We deal with eigenvalue problems for the Laplacian with varying mixed boundary conditions, consisting in homogeneous Neumann conditions on a vanishing portion of the boundary and Dirichlet conditions on the complement. By the study of an Almgren-type frequency function, we derive upper and lower bounds of the eigenvalue variation and sharp estimates in the case of a strictly star-shaped Neumann region.
Felli, V., Noris, B., Ognibene, R. (2022). Eigenvalues of the Laplacian with moving mixed boundary conditions: The case of disappearing Neumann region. JOURNAL OF DIFFERENTIAL EQUATIONS, 320(25 May 2022), 247-315 [10.1016/j.jde.2022.02.052].
Eigenvalues of the Laplacian with moving mixed boundary conditions: The case of disappearing Neumann region
Felli, Veronica
;
2022
Abstract
We deal with eigenvalue problems for the Laplacian with varying mixed boundary conditions, consisting in homogeneous Neumann conditions on a vanishing portion of the boundary and Dirichlet conditions on the complement. By the study of an Almgren-type frequency function, we derive upper and lower bounds of the eigenvalue variation and sharp estimates in the case of a strictly star-shaped Neumann region.File | Dimensione | Formato | |
---|---|---|---|
Felli-2022-JDE-VoR.pdf
Solo gestori archivio
Descrizione: Publisher’s Version
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
737.34 kB
Formato
Adobe PDF
|
737.34 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Felli-2022-Journal Differential Equations-AAM.pdf
accesso aperto
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Creative Commons
Dimensione
552.08 kB
Formato
Adobe PDF
|
552.08 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.