-
pose the following conditions:
(i) F is l.s.c. in a neighborhood of x̄.
(ii) F is metrically C-increasing around x̄ relative to S.
(iii) F admits a prederivative H : ℝn 󴁂󴀱 ℝm at x̄.
(iv) H is a fan generated by a bounded subset of L(ℝn;ℝm).
(v) 0 ∈ F(x̄).
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Then the following equality holds:

T(Sol(SVI); x̄) = H+1(C) ∩ T(S; x̄). (3.12)

Proof. Under the above hypotheses one can invoke Theorem 3.1. In doing so, as H is generated by a bounded
set of linear mappings, it is a Lipschitz outer prederivative of F at x̄. Consequently, inclusion (3.2) must hold
true.

On the other hand, the hypotheses in force allows one to apply Theorem 3.5. Thus, since 0 ∈ F(x̄) ∩ bd C
and T(C;0) = C, one finds

T(Sol(SVI); x̄) ⊆ H+1(T(C;0)) ∩ T(S; x̄) = H+1(C) ∩ T(S; x̄).

The last inclusion, along with (3.2), certifies that the equality in the assertion is true.

It is reasonable to expect that, owing to the local nature of the contingent tangential approximation, in the
case x̄ ∈ int S the presence of S does not affect the representation of T(Sol(SVI); x̄). This fact is established
below.

Corollary 3.7. Under the hypotheses of Theorem 3.6, suppose that x̄ ∈ int S. Then it holds

T(F+1(C); x̄) = T(Sol(SVI); x̄) = H+1(C). (3.13)

Proof. Since x̄ is an interior point of S, there exists δ0 > 0 such that B(x̄, δ0) ⊆ S. By taking into account
equality (2.6), one obtains

T(Sol(SVI); x̄) = T(S ∩ F+1(C); x̄)
= T((S ∩ F+1(C)) ∩ B(x̄, δ0); x̄)
= T(F+1(C) ∩ B(x̄, δ0); x̄)
= T(F+1(C); x̄).

On the other hand, again by the fact that x̄ ∈ int S, we have T(S; x̄) = ℝn. Thus, in the current case (3.12)
becomes (3.13).

Even though the present approach has been conceived for problem (SVI) involving multi-valued mappings,
its impact in the case in which F happens to be single-valued is worth being considered too. In such a
circumstance, it is known that metrically regular mappings around a reference point x̄ are, in particular,
ℝm+ -increasing around the same point (see [25, Example 3.4]). Moreover, the notion of prederivative forces H
to be single-valued and collapses to the notion of B-derivative in the sense of Robinson (see [22]). If, in addi-
tion, H is supposed to be generated by linear mappings, prederivatives turns out to be the classic (Fréchet)
derivative. Thus, it is possible to see that Theorem 3.6 extends to a set-valued setting the well-known tan-
gential representation (1.2) of the solution set to problem (1.1) in the case C = ℝm+ . In this regard, notice that
strict differentiability is not required for such an equality to hold because intℝm+ ̸= ⌀ (no equality constraint
is involved in (1.1)).

4 An application to constrained optimization
In the present section, the tangential analysis of the solution set to set-valued inclusions (SVI) is exploited
for deriving necessary optimality conditions. Let us focus on constrained scalar optimization problems that
can be formalized as

min
x∈S

φ(x) subject to F(x) ⊆ C, (P)

where φ : ℝn → ℝ denotes the objective (or cost) function, while the sets S ⊆ ℝn and C ⊆ ℝm, and the set-
valued mapping F : ℝn 󴁂󴀱 ℝm, define an (SVI) problem. With this format, the feasible region of the problem
is thereforeR = Sol(SVI) = F+1(C) ∩ S. As in the previous sections, S is assumed to be a nonempty closed set,
whereas C a closed, convex and pointed cone with C ̸= {0}.
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Proposition 4.1 (Necessary optimality condition). Let x̄ ∈ R be a local solution to problem (P). Suppose the
following conditions:
(i) F is l.s.c. in a neighborhood of x̄.
(ii) F is metrically C-increasing around x̄ relative to S.
(iii) F admits H : ℝn 󴁂󴀱 ℝm as an outer prederivative at x̄.
Then the following inclusion holds:

− ∂̂+φ(x̄) ⊆ [H+1(C) ∩ Iw(S; x̄)]
⊖. (4.1)

If, in particular, φ is differentiable at x̄, condition (4.1) becomes

0 ∈ ∇φ(x̄) + [H+1(C) ∩ Iw(S; x̄)]
⊖.

Proof. By the local optimality of x̄, there exists δ > 0 such that

φ(x̄) ≤ φ(x) for all x ∈ R ∩ B(x̄, δ).

Take an arbitrary w ∈ ∂̂+φ(x̄). According to what was recalled in Remark 2.10, there exists σ : ℝn → ℝ such
that

σ(x̄) = φ(x̄) ≤ φ(x) ≤ σ(x) for all x ∈ R ∩ B(x̄, δ), (4.2)

with ∇σ(x̄) = w. Take v ∈ (H+1(C) ∩ Iw(S; x̄)) \ {0}. By virtue of inclusion (3.1), which holds true because all
hypotheses of Theorem 3.1 are in force, there must exist sequences (vn)n with vn → v and (tn)n with tn ↓ 0
such that x̄ + tnvn ∈ R for every n ∈ ℕ. Since x̄ + tnvn → x̄ as n →∞, there exists a proper n∗ ∈ ℕ such that

x̄ + tnvn ∈ R ∩ B(x̄, δ) for all n ≥ n∗, n ∈ ℕ.

Thus, from inequality (4.2), by using the differentiability of σ at x̄, one obtains

0 ≤ σ(x̄ + tnvn) − σ(x̄)
tn

= ⟨w, vn⟩ +
o(|tnvn|)
tn|vn|

⋅ |vn| for all n ≥ n∗, n ∈ ℕ.

Take into account that, as a converging sequence, (vn)n is bounded. So, passing to the limit as n →∞ in the
last inequality, one finds

⟨w, v⟩ ≥ 0.

As this is true for every v ∈ H+1(C) ∩ Iw(S; x̄) (the case v = 0 being trivial), one can deduce that

−w ∈ [H+1(C) ∩ Iw(S; x̄)]
⊖.

By arbitrariness of w ∈ ∂̂+φ(x̄), the last inclusion gives (4.1). The second assertion in the thesis follows at
once.

Inclusion (4.1) is a counterpart for problem (P) to the upper subdifferential optimality condition valid for
cone constrained problems (see, for instance, [18, Theorem 5.7]).

Remark 4.2. It is to be noted that, whenever x̄ ∈ int S satisfies the constraint system in a “strict" way, i.e.
the constraint system is strongly satisfied at x̄ in the sense of Remark 3.4, then under a Hausdorff upper
semicontinuity assumption on F one has x̄ ∈ intR. In such a circumstance, the local optimality of x̄ clearly
implies 0 ∈ ∂̂φ(x̄).

The optimality condition formulated in Proposition 4.1 requests F to admit an outer prederivativeH, but does
not impose specific requirements on H (all hypotheses refer indeed to F). As one expects, by adding proper
assumptions on the geometric structure of H, along with adequate qualification conditions, it is possible to
achieve finer optimality conditions, having a stronger computational impact. This is done in the next result.
Since in what follows calculus rules for the normal cone are employed, for the reader’s convenience they are
recalled along with their qualification condition in a technical remark.

Remark 4.3. Given Λ ∈ L(ℝn;ℝm) andapair of closed convex conesQ ⊆ ℝn and C ⊆ ℝm, the followinguseful
calculus rule holds (see [23, Lemma 2.4.1]):

(Q ∩ Λ−1(C))⊖ = cl(Q⊖ + Λ⊤(C⊖)).
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Notice that the equalities
(Q1 ∩ Q2)⊖ = cl(Q1

⊖ + Q2
⊖) (4.3)

and
(Λ−1(C))⊖ = cl Λ⊤(C⊖) (4.4)

are special cases of the above formula. If, in particular, the qualification condition intQ1 ∩ intQ2 ̸= ⌀ hap-
pens to be satisfied, then formula (4.3) takes the simpler form

(Q1 ∩ Q2)⊖ = Q1
⊖ + Q2

⊖, (4.5)

whereas the closure operation in (4.4) can be omitted, provided that there exists some x such that Λx ∈ int C.

Theorem 4.4. Let x̄ ∈ R be a local solution to problem (P). Suppose the following conditions:
(i) F is l.s.c. in a neighborhood of x̄.
(ii) F admits a strict prederivative H : ℝn 󴁂󴀱 ℝm at x̄.
(iii) H is a fan generated by a bounded set G ⊆ L(ℝn;ℝm).
(iv) There exist η > 0 and u ∈ TCl(S; x̄) ∩ 𝔹 such that H(u) + η𝔹 ⊆ C.
(v) S is locally convex around x̄ and it holds

int T(S; x̄) ∩ int( ⋂
Λ∈G

Λ−1(C)) ̸= ⌀.

Then it holds
− ∂̂+φ(x̄) ⊆ ( ⋂

Λ∈G
Λ−1(C))

⊖
+ N(S; x̄). (4.6)

If, in particular, it holds
(vi) G = co{Λ1, . . . , Λp} and there exists x0 such that Λix0 ∈ int C for all i = 1, . . . , p,
then inclusion (4.6) becomes

− ∂̂+φ(x̄) ⊆
p
∑
i=1

Λ⊤i (C
⊖) + N(S; x̄). (4.7)

Proof. Observe first that, by virtue of hypothesis (iii), the fan H is Lipschitz (remember Remark 2.14 (iii)). By
consequence, upon hypotheses (i), (ii) and (iv), it is possible to apply Corollary 3.3, which ensures that the
inclusion

H+1(C) ∩ T(S; x̄) ⊆ T(R; x̄)

holds true. By reasoning exactly as in the proof of Proposition 4.1, one finds

−∂̂+φ(x̄) ⊆ [H+1(C) ∩ T(S; x̄)]⊖.

Now, since H+1(C) = ⋂Λ∈G Λ−1(C) and T(S; x̄) are closed cones satisfying the qualification condition in hypo-
thesis (v), by what was recalled in Remark 4.3 (see, in particular, formula (4.5)), one obtains

−∂̂+φ(x̄) ⊆ ( ⋂
Λ∈G

Λ−1(C))
⊖
+ (T(S; x̄))⊖,

which gives inclusion (4.6) on account of the relation between the (negative) dual cone of the contingent cone
and the normal cone.

Under the additional hypothesis (vi), the further qualification condition allows one to exploit once again
formula (4.5), which, along with formula (4.4), leads to obtain

( ⋂
Λ∈G

Λ−1(C))
⊖
= (

p
⋂
i=1

Λ−1i (C))
⊖

=
p
∑
i=1
(Λ−1i (C))

⊖
=

p
∑
i=1

Λ⊤i (C
⊖).

Indeed, in this case Λix0 ∈ int C implies x0 ∈ Λ−1i (int C) ⊂ int(Λ
−1
i (C)), so x0 ∈ ⋂

p
i=1 int Λ

−1
i (C).

This completes the proof.
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Corollary 4.5. Let x̄ ∈ R be a local solution to problem (P). Suppose the following conditions:
(i) F is l.s.c. in a neighborhood of x̄.
(ii) F admits a strict prederivative H : ℝn 󴁂󴀱 ℝm at x̄.
(iii) H is a fan finitely-generated by a set G = co{Λ1, . . . , Λp}, with the property⋂

p
i=1 int Λ

−1
i (C) ̸= ⌀.

(iv) There exist η > 0 and u ∈ 𝔹 such that H(u) + η𝔹 ⊆ C.
(v) x̄ ∈ int S.
(vi) φ is differentiable at x̄.
Then there exist y1, . . . , yp ∈ ℝm such that

yi ∈ C⊖ for all i = 1, . . . , p

and

∇φ(x̄) +
p
∑
i=1

Λ⊤i (yi) = 0. (4.8)

Proof. Since by hypothesis (v) it is x̄ ∈ int S, then it holds TCl(S; x̄) = ℝn (see, for instance, [2, Chapter 4.1.3]).
Thus, the current hypothesis (iv) ensures that hypothesis (iv) in Theorem 4.4 is actually satisfied. Then the
thesis follows immediately fromTheorem4.4by taking into account that, in thepresent case, it isN(S; x̄) = {0}
and ∂̂+φ(x̄) = {∇φ(x̄)}.

The necessary optimality condition formulated in Corollary 4.5 might remind of a multiplier rule, with
elements yi, i = 1, . . . , p, playing the role ofmultipliers. Nevertheless, in comparisonwith classical Lagrang-
ian-type optimality conditions, some substantial differences evidently emerge. Notice indeed that each yi is
a vector ofℝm, not a scalar. Besides, all terms yi refer to the same constraint F(x) ⊆ C. Their number is given
by the number of linear mappings needed to represent the strict outer prederivative of F at x̄. So, it depends
on the tool utilized for approximating F near x̄, it is not an intrinsic constant of the constraint system (and
hence of the problem). On the other hand, the conditions yi ∈ C⊖, i = 1, . . . , p, can be regarded as a vector
counterpart of a sign condition, which is typical of optimality conditions for problems with side-constraints
(inequality systems and their generalizations).

As a further comment referring both, conditions (4.7) and (4.8), let us point out the computational appeal
that these conditionsdisplay: suchanontrivial constraint systemas (SVI) turns out tobe treated, underproper
assumptions, by means of linear algebra tools. This holds a fortiori whenever C is polyhedral.

Acknowledgment: The author would like to thank an anonymous referee for several relevant remarks, in
particular the one concerning Proposition 2.22, which led to improve the quality of the paper.
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