We prove that, if Γ is a finite connected 3-valent vertex-transitive, or 4-valent vertex- and edge-transitive graph, then either Γ is part of a well-understood family of graphs, or every non-identity automorphism of Γ fixes at most 1/3 of the edges. This answers a question proposed by Primož Potočnik and the third author.

Barbieri, M., Grazian, V., Spiga, P. (2023). On the number of fixed edges of automorphisms of vertex-transitive graphs of small valency. JOURNAL OF ALGEBRAIC COMBINATORICS, 57(1), 329-348 [10.1007/s10801-022-01176-5].

On the number of fixed edges of automorphisms of vertex-transitive graphs of small valency

Grazian, Valentina;Spiga, Pablo
2023

Abstract

We prove that, if Γ is a finite connected 3-valent vertex-transitive, or 4-valent vertex- and edge-transitive graph, then either Γ is part of a well-understood family of graphs, or every non-identity automorphism of Γ fixes at most 1/3 of the edges. This answers a question proposed by Primož Potočnik and the third author.
Articolo in rivista - Articolo scientifico
Arc-transitive; fixed-points; Valency 3; Valency 4; Vertex-transitive;
English
27-set-2022
2023
57
1
329
348
open
Barbieri, M., Grazian, V., Spiga, P. (2023). On the number of fixed edges of automorphisms of vertex-transitive graphs of small valency. JOURNAL OF ALGEBRAIC COMBINATORICS, 57(1), 329-348 [10.1007/s10801-022-01176-5].
File in questo prodotto:
File Dimensione Formato  
10281-393091_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 371.05 kB
Formato Adobe PDF
371.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/393091
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
Social impact