Ras proteins are small GTPases playing a pivotal role in cell proliferation and differentiation. Their activation depends on the competing action of GTPase activating proteins and guanine nucleotide exchange factors (GEF). The properties of two dominant-negative mutants within the catalytic domains of the ras-specific GEF, CDC25(Mm), are described. In vitro, the mutant GEF(W1056E) and GEF(T1184E) proteins are catalytically inactive, are able to efficiently displace wild-type GEF from p21(ras), and strongly reduce affinity of the nucleotide-free ras·GEF complex for the incoming nucleotide, thus resulting in the formation of a stable ras·GEF binary complex. Consistent with their in vitro properties, the two mutant GEFs bring about a dramatic reduction in ras-dependent fos-luciferase activity in mouse fibroblasts. The stable ectopic expression of the GEF(W1056E) mutant in smooth muscle cells effectively reduced growth rate and DNA synthesis with no detectable morphological changes.
Vanoni, M., Bertini, R., Sacco, E., Fontanella, L., Rieppi, M., Colombo, S., et al. (1999). Characterization and properties of dominant-negative mutants of the ras specific guanine nucleotide exchange factor CDC25Mm. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 274(51), 36656-36662 [10.1074/jbc.274.51.36656].
Characterization and properties of dominant-negative mutants of the ras specific guanine nucleotide exchange factor CDC25Mm
VANONI, MARCO ERCOLE;SACCO, ELENA;COLOMBO, SONIA;MARTEGANI, ENZO;ALBERGHINA, LILIA
1999
Abstract
Ras proteins are small GTPases playing a pivotal role in cell proliferation and differentiation. Their activation depends on the competing action of GTPase activating proteins and guanine nucleotide exchange factors (GEF). The properties of two dominant-negative mutants within the catalytic domains of the ras-specific GEF, CDC25(Mm), are described. In vitro, the mutant GEF(W1056E) and GEF(T1184E) proteins are catalytically inactive, are able to efficiently displace wild-type GEF from p21(ras), and strongly reduce affinity of the nucleotide-free ras·GEF complex for the incoming nucleotide, thus resulting in the formation of a stable ras·GEF binary complex. Consistent with their in vitro properties, the two mutant GEFs bring about a dramatic reduction in ras-dependent fos-luciferase activity in mouse fibroblasts. The stable ectopic expression of the GEF(W1056E) mutant in smooth muscle cells effectively reduced growth rate and DNA synthesis with no detectable morphological changes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.