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Abstract. We deal with eigenvalue problems for the Laplacian with varying mixed boundary
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1. Introduction

The present paper concerns the eigenvalue problem for the Laplacian in a bounded domain, with
mixed Dirichlet-Neumann homogeneous boundary conditions prescribed on variable portions of the
boundary. More precisely, we focus on a perturbative problem characterized by the disappearance,
in some limiting process, of the region where Neumann boundary conditions are imposed. In this
situation, the eigenvalues of the mixed problem converge to Dirichlet eigenvalues: we aim to study
the rate of this convergence. This paper is the counterpart of [13], where the case of Dirichlet
disappearing region is studied.

In the literature there have been several contributions on asymptotic behaviour of eigenvalues
of elliptic boundary value problems under singular perturbation of the boundary conditions. Con-
cerning, in particular, the case treated in the present paper, i.e. the perturbation of a Dirichlet
problem by imposing a homogeneous Neumann condition on a vanishing portion of the bound-
ary, we mention the results in [16], where a full asymptotic expansion of perturbed eigenvalues is
obtained in dimension 2, see also [3]; we mention additionally the paper [8], concerned with the
spectral stability of the first eigenvalue. The complementary problem, i.e. a Neumann problem
perturbed with a Dirichlet condition on a small part of the boundary, is treated by [17] in dimen-
sion 2 and by [13] in any dimension N ≥ 3. The approach developed in [13] is based on a capacity
argument inspired by [9] and [2], where the problem of spectral stability for the Dirichlet Laplacian
in domains with small holes is investigated; in particular in [13] the sharp asymptotic behaviour
of perturbed eigenvalues is described in terms of the Sobolev capacity of the boundary portion
where the Dirichlet condition is imposed. This kind of method does not seem to be effective in the
case of a disappearing Neumann region, being the Dirichlet boundary set not small. Therefore,
in the present paper we treat this case with a different approach, based on blow-up analysis for
scaled eigenfunctions and energy estimates obtained by monotonicity formulas, in the spirit of [3];
we point out that the case of dimension N ≥ 3 presents several additional difficulties with respect
to the 2-dimensional case treated in [3], because of the occurrence of some effects of the geometry
of the Neumann region in the monotonicity argument, see Remark 1.3.

Let Ω ⊂ RN , N ≥ 3, be a bounded open set such that ∂Ω is of class C1,1 in a neighbourhood
of 0 ∈ ∂Ω, namely there exist r0 ∈ (0, 1) and g ∈ C1,1(RN−1) such that

(1.1) Br0 ∩ Ω = {x ∈ Br0 : xN > g(x′)} and Br0 ∩ ∂Ω = {x ∈ Br0 : xN = g(x′)},
where Br0 = {x = (x1, x2, . . . , xN ) ∈ RN : |x| < r0} is the ball in RN centered at the origin with
radius r0 and x′ = (x1, . . . , xN−1). Up to a suitable choice of the Cartesian coordinate system, it
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is not restrictive to assume that

(1.2) g(0) = 0 and ∇g(0) = 0,

i.e. that ∂Ω is tangent to the coordinate hyperplane {xN = 0} in the origin.
Let V be a bounded open set in RN such that

(1.3) 0 ∈ V and diam(V) = sup{|x− y| : x, y ∈ V} < r0.

For every ε ∈ (0, 1), let

(1.4) Σε := (εV) ∩ ∂Ω,

where εV = {εx : x ∈ V} ⊂ Br0 . Furthermore, we set

(1.5) Σ = V ∩ ∂RN+ = {x = (x1, x2, . . . , xN ) ∈ V : xN = 0},

where RN+ = {(x′, xN ) ∈ RN = RN−1 × R : xN > 0}.
We consider the following eigenvalue problem with mixed boundary conditions

(1.6)


−∆u = λu, in Ω,

u = 0, on ∂Ω \ Σε,

∂νu = 0, on Σε,

and we are interested in the asymptotic behaviour of its eigenvalues as ε→ 0+, that is when the
Neumann region Σε is disappearing.

In order to write the weak formulation of (1.6), we first introduce the suitable functional
framework. For any open set ω ⊆ RN and for any closed set Γ ⊆ ∂ω, we define H1

0,Γ(ω) as the

closure in H1(ω) of C∞c (ω \ Γ); we refer to [11] for a more detailed analysis of this kind of space
(see also [6]). We note that, if Ω and V are sufficiently regular (for example Lipschitz), then we
have the following characterization

H1
0,∂Ω\Σε(Ω) = {u ∈ H1(Ω) : Tr(u) = 0 on ∂Ω \ Σε}

for every ε ∈ (0, 1), where Tr denotes the trace operator (see [6]). We note also that, formally,
when ε = 0 the space H1

0,∂Ω(Ω) coincides with the usual Sobolev space H1
0 (Ω).

We say that λ ∈ R is an eigenvalue of problem (1.6) if there exists ϕ ∈ H1
0,∂Ω\Σε(Ω), ϕ 6≡ 0,

called an eigenfunction, such that

(1.7)

∫
Ω

∇ϕ · ∇v dx = λ

∫
Ω

ϕv dx for every v ∈ H1
0,∂Ω\Σε(Ω).

From classical spectral theory, (1.7) admits a diverging sequence of positive eigenvalues

0 < λε1 < λε2 ≤ λε3 ≤ · · · ≤ λεi ≤ · · · ,

where each eigenvalue is repeated according to its multiplicity. Letting N∗ := N \ {0}, we denote
by {ϕεi}i∈N∗ a corresponding sequence of eigenfunctions satisfying

(1.8)

∫
Ω

ϕεiϕ
ε
j = δji ,

with δji denoting the usual Kronecker delta. In the sense clarified in (1.7), the functions ϕεi weakly
solve

(1.9)


−∆ϕεi = λεiϕ

ε
i , in Ω,

ϕεi = 0, on ∂Ω \ Σε,

∂νϕ
ε
i = 0, on Σε.

In the limit ε = 0, once the Neumann region Σε has disappeared, we formally recover the eigenvalue
problem for the standard Dirichlet Laplacian

(1.10)

{
−∆u = λu, in Ω,

u = 0, on ∂Ω,
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which is well known to admit a diverging sequence of positive eigenvalues

0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λi ≤ · · · .

We denote by {ϕi}i∈N∗ a corresponding sequence of eigenfunctions satisfying

(1.11)

∫
Ω

ϕiϕj dx = δji .

More precisely, λi and ϕi solve (1.10) in the sense that ϕi ∈ H1
0 (Ω) and

(1.12)

∫
Ω

∇ϕi · ∇v dx = λi

∫
Ω

ϕiv dx for all v ∈ H1
0 (Ω).

In Section 2 we prove that, for all i ∈ N∗,

λεi → λi as ε→ 0.

The main goal of the present paper is to detect the sharp rate of the above convergence.
The vanishing rate of the eigenvalue variation λεi − λi turns out to be strongly related to the

behaviour of the Dirichlet eigenfunctions ϕi, locally near the point 0 ∈ ∂Ω. We can derive from
[12] the classification of possible vanishing orders of ϕi at the boundary: for every i ∈ N∗, there

exist γi ∈ N∗, Ψi ∈ H1
0 (SN−1

+ ), with Ψi 6≡ 0, such that

(1.13)
ϕi(rx)

rγi
→ |x|γiΨi

(
x

|x|

)
in H1(Bρ) as r → 0, for every ρ > 0,

where SN−1
+ = {(x1, . . . , xN ) ∈ RN : |x| = 1, xN > 0} and ϕi, respectively Ψi, are trivially

extended outside Ω, respectively SN−1
+ . Moreover the function Ψi is the restriction to SN−1

+ of a
spherical harmonic odd with respect to the equator xN = 0 and the γi-homogeneous function ψi
with angular profile Ψi, i.e.

(1.14) ψi(x) = |x|γiΨi

(
x

|x|

)
,

is a harmonic homogeneous polynomial of degree γi vanishing on ∂RN+ . In particular, being ψi
harmonic, nontrivial and vanishing on ∂RN+ , we have that ∂xNψi 6≡ 0 on Σ.

In the following we fix n0 ∈ N∗ such that

(1.15) λn0
is simple

as an eigenvalue of the standard Dirichlet Laplacian in Ω. Moreover, hereafter we denote

(1.16) γ := γn0

and

(1.17) Ψ := Ψn0 , ψ := ψn0 .

Under assumption (1.15) it is possible to choose the eigenfunctions ϕεn0
, solving (1.9) with i = n0,

in such a way that

ϕεn0
→ ϕn0

in H1(Ω) as ε→ 0,

see Proposition 2.4.
The scaled shape (1.5) of the Neumann disappearing region emerges in the asymptotic ex-

pansion of the eigenvalue variation in the guise of a coefficient Cn0(Σ) admitting a variational
characterization. We define Cn0

(Π) for any bounded open subset Π ⊂ ∂RN+ such that 0 ∈ Π.

Letting D1,2(RN+ ∪Π) be the completion of C∞c (RN+ ∪Π) with respect to the norm

‖u‖D1,2(RN+∪Π) =

√∫
RN+
|∇u|2 dx,

we define

(1.18) Cn0(Π) := −2 min
{
JΠ(u) : u ∈ D1,2(RN+ ∪Π)

}
,
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where

(1.19) JΠ : D1,2(RN+ ∪Π)→ R, JΠ(u) :=
1

2

∫
RN+
|∇u|2 dx+

∫
Π

u∂νψ dx′,

ψ is defined in (1.17), and ν = (0, 0, . . . , 0,−1) is the vertical downward unit vector. By classical
variational methods one can easily prove that the minimum in (1.18) is attained (by the function
w0,Π defined in (3.3)) and Cn0

(Π) > 0, see Section 3. We define

(1.20) Cn0
= Cn0

(B′1) > 0,

where we are denoting, for all r > 0,

(1.21) B′r := Br ∩ ∂RN+ .

Our first main result provides asymptotic lower and upper bounds of the eigenvalue variation as
ε→ 0.

Theorem 1.1. Let V ⊂ RN be a bounded open set satisfying (1.3) and 0 < rV < RV < r0 be such
that BrV ⊂ V ⊂ BRV . Then

Cn0
rN+2γ−2
V ≤ lim inf

ε→0

λn0
− λεn0

εN+2γ−2
≤ lim sup

ε→0

λn0
− λεn0

εN+2γ−2
≤ Cn0

RN+2γ−2
V

with Cn0
as in (1.20) and γ as in (1.16).

The proof of Theorem 1.1 will be obtained by comparison of the eigenvalues λεn0
of problem

(1.9) with the eigenvalues of the analogous problems with V replaced by the balls BRV and BrV ,
for which a more precise asymptotic expansion can be derived, exploiting the star-shapedness of
the Neumann region.

We now state the sharper asymptotic estimates which we are able to obtain under stronger
regularity and geometric assumptions on the set V. Let us assume, in addition to (1.3), that

(1.22) V is of class C1,1

and V is strictly star-shaped with respect to the origin, i.e.

(1.23) there exists σ > 0 such that x · ν(x) ≥ σ for every x ∈ ∂V,

where ν(x) is the exterior unit normal vector at x ∈ ∂V. We observe that the notion of strict
star-shapedness given in (1.23) is equivalent to the notion of star-shapedness with respect to a ball
discussed in [21, Section 1.1.8], see [7, Lemma 1] and [20, Lemma 3.2].

Theorem 1.2. If V satisfies (1.22) and (1.23) in addition to (1.3), then the following asymptotic
expansion holds

λεn0
= λn0

− Cn0
(Σ)εN+2γ−2 + o(εN+2γ−2) as ε→ 0,

with Cn0
(Σ) as in (1.18) and Σ as in (1.5).

The proof of Theorem 1.2 is obtained through sharp estimates from above and below of the
Rayleigh quotients for the eigenvalues λεn0

and λn0
, which in turn require energy bounds, uniform

with respect to ε, on eigenfunctions, provided by an Almgren-type monotonicity argument. The
last step in the achievement of sharp eigenvalue estimates consists of a blow-up analysis for scaled
eigenfunctions.

The Almgren frequency function at a point is given by the ratio of the local energy over the
mass near that point, see [5]; we refer to formula (6.2) in Section 6 for the precise definition of the
frequency for our problem. Monotonicity of this quotient implies a uniform control of the local
energies and, in the classical case of harmonic functions, such a monotonicity easily follows from
the positivity of the derivative. For solutions u of elliptic equations of the type

−∆u = V u,
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with V bounded, the frequency is no more monotone because of the presence of the potential.
However, the “perturbed frequency”

NV (r) :=

r

∫
|x−x0|<r

(|∇u|2 − V u2) dx∫
|x−x0|=r

u2 dS

still enjoys some monotonicity properties, in the form of an estimate of the type

N ′V (r) ≥ −constNV (r),

which allows proving boundedness of NV and then energy estimates for u. In this spirit, here we
mean to prove boundedness of the frequency of eigenfunctions ϕεi at the origin (which belongs to the
boundary), uniformly with respect to the parameter ε, by establishing its perturbed monotonicity
through an estimate from below of its derivative. Since, in the case we are considering here,
all neighbourhoods of the origin contain portions of the boundary, some additional boundary
terms appear in the derivative of the frequency; star-shapedness assumption (1.23) forces these
remainder terms to have a sign which is favorable to the desired estimate. On the other hand,
the lack of regularity of the eigenfunctions ϕεi at Dirichlet-Neumann junctions prevents us from a
direct differentiation of the frequency function, which requires a Pohozaev-type identity based on
the integration of the Rellich-Necas identity (5.10). For what concerns this last issue, considerable
differences appear between the cases N = 2 and N ≥ 3, as explained in the following Remark.

Remark 1.3. With respect to the 2-dimensional case treated in [3], significant new difficulties
arise, mainly due to regularity issues for mixed boundary value problems like (1.9), which turn out
to be more delicate in dimension N ≥ 3 because of the positive dimension of the junction set ∂Σε
and some role played by the geometry of Σε, in particular in connection with its star-shapedness.
Indeed, when N = 2 the interface ∂Σε has zero dimension (basically, it consists of a couple of
points) and it is possible to perform an approximation just by removing a small neighbourhood
of the junction points, thus allowing quite explicit computations in the derivation of Almgren
monotonicity formulas (see [3, Lemma C.5]). In higher dimensions, we overcome the difficulties
produced by lack of regularity of solutions by constructing a sequence of approximating problems,
for which enough regularity is available to derive Pohozaev-type identities, needed, in turn, to
obtain Almgren-type monotonicity formulas and consequently to perform blow-up analysis. In
particular, the geometry of the boundary manifests in the form of some extra remainder terms
appearing in the Pohozaev-type identity for the regularized problem and depending on the mutual
orientation of normal and position vectors, whose control motivates here the geometric assumption
(1.23), which is, in fact, a star-shapedness condition on the Neumann region, see Proposition 5.1
and, in particular, (5.27).

Under the same assumptions of Theorem 1.2, the blow-up analysis performed in Section 9 allows
us to describe the behaviour of perturbed eigenfunctions ϕεn0

when they are scaled at the origin,
i.e. at the point around which Σε is shrinking, thus yielding the following result.

Theorem 1.4. Let V satisfy (1.3), (1.22) and (1.23). Let U = ψ +w0,Σ, where ψ is as in (1.17)
and w0,Σ (defined in (3.3)) is the unique minimizer of the functional JΣ introduced in (1.19).
Then, for any R > 0 sufficiently large,

ε−N−2γ

∫
Ω∩BRε

∣∣ϕεn0

∣∣2 dx→
∫
B+
R

U2 dx

ε−N−2γ+2

∫
Ω∩BRε

∣∣∇ϕεn0

∣∣2 dx→
∫
B+
R

|∇U |2 dx,

as ε→ 0.

The paper is structured as follows. In Section 2 we prove convergence of eigenvalues and eigen-
functions as ε → 0 to eigenelements of the unperturbed problem. In Section 3 we construct the
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limit profiles, which will appear in the blow-up analysis, by minimization of the functional intro-
duced in (1.19). In Section 4 we introduce an equivalent auxiliary problem obtained by deforming
the boundary of Ω into a straight hyperplane; to this aim we use a particular diffeomorphism, in-
troduced in [4] and made on purpose to ensure that the equation is conserved by reflection through
the straightened boundary. Section 5 is devoted to a Pohozaev-type identity for the approximating
problems, which is then used in Section 6 to develop a monotonicity argument, from which energy
estimates follow. In Sections 7 and 8 we prove sharp upper and lower bounds for the eigenvalue
variation, while Section 9 is devoted to a blow-up analysis for scaled eigenfunctions. In Section
10 we combine the lower/upper estimates on the eigenvalue variation and the blow analysis to
prove Theorem 1.2, which is then combined with a comparison and scaling argument to prove
Theorem 1.1 in Section 11. Finally, in the appendix we recall some Poincaré-type inequalities and
an abstract lemma on maxima of quadratic forms.

2. Convergence of eigenelements

In the following we tacitly assume that the hypotheses on Ω set out in the Introduction and
assumption (1.3) on V are satisfied; consequently we let Σε be as in (1.4). In this section we
prove that the eigenvalues and eigenfunctions of the perturbed problem converge, as ε→ 0, to the
corresponding unperturbed eigenelements.

Lemma 2.1. For any ε ∈ (0, 1), let λε ∈ R be an eigenvalue of problem (1.7) and ϕε∈H1
0,∂Ω\Σε(Ω)

be an associated eigenfunction such that
∫

Ω
ϕ2
ε dx = 1. Let us assume that there exists a decreasing

sequence (εn)n ⊆ (0, 1) and a real number λ∗ such that εn → 0 and λεn → λ∗ as n → ∞. Then
there exist a subsequence (εni)i and ϕ∗ ∈ H1

0 (Ω) such that

ϕεni ⇀ ϕ∗ weakly in H1(Ω) and ϕεni → ϕ∗ strongly in L2(Ω),

as i→∞. Moreover λ∗ is an eigenvalue of the Dirichlet Laplacian in Ω with ϕ∗ as an eigenfunc-
tion, in the sense of (1.12), and

∫
Ω
|ϕ∗|2 dx = 1.

Proof. By hypothesis we have that∫
Ω

ϕ2
εn dx = 1 and

∫
Ω

|∇ϕεn |
2

dx = λεn = λ∗ + o(1)

as n→∞. Therefore there exist a subsequence (εni)i and ϕ∗ ∈ H1(Ω) such that

ϕεni ⇀ ϕ∗ weakly in H1(Ω) and ϕεni → ϕ∗ strongly in L2(Ω),

as i → ∞. We first aim at showing that ϕ∗ ∈ H1
0 (Ω). In order to do this, let r2 > r1 > 0 and

let ζ ∈ C∞c (RN ) be such that supp(ζ) ⊂ Br2 and ζ(x) = 1 for every x ∈ Br1 . For every δ > 0
and x ∈ RN , we define ζδ(x) = ζ(x/δ). First we notice that (1− ζδ)ϕ∗ ∈ H1

0 (Ω) for every δ > 0.
Indeed, by approximation of ϕεni with C∞c (Ω∪Σεni )-functions, we see that, for every fixed δ > 0

and for i large enough, (1 − ζδ)ϕεni ∈ H1
0 (Ω); moreover, (1 − ζδ)ϕεni ⇀ (1 − ζδ)ϕ∗ weakly in

H1(Ω) as i→∞, thus implying that (1− ζδ)ϕ∗ ∈ H1
0 (Ω). Secondly, we have that, as δ → 0,

‖(1− ζδ)ϕ∗ − ϕ∗‖2H1(Ω) = ‖ζδϕ∗‖2H1(Ω) ≤
∫

Ω

(
2|∇ζδ|2(ϕ∗)2 + 2ζ2

δ |∇ϕ∗|2 + ζ2
δ (ϕ∗)2

)
dx

≤ 2δ−2‖∇ζ‖2L∞(RN )

∫
Bδr2\Bδr1

(ϕ∗)2 dx+ o(1) ≤ C

(∫
Bδr2\Bδr1

(ϕ∗)2∗ dx

)2/2∗

+ o(1) = o(1),

for some C > 0, with 2∗ = 2N/(N − 2). Hence (1− ζδ)ϕ∗ ∈ H1
0 (Ω) for every δ > 0 and converges

to ϕ∗ in H1(Ω) as δ → 0, so that ϕ∗ ∈ H1
0 (Ω).

By strong L2(Ω)-convergence, we have that
∫

Ω
|ϕ∗| dx = 1. Finally, by hypothesis we have

that, for every i, ∫
Ω

∇ϕεni · ∇φ dx = λεni

∫
Ω

ϕεniφ dx,
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for all φ ∈ H1
0,∂Ω\Σεni

(Ω) and, in particular, for any φ ∈ H1
0 (Ω). Passing to the limit as i → ∞

in the previous equation for φ ∈ H1
0 (Ω) proves that ϕ∗ and λ∗ satisfy (1.12) thus completing the

proof. �

Remark 2.2. Some basic relations among the families of perturbed eigenvalues and between
the perturbed and unperturbed sequences can be easily observed. The eigenvalues λεi admit the
following classical Min-Max variational characterization

(2.1) λεi = min

{
max
u∈Fi

‖∇u‖2L2(Ω)

‖u‖2L2(Ω)

: Fi ⊂ H1
0,∂Ω\Σε(Ω) i-dimensional subspace

}
.

By (1.3), for every ε1 > 0 there exists 0 < ε2 < ε1 such that H1
0,∂Ω\Σε2

(Ω) ⊂ H1
0,∂Ω\Σε1

(Ω). Then

for every sequence εn → 0 there exists a decreasing subsequence {εnk} such that, for every i ∈ N∗,

λ
εnk+1

i ≥ λεnki for every k.

Moreover, since H1
0 (Ω) ⊂ H1

0,∂Ω\Σε(Ω) for every ε > 0, we readily get, for every i ∈ N∗,

(2.2) λi ≥ λεi for every ε > 0.

Proposition 2.3. For any i ∈ N∗, λεi → λi as ε→ 0.

Proof. By Remark 2.2 and Urysohn’s subsequence principle, it is enough to prove the convergence
along sequences εn → 0 for which n 7→ λiεn is increasing; then, by (2.2), it is not restrictive to

assume that ε 7→ λiε is decreasing for any i ∈ N∗ and admits a limit λ∗i ≤ λi as ε → 0. We now
prove that, for any i ∈ N∗, λi ≤ λ∗i . We argue by induction on i. From Lemma 2.1 we know that
λ∗1 is an eigenvalue of the unperturbed problem so that, λ∗1 ≥ λ1. Let us now assume that

(2.3) λ∗j = λj for all j = 1, . . . , i− 1.

Let ϕε1, . . . , ϕ
ε
i be a family of perturbed eigenfunctions as in (1.8). By Lemma 2.1 there exist a

sequence εn → 0 as n → ∞ and functions u∗1, . . . , u
∗
i , that are eigenfunctions of the unperturbed

problem (1.12), such that

(2.4) ϕεnj ⇀ u∗j weakly in H1(Ω) and ϕεnj → u∗j strongly in L2(Ω),

as n→∞, for every j = 1, . . . , i.
On the one hand, by passing to the limit as n→∞ in (1.8), we obtain

(2.5)

∫
Ω

u∗ju
∗
l dx = δlj .

for all j, l ∈ {1, . . . , i}. On the other hand, by (2.3) and (2.4), for every j = 1, . . . , i − 1, u∗j is a

L2(Ω)-normalized eigenfunction corresponding to the eigenvalue λj . Therefore, in view also of
(2.5), u∗i ∈ span{u∗1, . . . , u∗i−1}⊥. From the iterative variational characterization of the eigenvalues
(see e.g. [19, Section 11.5]) we have that

λ∗i =

∫
Ω

|∇u∗i |
2

dx ≥ min
u∈span{u∗1 ,...,u∗i−1}⊥

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

= λi

and this concludes the proof. �

Proposition 2.4. Let λi be a simple eigenvalue of (1.12) and let ϕi be a L2(Ω)-normalized
associated eigenfunction. For any ε ∈ (0, 1) let λεi be the i-th eigenvalue of (1.9) and let ϕεi be a
L2(Ω)-normalized associated eigenfunction such that

(2.6)

∫
Ω

ϕεiϕi dx ≥ 0.

Then ϕεi → ϕi in H1(Ω) as ε→ 0.
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Proof. From Lemma 2.1 and Proposition 2.3 we infer that there exist a sequence εn → 0 as n→∞
and ϕ∗ ∈ H1

0 (Ω), eigenfunction associated to λi, such that

ϕεni ⇀ ϕ∗ weakly in H1(Ω) and ϕεni → ϕ∗ strongly in L2(Ω)

as n→∞. In particular, by strong L2(Ω)-convergence, ϕ∗ is L2(Ω)-normalized. Being λi simple,
we have that either ϕ∗ = ϕi or ϕ∗ = −ϕi. The assumption (2.6) rules out the second possibility,
allowing us to conclude that ϕ∗ = ϕi.

Finally, in view of Proposition 2.3,

‖ϕεni ‖
2
H1(Ω) = λεni + 1→ λi + 1 = ‖ϕi‖2H1(Ω)

as n → ∞. Hence ϕεni → ϕi strongly in H1(Ω) as n → ∞. By Urysohn’s subsequence principle
the convergence holds as ε→ 0, thus concluding the proof. �

3. Limit profiles

We now introduce the functions that appear as limit profiles in the blow-up analysis. From
here on, for any R > 0, we denote by ηR a cut-off function such that

(3.1) ηR ∈ C∞(RN+ ), 0 ≤ ηR ≤ 1, |∇ηR| ≤
4

R
, ηR(x) :=

{
1, if |x| ≥ R,
0, if |x| ≤ R/2.

Lemma 3.1. Let Π be a bounded open subset of ∂RN+ such that 0 ∈ Π and let f ∈ L2(Π). Then

there exists a unique function w = w(f,Π) ∈ D1,2(RN+ ∪Π) such that
−∆w = 0, in RN+ ,
w = 0, on ∂RN+ \Π,

∂νw = f, on Π,

where ν = (0, . . . , 0,−1), in a weak sense, that is

(3.2)

∫
RN+
∇w · ∇v dx =

∫
Π

fv dx′ for all v ∈ D1,2(RN+ ∪Π).

Proof. The result is a direct consequence of the Lax-Milgram Theorem. �

Given ψ ∈ C∞(RN+ ) as in (1.17), we define

(3.3) w0,Π := w(−∂νψ,Π),

where w(·, ·) is defined in Lemma 3.1. We point out that the function w0,Π ∈ D1,2(RN+ ∪ Π) is

the unique minimizer, among all the possible u ∈ D1,2(RN+ ∪ Π), of the functional JΠ defined in
(1.19). We denote

(3.4) mn0(Π) := J(w0,Π) = min
u∈D1,2(RN+∪Π)

JΠ(u).

Since, for any bounded open set Π ⊂ ∂RN+ , ∂xNψ 6≡ 0 on Π, we have that w0,Π 6≡ 0 and hence,
choosing v = w0,Π in (3.2), we obtain that

(3.5) mn0
(Π) =

1

2

∫
Π

w0,Π∂νψ dx′ = −1

2

∫
RN+
|∇w0,Π|2 dx < 0.

The following lemma is a consequence of the homogeneity of the function ψ.

Lemma 3.2. For every r > 0 we have that mn0
(B′r) = rN+2γ−2mn0

(B′1), with γ as in (1.16).

Proof. Since ∂νψ(rx′) = rγ−1∂νψ(x′), a scaling argument easily yields that

w0,B′r
(x) = rγw0,B′1

(x
r

)
.
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Hence, by a change of variable, we obtain that

mn0
(B′r) = −1

2

∫
RN+

∣∣∇w0,B′r
(x)
∣∣2 dx = −1

2
r2(γ−1)

∫
RN+

∣∣∇w0,B′1
(x/r)

∣∣2 dx

= −1

2
rN+2γ−2

∫
RN+

∣∣∇w0,B′1
(y)
∣∣2 dy = rN+2γ−2mn0

(B′1),

thus concluding that proof. �

Hereafter in this section, we let Σ be as in (1.5), for some V satisfying (1.3), (1.22) and (1.23),
and define

w0 := w0,Σ

and

(3.6) U = w0 + ψ.

One can see that U ∈ ψ +D1,2(RN+ ∪ Σ) weakly satisfies the following boundary value problem

(3.7)


−∆U = 0, in RN+ ,
U = 0, on ∂RN+ \ Σ,

∂νU = 0, on Σ,

i.e.
∫
RN+
∇U · ∇v dx = 0 for all v ∈ D1,2(RN+ ∪ Σ).

The two following existence results Lemma 3.3 and Lemma 3.4 can be easily proved by standard
minimization methods. Henceforth we denote, for all R > 0,

(3.8) B+
R := BR ∩ RN+ , and S+

R := ∂BR ∩ RN+ .

Lemma 3.3. Let Σ ⊆ ∂RN+ be as in (1.5). For every R > 1 there exists a unique function

UR ∈ ψ +H1
0,∂B+

R\Σ
(B+

R) achieving

min
{
‖∇u‖2

L2(B+
R)

: u ∈ ψ +H1
0,∂B+

R\Σ
(B+

R)
}
.

Moreover, UR weakly solves

(3.9)


−∆UR = 0, in B+

R ,

UR = ψ, on ∂B+
R \ Σ,

∂νUR = 0, on Σ,

that is

(3.10)

UR − ψ ∈ H
1
0,∂B+

R\Σ
(B+

R),∫
B+
R
∇UR · ∇φ dx = 0 for all φ ∈ H1

0,∂B+
R\Σ

(B+
R).

Lemma 3.4. Let Σ ⊆ ∂RN+ be as in (1.5), R > 2, ηR as in (3.1), and U as in (3.6). Then there

exists a unique ZR ∈ ηRU +H1
0 (B+

R) achieving

min
{
‖∇u‖2

L2(B+
R)

: u ∈ ηRU +H1
0 (B+

R)
}
.

Moreover, ZR weakly solves

(3.11)


−∆ZR = 0, in B+

R ,

ZR = U, on S+
R ,

ZR = 0, on B′R,

that is {
ZR ∈ ηRU +H1

0 (B+
R),∫

B+
R
∇ZR · ∇φ dx = 0 for all φ ∈ H1

0 (B+
R).
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The function UR naturally appears as a limit profile of a scaled convenient competitor in the
estimate of the eigenvalue variation λn0

− λεn0
from below. Indeed, to estimate λεn0

from above
with the most precise approximation of λn0

, we are led to test the Rayleigh quotient for λεn0
with

test functions obtained by modifying the limit eigenfunction ϕn0
(inside balls BRε) into a solution

of the mixed boundary problem, in the less expensive way from the energetic point of view. By
the Dirichlet principle, among all functions satisfying some prescribed boundary conditions, the
energy is minimized by harmonic ones, so that the above defined harmonic functions UR turn out
to be the blown-up limit profile of best competitors. In a similar way the function ZR is the limit
profile of scaled best competitors for the estimate of the eigenvalue variation λn0

−λεn0
from above.

The function UR, introduced in Lemma 3.3, is locally a good approximation of the limit profile
U , defined in (3.6), for large values of R.

Lemma 3.5. For any r > 2, UR → U in H1(B+
r ) as R→ +∞.

Proof. Let R > r and ηR as in (3.1). The function UR − U ∈ H1(B+
r ) weakly solves

−∆(UR − U) = 0, in B+
R ,

UR − U = 0, on B′R \ Σ,

∂ν(UR − U) = 0, on Σ,

UR − U = ψ − U, on S+
R .

By the Dirichlet principle, we observe that ηR(ψ − U) ∈ H1(B+
R) has higher energy than UR − U

in B+
R . Hence∫

B+
r

|∇(UR − U)|2 dx ≤
∫
B+
R

|∇(UR − U)|2 dx ≤
∫
B+
R

|∇(ηR(ψ − U))|2 dx

≤ 2

∫
B+
R

|∇ηR|2 |ψ − U |2 dx+ 2

∫
B+
R

η2
R |∇(ψ − U)|2 dx

≤ 32

R2

∫
B+
R\B

+
R/2

|ψ − U |2 dx+ 2

∫
B+
R\B

+
R/2

|∇(ψ − U)|2 dx

≤ 32

∫
B+
R\B

+
R/2

|ψ − U |2

|x|2
dx+ 2

∫
B+
R\B

+
R/2

|∇(ψ − U)|2 dx.

The last two terms vanish as R→ +∞ thanks to the validity of the Hardy inequality and the fact
that ψ−U ∈ D1,2(RN+ ∪Σ). Since B+

r \Σ has positive (N − 1)-dimensional measure, by Poincaré
inequality we may conclude the proof. �

4. An equivalent problem on a domain with a flat crack

Sections 4 to 10 are devoted to the development of the monotonicity formula and the consequent
energy and eigenvalue estimates needed to prove Theorem 1.2 and requiring regularity and star-
shapedness assumptions on the open set V. Then throughout Sections 4 to 10 we tacitly assume
hypotheses (1.3), (1.22), and (1.23) on V, besides the assumptions on Ω set out in the Introduction;
consequently we let Σε be as in (1.4) and Σ as in (1.5).

In the present section, we first introduce an equivalent problem, obtained by straightening the
boundary of Ω locally around the origin. Then, we prove that the star-shapedness of the Neumann
region is preserved by such a transformation, see Section 4.2.

4.1. Flattening the boundary of the domain. In this section, we consider a particular dif-
feomorphism straightening the boundary of Ω near 0, first introduced in [4], see also [13]. Let
g ∈ C1,1(RN−1) be as in (1.1). Let ζ ∈ C∞c (RN−1) be such that supp ζ ⊂ B′1, ζ ≥ 0 in RN−1,∫
RN−1 ζ(y′) dy′ = 1 (see (1.21) for the notation B′1). For every δ > 0 we consider the mollifier

ζδ(y
′) = δ−N+1ζ

(
y′

δ

)
.
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For all j = 1, . . . , N − 1, we define

Gj(y
′, yN ) =


(
ζyN ?

∂g

∂yj

)
(y′), if y′ ∈ RN−1, yN > 0,

∂g

∂yj
(y′), if y′ ∈ RN−1, yN = 0,

where ? denotes the convolution product. We observe that, for all j = 1, . . . , N−1, Gj ∈ C∞(RN+ ),

Gj is Lipschitz continuous in RN+ , and
∂Gj
∂yi
∈ L∞(RN+ ) for every i ∈ {1, . . . , N}. Furthermore we

have that, for all j = 1, . . . , N − 1 and i = 1, . . . , N ,

yN
∂Gj
∂yi

is Lipschitz continuous in RN+ .

Let, for every j = 1, . . . , N − 1,

G̃j : RN → R, G̃j(y
′, yN ) := Gj(y

′, |yN |)
and

Fj : RN → R, Fj(y
′, yN ) = yj − yN G̃j(y′, yN ).

It follows that G̃j is Lipschitz continuous in RN and Fj belongs to C1,1(RN ) (i.e. it is continuously
differentiable with Lipschitz gradient) for all j = 1, . . . , N − 1.

In particular, defining G̃ : RN → RN−1 as

G̃(y′, yN ) = (G̃1(y′, yN ), G̃2(y′, yN ), . . . , G̃N−1(y′, yN )),

we have that
JG̃ ∈ L

∞(RN ,RN(N−1)),

where JG̃(y′, yN ) is the Jacobian matrix of G̃ at (y′, yN ), and

(4.1) |G̃(y′, yN )−∇g(y′)| ≤ C |yN | for all (y′, yN ) ∈ RN ,
for some constant C > 0 independent of (y′, yN ).

Let F : RN → RN be defined as follows

(4.2) F (y′, yN ) := (F1(y′, yN ), . . . , FN−1(y′, yN ), yN + g(y′)).

Using the above function F , we are going to construct a diffeomorphism which straightens the
boundary. To prove Lemma 5.2, which will be crucial in the monotonicity argument, we will need
a quite precise quantification of the behaviour of all entries of the Jacobian matrix of F . Hence,
by direct computations and (4.1) we have that

JF (y′, yN ) =



1− yN ∂G̃1

∂y1
−yN ∂G̃1

∂y2
· · · −yN ∂G̃1

∂yN−1
−G̃1 − yN ∂G̃1

∂yN

−yN ∂G̃2

∂y1
1− yN ∂G̃2

∂y2
· · · −yN ∂G̃2

∂yN−1
−G̃2 − yN ∂G̃2

∂yN
...

...
. . .

...
...

−yN ∂G̃N−1

∂y1
−yN ∂G̃N−1

∂y2
· · · 1− yN ∂G̃N−1

∂yN−1
−G̃N−1 − yN ∂G̃N−1

∂yN

∂g
∂y1

(y′) ∂g
∂y2

(y′) · · · ∂g
∂yN−1

(y′) 1



=

 IN−1 − yNJG̃ −∇g(y′) +O(yN )

(∇g(y′))T 1

 ,

where IN−1 is the (N − 1) × (N − 1) identity matrix, ∇g(y′) is a column vector and (∇g(y′))T

denotes its transpose; henceforth, the notation O(yN ) will be used to denote blocks of matrices
with all entries being O(yN ) as yN → 0 uniformly with respect to y′.

From (1.2) and the assumption that g ∈ C1,1(RN−1) we deduce that ∇g(y′) = O(|y′|) as
|y′| → 0, so that

(4.3) det JF (y′, yN ) = 1 + |∇g(y′)|2 +O(yN ) = 1 +O(|y′|2) +O(yN )
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as yN → 0 and |y′| → 0.
In particular, det JF (0) = 1 6= 0. Hence, by the Inverse Function Theorem, F is invertible in a

neighbourhood of the origin, i.e. there exists r1 ∈ (0, r0) such that F is a diffeomorphism of class
C1,1 from Br1 to U = F (Br1) for some U open neighbourhood of 0. Moreover, it is possible to
choose r1 sufficiently small so that

(4.4) F−1(U ∩ Ω) = RN+ ∩Br1 = B+
r1 and F−1(U ∩ ∂Ω) = ∂RN+ ∩Br1 = B′r1 ,

i.e. near the origin the image of Ω through F−1 has flat boundary (lying on ∂RN+ ). Let

(4.5) Φ : U → Br1 , Φ := F−1.

From the fact that

Φ ∈ C1,1(U , Br1), Φ−1 ∈ C1,1(Br1 ,U), Φ(0) = Φ−1(0) = 0, JΦ(0) = JΦ−1(0) = IN ,

it follows that

JΦ(x) = IN +O(|x|) and Φ(x) = x+O(|x|2) as |x| → 0,(4.6)

JΦ−1(x) = IN +O(|x|) and Φ−1(x) = x+O(|x|2) as |x| → 0.(4.7)

Let i ∈ N∗ and ε̄ ∈ (0, 1) be such that εV ⊂ U for all ε ∈ (0, ε̄) (so that Φ(εV) ⊂ Br1 for all
ε ∈ (0, ε̄)). For y ∈ Φ(U ∩ Ω) = B+

r1 , we define

uεi (y) := ϕεi (Φ
−1(y)) = ϕεi (F (y)).

From (1.9) we deduce that

(4.8)

∫
B+
r1

A(y)∇uεi (y) · ∇φ(y) dy = λεi

∫
B+
r1

p(y)uεi (y)φ(y) dy

for all φ ∈ H1
0,∂B+

r1
\Σ̃ε

(B+
r1), where

(4.9) Σ̃ε = Φ(Σε) = Φ((εV) ∩ ∂Ω) = Φ(εV) ∩ ∂RN+ , p(y) = |det JF (y)|,

and

(4.10) A(y) = (JF (y))−1((JF (y))−1)T |det JF (y)|.

Notice that uεi ∈ H1
0,B′r1

\Σ̃ε
(B+

r1) for every ε ∈ (0, ε̄). We observe that (4.8) is the weak formulation

of the problem 
−div(A(y)∇uεi (y)) = λεi p(y)uεi (y), in B+

r1 ,

uεi = 0, on Γ̃ε,r1 ,

A(y)∇uεi (y) · ν = 0, on Σ̃ε,

where

Γ̃ε,r1 = B′r1 \ Σ̃ε

and ν is the exterior unit normal vector on Σ̃ε, which is equal to −eN with eN = (0, 0, . . . , 1)

since Σ̃ε ⊂ ∂RN+ .
From (4.10) it follows directly that A is symmetric. Moreover, by direct computations we have

that

A(y) = α(y)B(y)(B(y))T

where, taking into account (4.3),

(4.11) α(y) =
1

|det JF (y)|
= 1 +O(|y′|2) +O(yN )
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as yN → 0 and |y′| → 0, and

B =



1 +
∑
j 6=1

∣∣ ∂g
∂yj

∣∣2+O(yN ) − ∂g
∂y1

∂g
∂y2

+O(yN ) · · · − ∂g
∂y1

∂g
∂yN−1

+O(yN )

− ∂g
∂y2

∂g
∂y1

+O(yN ) 1 +
∑
j 6=2

∣∣ ∂g
∂yj

∣∣2+O(yN ) · · · − ∂g
∂y2

∂g
∂yN−1

+O(yN )

.

.

.
.
.
.

. . .
.
.
.

− ∂g
∂yN−1

∂g
∂y1

+O(yN ) − ∂g
∂yN−1

∂g
∂y2

+O(yN ) · · · 1 +
∑

j 6=N−1

∣∣ ∂g
∂yj

∣∣2+O(yN )

∇g +O(yN )

−(∇g)T +O(yN ) 1 +O(yN )


.

Hence we have that

(4.12) A(y′, yN ) = α(y′, yN )

 IN−1 +O(|y′|2) +O(yN ) O(yN )

O(yN ) 1 +O(|y′|2) +O(yN )


where here O(yN ), respectively O(|y′|2), denotes blocks of matrices with all entries being O(yN )
as yN → 0, respectively O(|y′|2) as |y′| → 0.

From (4.11) and (4.12) it follows that, if r1 is chosen sufficiently small, α(y) > 0 and A is
uniformly elliptic in B+

r1 . Moreover, by (4.10) and the fact that F ∈ C1,1(Br1 ,RN ), we have that,
if we denote A(y) = (ai,j(y))i,j=1,...,N , then

(4.13) ai,j ∈ C0,1(B+
r1 ∪B

′
r1),

while (4.12) ensures that

(4.14) ai,N (y′, 0) = aN,i(y
′, 0) = 0 for all i = 1, . . . , N − 1.

The even reflection through the hyperplane {yN = 0} of uεi

(4.15) vεi (y
′, yN ) = uεi (y

′, |yN |), (y′, yN ) ∈ Br1 ,

belongs to H1
0,Γ̃ε,r1

(Br1) and

(4.16)

∫
Br1

Ã(y)∇vεi (y) · ∇φ(y) dy = λεi

∫
Br1

p̃(y)vεi (y)φ(y) dy

for all φ ∈ H1
0,∂Br1∪Γ̃ε,r1

(Br1), i.e. vεi weakly solves

(4.17)

{
−div(Ã(y)∇vεi (y)) = λεi p̃(y)vεi (y), in Br1 \ Γ̃ε,r1 ,

vεi = 0, on Γ̃ε,r1 ,

where

(4.18) p̃(y′, yN ) =

{
p(y′, yN ), if yN ≥ 0,

p(y′,−yN ), if yN < 0,
and Ã(y′, yN ) :=

{
A(y′, yN ), if yN > 0,

QA(y′,−yN )Q, if yN < 0,

with

Q :=

 IN−1

0
...

0

0 . . . 0 −1

 .

We observe that (4.13) and (4.14) ensure that the coefficients of the matrix Ã are Lipschitz
continuous in Br1 .

Remark 4.1. From (4.6)–(4.7) we easily deduce that, as ε → 0, RN \
(
∂RN+ \

(
1
ε Σ̃ε

))
converges

in the sense of Mosco (see [10, 22]) to the set RN \
(
∂RN+ \ Σ

)
, where Σ is defined in (1.5). In

particular, for every R > 0, the weak limit points in H1(B+
R) as ε → 0 of a family of functions

{wε}ε with wε ∈ H1
0,∂B+

R\(
1
ε Σ̃ε)

(B+
R) belong to H1

0,∂B+
R\Σ

(B+
R).



14 V. FELLI, B. NORIS, AND R. OGNIBENE

4.2. Star-shapedness of the transformed domains. We are interested in proving that the
star-shapedness of the set Σε is preserved under the transformation Φ introduced in (4.5). To this
aim, we first observe that Φ(εV) is strictly star-shaped provided ε is sufficiently small.

Lemma 4.2. Let V be a bounded open set in RN satisfying (1.3), (1.22), and (1.23). Then

(i) there exists a function ρ : SN−1 → R of class C1,1 such that ρ ≥ 0,

(4.19) V = {rθ : θ ∈ SN−1 and 0 ≤ r < ρ(θ)}, and ∂V = {ρ(θ)θ : θ ∈ SN−1};

(ii) letting Φ be as in (4.5), Φ(εV) is strictly star-shaped with respect to 0 provided ε is sufficiently
small.

Proof. (i) Let us define, for all θ ∈ SN−1, ρ(θ) = sup{r > 0 : rθ ∈ V}. Assumption (1.23)
implies that (4.19) is satisfied. To show that the function ρ is of class C1,1 we use the Implicit
Function Theorem. To this aim, let us fix P0 ∈ ∂V, so that P0 = ρ(θ0)θ0 for some θ0 ∈ SN−1.
Up to a rotation, it is not restrictive to assume that θ0 = eN = (0, 0, . . . , 1). Let ρ̃ : B′1 → R,

ρ̃(x′) = ρ(x′,
√

1− |x′|2). We observe that ρ̃(0) = ρ(θ0) and that ρ̃ is the composition of ρ with
a smooth local parametrization of SN−1 near 0; hence ρ is of class C1,1 in a neighbourhood θ0 if
and only if ρ̃ is of class C1,1 in a neighbourhood 0. Since V is of class C1,1, there exist δ > 0 and
a C1,1–function ϕ : RN−1 → R such that

V ∩Bδ(P0) = {(x′, xN ) ∈ B(P0, δ) : xN < ϕ(x′)},
∂V ∩Bδ(P0) = {(x′, xN ) ∈ Bδ(P0) : xN = ϕ(x′)}.

Let H : (0,+∞)×B′1 → R, H(r, x′) = ϕ(rx′)− r
√

1− |x′|2. We have that H is of class C1,1 in a

neighbourhood (ρ0, 0), H(ρ0, 0) = 0 and ∂H
∂r (ρ0, 0) = −1 6= 0; furthermore

H(ρ̃(x′), x′) = 0 for |x′| small.

By the Implicit Function Theorem we can then conclude that ρ̃ is of class C1,1 in a neighbour-
hood 0.

(ii) Since V is of class C1,1, there exists a function G ∈ C1,1(RN ) such that

V = {x ∈ RN : G(x) < 0}, ∂V = {x ∈ RN : G(x) = 0} and ∇G(x) 6= 0 for all x ∈ ∂V.

In particular we have that ν(x) = ∇G(x)
‖∇G(x)‖ for all x ∈ ∂V, hence assumption (1.23) can be

reformulated as follows:

(4.20) there exists σ̃ > 0 such that x · ∇G(x) ≥ σ̃ for every x ∈ ∂V.

We observe that

(4.21) ∂ (Φ(εV)) = {x ∈ RN : Gε(x) = 0},

where

Gε(x) = G

(
Φ−1(x)

ε

)
.

From (4.7) we deduce that (by choosing r1 smaller if necessary) there exists some positive constant
C > 0 independent of ε such that

(4.22) |x| ≤ Cε for all x ∈ ∂ (Φ(εV)).

Since the exterior unit normal at x ∈ ∂ (Φ(εV)) has the same direction as ∇Gε(x), to prove
assertion (ii) we have to show that, if ε is sufficiently small,

(4.23) inf
x∈∂(Φ(εV))

x · ∇Gε(x) > 0.
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From (4.7), (4.20), and (4.22) it follows that, for all x ∈ ∂ (Φ(εV)),

x · ∇Gε(x) =
x

ε
· ∇G

(
Φ−1(x)

ε

)
JΦ−1(x)

=

(
Φ−1(x)

ε
+
x− Φ−1(x)

ε

)
· ∇G

(
Φ−1(x)

ε

)
(IN +O(|x|))

=
Φ−1(x)

ε
· ∇G

(
Φ−1(x)

ε

)
+

1

ε
O(|x|2) ≥ σ̃ −O(ε) >

σ̃

2

provided ε is sufficiently small, thus proving claim (4.23). �

We now prove that sections of strictly star-shaped sets are strictly star-shaped.

Lemma 4.3. Let ω be a C1,1 bounded open set in RN such that 0 ∈ ω and ω is strictly star-shaped
with respect to the origin (i.e. ω satisfies (1.23)). Then the set ω′ = {x′ ∈ RN−1 : (x′, 0) ∈ ω} is
a C1,1 strictly star-shaped open subset of RN−1.

Proof. Since ω is of class C1,1, there exists G̃ ∈ C1,1(RN ) such that ω = {x ∈ RN : G̃(x) < 0}
and ∂ω = {x ∈ RN : G̃(x) = 0}. Then

ω′ = {x′ ∈ RN−1 : g̃(x′) < 0}

where g̃(x′) = G̃(x′, 0), g̃ ∈ C1,1(RN−1). We claim that

(4.24) ∂ω′ = {x′ ∈ RN−1 : (x′, 0) ∈ ∂ω}.

It is easy to verify that, if x′ ∈ ∂ω′, then (x′, 0) ∈ ∂ω. Thus, to prove claim (4.24) it is enough to
show that, if (x′, 0) ∈ ∂ω, then x′ ∈ ∂ω′. To this aim, the assumption of strict star-shapedness of

ω plays a crucial role. Let (x′, 0) ∈ ∂ω. Then G̃(x′, 0) = 0; hence for every n ∈ N∗ there exists
ξn ∈

[
0, 1

n

]
such that

G̃
((

1− 1
n

)
x′, 0

)
= ∇G̃((1− ξn)x′, 0) · (−x

′

n , 0) = − 1
n

(
∇G̃(x′, 0) · (x′, 0) + o(1)

)
as n→ +∞. The assumption that ω is strictly star-shaped with respect to the origin yields that
∇G̃(x′, 0) · (x′, 0) > 0, hence we conclude that G̃

((
1− 1

n

)
x′, 0

)
< 0 for n sufficiently large, so that(

1− 1
n

)
x′ ∈ ω′ and

(
1− 1

n

)
x′ → x′ as n→ +∞. In a similar way, we can prove that

(
1+ 1

n

)
x′ 6∈ ω′

and
(
1 + 1

n

)
x′ → x′ as n→ +∞. Hence we conclude that x′ ∈ ∂ω′, thus proving claim (4.24).

From (4.24) it follows that

∂ω′ = {x′ ∈ RN−1 : g̃(x′) = 0}.

We observe that, for x′ ∈ ∂ω′,

(4.25) ∇g̃(x′) · x′ = ∇G̃(x′, 0) · (x′, 0) > 0

by strict star-shapedness of ω. In particular ∇g̃(x′) 6= 0 for all x′ ∈ ∂ω′, hence by the Implicit
Function Theorem the boundary of ω′ can be locally parametrized as the graph of a C1,1-function,
i.e. ω′ is of class C1,1. The strict star-shapedness of ω′ directly follows from (4.25). �

From Lemmas 4.2 and 4.3 we may directly conclude the following result.

Corollary 4.4. The set Σ̃ε defined in (4.9) is of class C1,1 and strictly star-shaped in RN−1 with
respect to 0 for ε sufficiently small.

Corollary 4.4 achieves our aim of proving preservation of star-shapedness after the action of the
diffeomorphism Φ. The following Lemma 4.5 provides a quantitative estimate of the size of the
transformed Neumann region, proving that its size remains of order ε.

From Lemma 4.2 (ii) we have that there exists ε0 ∈ (0, 1) such that Φ(εV) is strictly star-shaped
with respect to 0 for all ε ∈ (0, ε0). Then, applying Lemma 4.2 (i) to Φ(εV), for all ε ∈ (0, ε0)
there exists a function ρε : SN−1 → R of class C1,1 such that ρε ≥ 0,

(4.26) Φ(εV) = {rθ : θ ∈ SN−1 and 0 ≤ r < ρε(θ)}, and ∂(Φ(εV)) = {ρε(θ)θ : θ ∈ SN−1}.
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Lemma 4.5. For every ε ∈ (0, ε0), let ρε be as in (4.26). Then there exist ε1 ∈ (0, ε0) and κ > 1
(independent of ε) such that, for all ε ∈ (0, ε1),

(4.27)
ε

κ
≤ ρε(θ) ≤ κε for all θ ∈ SN−1

and

(4.28) |∇SN−1ρε(θ)| ≤ κε for all θ ∈ SN−1.

Proof. Estimate (4.27) follows from (4.6) and the fact that, being V a bounded open set containing
0, 0 < infx∈∂V |x| ≤ supx∈∂V |x| < +∞.

To prove (4.28), we observe that, by (4.26) and (4.21),

∂(Φ(εV)) =

{
x ∈ RN \ {0} : |x| − ρε

(
x

|x|

)
= 0

}
=

{
x ∈ RN \ {0} : G

(
Φ−1(x)

ε

)
= 0

}
,

with G being as in the proof of Lemma 4.2. Therefore, for every ε ∈ (0, ε0) and x ∈ ∂(Φ(εV)),
there exists cε(x) ∈ R such that

(4.29)
1

ε
∇G

(
Φ−1(x)

ε

)
JΦ−1(x) = cε(x)

(
x

|x|
− 1

|x|
∇SN−1ρε

(
x

|x|

))
.

Hence, from (4.29), (4.20), (4.7), and (4.27) we deduce

cε(x)|x| = ∇G
(

Φ−1(x)

ε

)
JΦ−1(x) · x

ε
(4.30)

= ∇G
(

Φ−1(x)

ε

)
· Φ−1(x)

ε
+

1

ε
∇G

(
Φ−1(x)

ε

)
·
(
JΦ−1(x)x− Φ−1(x)

)
≥ σ̃ +

1

ε
O(|x|2) = σ̃ +O(ε) >

σ̃

2
for all x ∈ ∂(Φ(εV))

if ε is sufficiently small. On the other hand, multiplying both sides of (4.29) by ∇SN−1ρε
(
x
|x|
)

we

obtain that

1

ε
∇G

(
Φ−1(x)

ε

)
JΦ−1(x) · ∇SN−1ρε

(
x

|x|

)
= −cε(x)

|x|

∣∣∣∣∇SN−1ρε

(
x

|x|

)∣∣∣∣2
and hence, in view of (4.30),

σ̃

2|x|2

∣∣∣∣∇SN−1ρε

(
x

|x|

)∣∣∣∣2 ≤ |cε(x)|
|x|

∣∣∣∣∇SN−1ρε

(
x

|x|

)∣∣∣∣2 ≤ const
1

ε

∣∣∣∣∇SN−1ρε

(
x

|x|

)∣∣∣∣
for all x ∈ ∂(Φ(εV)) and for some const > 0 independent of x and ε. Therefore, taking into
account (4.27), we have that, for all x ∈ ∂(Φ(εV)),∣∣∣∣∇SN−1ρε

(
x

|x|

)∣∣∣∣ ≤ const
2|x|2

σ̃ ε
≤ const ε,

thus proving (4.28). �

Remark 4.6. Lemma 4.5 implies that Σ̃ε ⊂ B′κε for all ε ∈ (0, ε1).

We conclude this section with the following refined Poincaré-type inequality for function van-

ishing on the crack Γ̃ε,r1 .

Lemma 4.7. For all τ ∈ (0, 1) there exists Mτ > 1 such that, for all r > 0 and ε < min{ε1,
r

κMτ
},

1− τ
r

∫
∂Br

u2 dS ≤
∫
Br

|∇u|2 dx for all u ∈ H1
0,Γ̃ε,r

(Br)

and
N − 1

r2

∫
Br

u2 dx ≤
(

1 +
1

1− τ

)∫
Br

|∇u|2 dx for all u ∈ H1
0,Γ̃ε,r

(Br).

Proof. It follows directly from [14, Lemma 4.2, Corollaries 4.3 and 4.4], recalling that Lemma 4.5

implies B′r \B′κε ⊆ Γ̃ε,r for ε < min{ε1,
r
κ}, as also observed in Remark 4.6. �
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5. A Pohozaev-type inequality

Pohozaev-type identites play a pivotal role in the differentiation of the frequency function;
indeed, by the coarea formula,

d

dr

∫
Br

Ã∇v · ∇v dx =

∫
∂Br

Ã∇v · ∇v dx

and the Pohozaev identity allows to rewrite the latter boundary integral in terms of volume
integrals and boundary integrals of normal derivatives. Therefore, this section is devoted to the
proof of a Pohozaev-type inequality for solutions to problem (4.17).

Let Ã be the matrix-valued function introduced in (4.10)–(4.18). From (4.12) and (4.13) it
follows easily that

(5.1) Ã(0) = IN , Ã(y) = IN +O(|y|) as |y| → 0.

Recalling that r1 was defined in (4.4), we define, for all y ∈ Br1 ,

(5.2) µ(y) =
Ã(y)y · y
|y|2

and b(y) =
1

µ(y)
Ã(y)y.

From (4.13) and (5.1) we have that

(5.3) µ ∈ C0,1(Br1), µ(y) = 1 +O(|y|), ∇µ(y) = O(1) as |y| → 0,

and

(5.4) b(y) = y +O(|y|2), Jb(y) = IN +O(|y|), div b(y) = N +O(|y|) as |y| → 0.

Furthermore we have that, possibly choosing r1 smaller, for every y ∈ Br1
1

2
|ξ|2 ≤ Ã(y)ξ · ξ ≤ 3

2
|ξ|2 for all ξ ∈ RN ,(5.5)

1

2
≤ µ(y) ≤ 3

2
,(5.6)

1

2
≤ p̃(y) ≤ 3

2
.(5.7)

Finally we have that

(5.8) b(y) · y
|y|

= |y| for all y ∈ Br1 .

Proposition 5.1. Let n0 be as in (1.15) and let ε1, κ be as in Lemma 4.5. For i = 1, . . . , n0 and
ε ∈ (0, ε1), let vεi solve (4.17). There exists r̃ ∈ (0, r1) such that, for all ε ∈ (0,min{ε1, r̃/κ}) and
a.e. r ∈ (κε, r̃),

(5.9) r

∫
∂Br

Ã∇vεi ·∇vεi dS −
∫
Br

(
(div b)Ã∇vεi ·∇vεi − 2Jb(Ã∇vεi )·∇vεi + (dÃ∇vεi∇vεi )·b

)
dy

≥ 2r

∫
∂Br

1

µ
|Ã∇vεi · ν|2 dS + 2λεi

∫
Br

p̃(b · ∇vεi )vεi dy.

The proof of a Pohozaev-type identity for an equation of type (4.17) is classically based on the
integration by Divergence Theorem of the following Rellich-Nec̆as identity

(5.10) div
(
(Ã∇w · ∇w)b− 2(b · ∇w)Ã∇w

)
= (div b)Ã∇w · ∇w − 2(JbÃ∇w) · ∇w

+ (dÃ∇w∇w) · b− 2(b · ∇w) div(Ã∇w),

which holds in a distributional sense for any H2-function w. Nevertheless, the highly non-

smoothness of the cracked domain Br1 \ Γ̃ε,r1 , on which equation (4.17) is satisfied, prevents
us from the direct use of the Divergence Theorem, because of lack of regularity of the solution vεi ,
which could indeed fail to be H2.

In order to overcome this regularity issue, we perform an approximation process.
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5.1. Regular approximation of the cracked domain. The first step of our regularization
procedure relies in the construction of a family of sets which approximate the cracked domain,
being of class C1,1 and star-shaped with respect to the origin.

To this aim, let us first consider the sequence of functions

hn : R→ R, hn(t) =

(
n2t2 +

1

n2

)1/8
.

By direct computations it is easy to verify that

(5.11) hn(t) ≥ 4th′n(t) for all t ∈ R
and

(5.12) if (y′, yN ) ∈ Br and |y′| ≥ hn(yN ), then |yN | ≤
r4

n
.

Recall the definition of ρε in (4.26). For every ε ∈ (0,min{ε1, r1/κ}), r ∈ (κε, r1], and n ∈ N∗ we
define

Dn
ε,r =

{
x = (x′, xN ) ∈ Br : |x′| < ρε

(
x′

|x′|
)

+ hn(xN )
}
,

Γnε,r =
{
x = (x′, xN ) ∈ Br : |x′| = ρε

(
x′

|x′|
)

+ hn(xN )
}
⊂ ∂Dn

ε,r,

Snε,r = ∂Dn
ε,r \ Γnε,r.

We note that, for ε ∈ (0,min{ε1, r1/κ}) and r ∈ (κε, r1] fixed, Dn
ε,r 6= Br and Γnε,r is not empty

provided n is sufficiently large.

Lemma 5.2. There exists r2 ∈ (0, r1) such that, for every ε ∈ (0,min{ε1, r2/κ}) (with κ as in
Lemma 4.5), there exists nε ∈ N∗ such that A(y)y · ν(y) > 0 on Γnε,r2 for all n ≥ nε, where ν(y)
is the exterior unit normal at y ∈ ∂Dn

ε,r2 .

Proof. Because of the definition of Γnε,r, we have that, if y ∈ Γnε,r,

ν(y) =
∇Gnε (y)

‖∇Gnε (y)‖
,

where Gnε (y′, yN ) = |y′| − hn(yN )− ρε
(
y′

|y′|
)
. Then, to prove the lemma it is enough to show that,

for some r2 ∈ (0, r1) sufficiently small and all ε ∈ (0,min{ε1, r2/κ}), A(y)y · ∇Gnε (y) > 0 for all
y ∈ Γnε,r2 , provided n is sufficiently large.

We observe that

∇Gnε (y′, yN ) =

(
y′

|y′|
− 1

|y′|
∇SN−1ρε

(
y′

|y′|
)
,−h′n(yN )

)
.

From (4.12) and (4.11) it follows that, as |y′| → 0, |yN | → 0,

A(y′, yN )(y′, yN ) =
(
y′ +O(|y′|3) + |y′|O(|yN |) +O(y2

N ), yN + |y′|O(|yN |) +O(y2
N )
)
,

so that

A(y′, yN )(y′, yN ) · ∇Gnε (y′, yN ) = |y′|+O(|y′|3) +O(|y′|2)
∣∣∇SN−1ρε

(
y′

|y′|
)∣∣+ |y′|O(|yN |)

+O(|yN |)
∣∣∇SN−1ρε

(
y′

|y′|
)∣∣+O(y2

N )

+
O(y2

N )

|y′|
∣∣∇SN−1ρε

(
y′

|y′|
)∣∣− yNh′n(yN )

(
1 +O(|y′|) +O(yN )

)
,

uniformly with respect to ε ∈ (0, ε1). Therefore, in view of (4.28),

(5.13) A(y′, yN )(y′, yN ) · ∇Gnε (y′, yN ) = F1(y′, yN , ε) + |y′|O(|yN |)

+ εO(|yN |) +O(y2
N ) + ε

O(y2
N )

|y′|
− yNh′n(yN )F2(y′, yN ),

where

F1(y′, yN , ε) = |y′|+O(|y′|3) + εO(|y′|2) and F2(y′, yN ) = 1 +O(|y′|) +O(yN )
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as |y′| → 0 and |yN | → 0 uniformly with respect to ε ∈ (0, ε1).
Let us choose r2 ∈ (0, r1) such that

(5.14) F1(y′, yN , ε) ≥
1

2
|y′| and F2(y′, yN ) ≤ 2 for all (y′, yN ) ∈ Br2 and ε ∈ (0, ε1).

We note that, if ε ∈ (0,min{ε1, r2/κ}), then Σ̃ε ⊂ B′r2 and Γnε,r2 is not empty for n sufficiently

large. Moreover by (4.27) we have that, if (y′, yN ) ∈ Γnε,r2 , then |y′| ≥ ρε
(
y′

|y′|
)
≥ ε

κ , so that

(5.15)
ε

|y′|
≤ κ for all ε ∈ (0,min{ε1, r2/κ}) and (y′, yN ) ∈ Γnε,r2 .

From (5.12), (5.13), (5.14), (5.15), the definition of Γnε,r2 , (5.11), and (4.27), we conclude that, for
all ε ∈ (0,min{ε1,

r2
κ }) and (y′, yN ) ∈ Γnε,r2 ,

A(y′, yN )(y′, yN )·∇Gnε (y′, yN ) ≥ 1

2
|y′| − 2yNh

′
n(yN ) +O

(
1

n

)
=

1

2

(
hn(yN ) + ρε

(
y′

|y′|
))
− 2yNh

′
n(yN ) +O

(
1

n

)
≥ 1

2
(hn(yN )− 4yNh

′
n(yN )) +

ε

2κ
+O

(
1

n

)
≥ ε

2κ
+O

(
1

n

)
as n→∞.

From the above estimate it follows that, choosing r2 as above, for every ε ∈ (0,min{ε1,
r2
κ }) there

exists nε ∈ N∗ such that A(y)y · ∇Gnε (y) > 0 for all y ∈ Γnε,r2 with n ≥ nε, thus completing the
proof. �

Let α̃ ∈ (0, 1) and µ as in (5.2). In view of (4.11), (4.12), (4.9), (4.3), (4.18), (5.3) and Lemma
A.1, there exists

(5.16) r̃ ∈
(

0,min

{
r2,

α̃

2‖µ‖L∞(Br2 )

})
such that

(5.17) Ã(y)ξ · ξ ≥ α̃|ξ|2 for all ξ ∈ RN and y ∈ Br̃

and, for all r ∈ (0, r̃],

(5.18)

∫
Br

(
Ã∇w · ∇w − λn0 p̃w

2
)

dx+

∫
∂Br

µw2 dS ≥ α̃
∫
Br

|∇w|2 dx for all w ∈ H1(Br).

In particular, from (5.18) it follows that, for all r ∈ (0, r̃]

(5.19)

∫
Br

Ã∇w · ∇w dx− λn0

∫
Br

p̃w2 dx ≥ α̃
∫
Br

|∇w|2 dx for all w ∈ H1
0 (Br).

We denote

Dn
ε = Dn

ε,r̃, Γnε = Γnε,r̃, Snε = Snε,r̃, Γ̃ε = B′r̃ \ Σ̃ε.

5.2. Regular approximation of vεi . Let vεi be the functions defined in (4.15). Let us fix

i ∈ {1, . . . , n0} and ε ∈ (0,min{ε1, r̃/κ}).

Since vεi ∈ H1
0,Γ̃ε

(Br̃), there exists a sequence of functions vn = vεi,n such that

(5.20) vn ∈ C∞c (Br̃ \ Γ̃ε) and vn → vεi in H1(Br̃) as n→∞.

The functions vn can be chosen in such a way that

(5.21) vn(x′, xN ) = 0 if x′ ∈ Γ̃ε and |xN | ≤
r̃4

n
.
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Remark 5.3. We observe that vn ≡ 0 in Br̃ \Dn
ε (in particular vn has null trace on Γnε ). Indeed,

let x = (x′, xN ) ∈ Br̃ \Dn
ε . Then

|x′| ≥ hn(xN ) + ρε
(
x′

|x′|
)
> ρε

(
x′

|x′|
)
,

so that x′ ∈ Γ̃ε; moreover
r̃ ≥ |x′| ≥ hn(xN ) ≥ n1/4|xN |1/4,

so that |xN | ≤ r̃4/n. Then vn(x) = 0 in view of (5.21).

We are going to construct a sequence of approximated solutions {wn}n∈N on the sets Dn
ε . Let

ñε ≥ nε be such that Γnε is not empty for all n ≥ ñε.

Lemma 5.4. For every n ≥ ñε, there exists a unique weak solution wn ∈ H1(Dn
ε ) to the problem

(5.22)

{
−div(Ã(y)∇wn(y)) = λεi p̃(y)wn(y), in Dn

ε ,

wn = vn, on ∂Dn
ε .

Furthermore, extending wn trivially to zero in Br̃ \Dn
ε , we have that

(5.23) wn → vεi in H1(Br̃) as n→ +∞.

Proof. Letting Wn := wn − vn, we observe that wn is a weak solution to (5.22) if and only if
Wn ∈ H1

0 (Dn
ε ) weakly solves

(5.24)

{
−div(Ã∇Wn)− λεi p̃Wn = λεi p̃ vn + div(Ã∇vn) in Dn

ε ,

Wn = 0 on ∂Dn
ε .

i.e.

(5.25) an(Wn, φ) = 〈Fn, φ〉 for all φ ∈ H1
0 (Dn

ε )

where

an : H1
0 (Dn

ε )×H1
0 (Dn

ε )→ R, an(φ1, φ2) =

∫
Dnε

Ã∇φ1 · ∇φ2 dy − λεi
∫
Dnε

p̃ φ1 φ2 dy,

Fn ∈ H−1(Dn
ε ), H−1(Dnε )〈Fn, φ〉H1

0 (Dnε ) =

∫
Dnε

(
λεi p̃ vn φ− Ã∇vn · ∇φ

)
dy.

Since p̃ ∈ L∞(Dn
ε ), by the Poincaré inequality the bilinear form an is continuous, whereas estimate

(5.19) implies that an is coercive on H1
0 (Dn

ε ). The Lax-Milgram Theorem ensures the existence of
a unique weak solution Wn to (5.24) and, consequently, of a unique weak solution wn = Wn + vn
to (5.22), for all n ≥ ñε.

From the Poincaré inequality and boundedness of {vn} in H1(Br̃) we can easily deduce that

|〈Fn, φ〉| ≤ c ‖φ‖H1
0 (Dnε ) for all φ ∈ H1

0 (Dn
ε ),

for some constant c > 0 which may depend on i, ε,N, r̃ but is independent of n. Therefore,
choosing φ = Wn in (5.25) and using estimates (5.19) and (2.2), we obtain that

α̃‖Wn‖2H1
0 (Dnε ) ≤ an(Wn,Wn) = 〈Fn,Wn〉 ≤ c ‖Wn‖H1

0 (Dnε ),

so that
‖Wn‖H1

0 (Br̃) ≤
c

α̃
for all n ≥ ñε,

where Wn is extended trivially to zero in Br̃ \ Dn
ε . Therefore there exist W ∈ H1

0 (Br̃) and a
subsequence {Wnk} of {Wn} such that

(5.26) Wnk ⇀W weakly in H1
0 (Br̃).

We observe that, for any δ > 0 small, the set Λεδ =
{

(x′, 0) ∈ Br̃ : |x′| ≥ δ + ρε
(
x′

|x′|
)}

is contained

in Br̃ \ Dε
n for n sufficiently large (how large it should be depends on δ); hence, for any δ > 0

small fixed, Wn ∈ H1
0,Λεδ∪∂Br̃

(Br̃) for n sufficiently large. Since H1
0,Λεδ∪∂Br̃

(Br̃) is weakly closed

in H1(Br̃), we deduce that W ∈ H1
0,Λεδ∪∂Br̃

(Br̃) for all δ > 0 small; therefore we conclude that

W ∈ H1
0,∂Br̃∪Γ̃ε

(Br̃).
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Then, from (4.16), (5.20), (5.26), and (5.25) we deduce that

0 = −
∫
Br̃

(
Ã∇vεi · ∇W dy − λεi p̃ vεi W

)
dy

= − lim
k→+∞

∫
Br̃

(
Ã∇vnk · ∇Wnk dy − λεi p̃ vnkWnk

)
dy

= lim
k→+∞

〈Fnk ,Wnk〉 = lim
k→+∞

ank(Wnk ,Wnk)

thus concluding that ‖Wnk‖H1
0 (Br̃) → 0 as k → +∞ in view of (5.19). Hence Wnk → 0 in H1

0 (Br̃)

and wnk = Wnk + vnk → vεi in H1(Br̃) as k → +∞ thanks to (5.20). By Urysohn’s subsequence
principle, we finally conclude that wn → vεi in H1(Br̃) as n→ +∞. �

5.3. Proof of Proposition 5.1. Let us fix i = 1, . . . , n0 and ε ∈ (0,min{ε1, r̃/κ}) with r̃ being
as in section 5.1 (see (5.16)–(5.19)). Let vεi solve (4.17) and, for all n ≥ ñε, let wn ∈ H1(Dn

ε ) be
as in Lemma 5.4.

Let r ∈ (κε, r̃). By classical elliptic regularity theory (see e.g. [18, Theorem 2.2.2.3]) we have
that wn ∈ H2(Dn

ε,r). Then

(Ã∇wn · ∇wn)b− 2(b · ∇wn)Ã∇wn ∈W 1,1(Dn
ε,r)

so that we can use the integration by parts formula for Sobolev functions on the Lipschitz domain
Dn
ε,r and obtain, in view of (5.10), (5.22), and (5.8),

r

∫
Snε,r

Ã∇wn·∇wn dS−
∫
Dnε,r

(
(div b)Ã∇wn · ∇wn − 2(JbÃ∇wn) · ∇wn + (dÃ∇wn∇wn)·b

)
dy,

= 2r

∫
Snε,r

1

µ
|Ã∇wn · ν|2 dS + 2λεi

∫
Dnε,r

(b · ∇wn)p̃ wn dy

+

∫
Γnε,r

(
− (Ã∇wn · ∇wn)b · ν + 2(b · ∇wn)Ã∇wn · ν

)
dS

where ν = ν(y) is the exterior unit normal at y ∈ ∂Dn
ε,r = Γnε,r ∪ Snε,r. On Γnε,r we have that

wn = 0 so that ∇wn = ∂wn
∂ν ν; hence

(5.27) − (Ã∇wn · ∇wn)b · ν + 2(b · ∇wn)Ã∇wn · ν =
1

µ

∣∣∣∣∂wn∂ν

∣∣∣∣2(Ãy · ν)(Ãν · ν) ≥ 0 on Γnε,r

thanks to Lemma 5.2 and (5.5). Then we obtain the following inequality

(5.28) r

∫
∂Br

Ã∇wn · ∇wn dS

−
∫
Br

(
(div b)Ã∇wn · ∇wn − 2(JbÃ∇wn) · ∇wn + (dÃ∇wn∇wn) · b

)
dy,

≥ 2r

∫
∂Br

1

µ
|Ã∇wn · ν|2 dS + 2λεi

∫
Br

(b · ∇wn)p̃ wn dy

for all n ≥ ñε, where wn is extended trivially to zero in Br \Dn
ε .

For i and ε fixed as above, we now intend to pass to the limit in (5.28) as n → +∞ for every
r ∈ (κε, r̃). The strong H1-convergence of wn to vεi stated in (5.23) directly implies that

lim
n→+∞

∫
Br

(
(div b)Ã∇wn · ∇wn − 2(JbÃ∇wn) · ∇wn + (dÃ∇wn∇wn) · b

)
dy

=

∫
Br

(
(div b)Ã∇vεi · ∇vεi − 2(JbÃ∇vεi ) · ∇vεi + (dÃ∇vεi∇vεi ) · b

)
dy

and

lim
n→+∞

∫
Br

(b · ∇wn)p̃ wn dy =

∫
Br

(b · ∇vεi )p̃ vεi dy,
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for all r ∈ (κε, r̃). In order to deal with the boundary integrals in (5.28), we observe that, by the
strong H1-convergence (5.23) of wn to vεi ,

lim
n→+∞

∫ r̃

0

(∫
∂Br

|∇(wn − vεi )|2 dS

)
dr = 0,

i.e., letting Fn(r) =
∫
∂Br
|∇(wn − vεi )|2 dS, Fn → 0 in L1(0, r̃). Then there exists a subsequence

Fnk such that Fnk(r)→ 0 for a.e. r ∈ (0, r̃), hence

∇wnk → ∇vεi in L2(∂Br) as k → +∞ for a.e. r ∈ (0, r̃).

Therefore, for a.e. r ∈ (0, r̃),

lim
k→+∞

∫
∂Br

Ã∇wnk · ∇wnk dS =

∫
∂Br

Ã∇vεi · ∇vεi dS,

lim
k→+∞

∫
∂Br

1

µ
|Ã∇wn · ν|2 dS =

∫
∂Br

1

µ
|Ã∇vεi · ν|2 dS.

Hence we can pass to the limit in (5.28) as n→ +∞ for a.e. r ∈ (κε, r̃), thus obtaining (5.9). �

6. Energy estimates via an Almgren-type frequency function

6.1. Monotonicity formula. For every λ ∈ R, r > 0, and v ∈ H1(Br) we define

E(v, r, λ) = r2−N
∫
Br

(
Ã∇v · ∇v − λp̃v2

)
dy,

where Ã and p̃ have been introduced in (4.18), and

H(v, r) = r1−N
∫
∂Br

µ v2 dS,

where µ has been introduced in (5.2). We observe that from (5.18) it follows that

(6.1) E(v, r, λ) + rH(v, r) ≥ 0 for all r ∈ (0, r̃], λ ≤ λn0 and v ∈ H1(Br).

We also define the Almgren-type frequency function as

(6.2) N(v, r, λ) :=
E(v, r, λ)

H(v, r)
.

Lemma 6.1. Let vεi be as in (4.15).

(i) H(vεi , r) > 0 for all ε ∈ (0,min{ε1, r̃/κ}), r ∈ [κε, r̃], and 1 ≤ i ≤ n0.
(ii) For every r ∈ (0, r̃], there exist Cr > 0 and αr ∈ (0, r/κ) such that H(vεi , r) ≥ Cr for all

0 < ε < min{αr, ε1} and 1 ≤ i ≤ n0.

Proof. To prove (i) we argue by contradiction and assume that there exist ε ∈ (0,min{ε1, r̃/κ}),
r ∈ [κε, r̃], and 1 ≤ i ≤ n0 such that H(vεi , r) = 0, i.e. vεi = 0 on ∂Br. Testing (4.17) with vεi ,
integrating over Br, and using estimates (5.19) and (2.2), we obtain that

0 =

∫
Br

Ã∇vεi · ∇vεi dy − λεi
∫
Br

p̃|vεi |2 dy ≥ α̃
∫
Br

|∇vεi |2 dy

and hence vεi ≡ 0 in Br. It follows that uεi ≡ 0 in B+
r , i.e. ϕεi ≡ 0 in F (B+

r ), with F as in (4.2), so
that from the classical unique continuation principle for elliptic equations we may conclude that
ϕεi ≡ 0 in Ω, a contradiction.

In order to prove (ii), suppose by contradiction that there exist 0 < r ≤ r̃, ε` → 0, and
i` ∈ {1, . . . , n0} such that

lim
`→+∞

H(vε`i` , r) = 0.

From (1.9), (1.8), and (2.2) we have that {ϕε`i` }` is bounded in H1(Ω). Then there exist λ ∈ [0, λn0
]

and ϕ ∈ H1(Ω) such that, along a subsequence, λε`i` → λ and ϕε`i` → ϕ weakly in H1(Ω) and

strongly in L2(Ω). From (1.8) it follows that
∫

Ω
ϕ2 dx = 1 and then ϕ 6≡ 0 in Ω. Moreover ϕ

weakly satisfies −∆ϕ = λϕ in Ω.
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The weak convergence ϕε`i` ⇀ ϕ in H1(Ω) implies tha vε`i` ⇀ v weakly in H1(Br1), where v is

the even reflection through the hyperplane {yN = 0} of u = ϕ ◦ F . Since vε`i` ∈ H
1
0,Γ̃ε`,r1

(Br1), we

have that v ∈ H1
0,B′r1

(Ω). Moreover, v weakly solves

(6.3)

{
−div(Ã∇v) = λp̃ v, in Br1 \B′r1 ,
v = 0, on B′r1 .

By compactness of the trace embedding H1(Br) ↪→ L2(∂Br), we also have that

0 = lim
`→∞

H(vε`i` , r) = lim
`→∞

r1−N
∫
∂Br

µ |vε`i` |
2 dS = r1−N

∫
∂Br

µ |v|2 dS,

which implies that v = 0 on ∂Br. Testing (6.3) by v in Br, from (5.19) we deduce that

0 =

∫
Br

(
Ã∇v · ∇v − λp̃v2

)
dx ≥ α̃

∫
Br

|∇v|2 dx.

Then v ≡ 0 inBr and, consequently, ϕ ≡ 0 in F (B+
r ), so that from the classical unique continuation

principle for elliptic equations we may conclude that ϕ ≡ 0 in Ω, a contradiction. �

As a consequence of Lemma 6.1 the function r 7→ N(vεi , r, λ
ε
i ) is well defined in the interval

[κε, r̃] for all ε ∈ (0,min{ε1, r̃/κ}) and 1 ≤ i ≤ n0. Furthermore, estimate (6.1) implies that

N(vεi , r, λ
ε
i ) + 1 ≥ 1− r̃ > 0 for all r ∈ [κε, r̃].

In order to differentiate the function N , we need to differentiate both E and H. We start here
by deriving a formula for the derivative of H, which turns out to be expressible in terms of the
function E, see (6.6).

Lemma 6.2. For all ε ∈ (0,min{ε1, r̃/κ}) and 1 ≤ i ≤ n0, H(vεi , ·) ∈W 1,1(κε, r̃),

d

dr
H(vεi , r) = 2r1−N

∫
∂Br

µvεi
∂vεi
∂ν

dS +O(1)H(vεi , r) as r → 0,(6.4)

d

dr
H(vεi , r) = 2r1−N

∫
∂Br

(Ã∇vεi · ν)vεi dS +O(1)H(vεi , r) as r → 0,(6.5)

and

(6.6)
d

dr
H(vεi , r) =

2

r
E(vεi , r, λ

ε
i ) +O(1)H(vεi , r) as r → 0,

where the derivative is meant in a distributional sense and a.e. in (κε, r̃), ν = ν(y) = y
|y| is the unit

outer normal vector to ∂Br, and O(1) denotes terms which are bounded for r in a neighbourhood
of 0 uniformly with respect to ε.

Proof. By direct calculations we have that H(vεi , ·) ∈W 1,1(κε, r̃) and

d

dr
H(vεi , r) = 2r1−N

∫
∂Br

µvεi
∂vεi
∂ν

dS + r1−N
∫
∂Br

|vεi |2
∂µ

∂ν
dS

in a weak sense, from which (6.4) follows in view of (5.3).
To prove (6.5) we define

a(y) =
µ(y)(b(y)− y)

|y|
and observe that

(6.7)

∫
∂Br

(Ã∇vεi · ν)vεi dS =

∫
∂Br

µvεi
∂vεi
∂ν

dS +
1

2

∫
∂Br

a · ∇((vεi )
2) dS.

By (5.8) we have that

(6.8) a(y) · y = 0.
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From (5.3), (5.4), and (6.8) we deduce that

(6.9) diva =
∇µ
|y|
· (b− y) +

µ

|y|
(div b−N) = O(1) as |y| → 0.

From (6.7), (6.8), and (6.9) it follows that∫
∂Br

(Ã∇vεi · ν)vεi dS =

∫
∂Br

µvεi
∂vεi
∂ν

dS − 1

2

∫
∂Br

(diva)|vεi |2 dS(6.10)

=

∫
∂Br

µvεi
∂vεi
∂ν

dS +O(1)rN−1H(vεi , r)

as r → 0 (uniformly in ε). Combining (6.4) and (6.10) we obtain estimate (6.5).
To prove (6.6) we test (4.17) with vεi and integrate over Br thus obtaining

rN−2E(vεi , r, λ
ε
i ) =

∫
Br

(
Ã∇vεi · ∇vεi − λεi p̃|vεi |2

)
dy =

∫
∂Br

(Ã∇vεi · ν)vεi dS,

whose combination with (6.5) immediately yields (6.6). �

Remark 6.3. We observe that (6.6) implies that there exist r̄0 ∈ (0, r̃) and C0 > 0 (independent
of ε) such that, for all ε ∈ (0, r̄0/κ),

2

r
E(vεi , r, λ

ε
i )−

1

C0
H(vεi , r) ≤

d

dr
H(vεi , r) ≤

2

r
E(vεi , r, λ

ε
i ) + C0H(vεi , r) a.e. r ∈ (εκ, r̄0).

Lemma 6.4. For all ε ∈ (0,min{ε1, r̃/κ}) and 1 ≤ i ≤ n0, E(vεi , ·, λεi ) ∈W 1,1(κε, r̃) and

d

dr
E(vεi , r, λ

ε
i ) ≥ 2r2−N

∫
∂Br

1

µ
|Ã∇vεi · ν|2 dS +O(1)E(vεi , r, λ

ε
i ) + rO(1)H(vεi , r)

as r → 0, where the derivative is meant in a distributional sense and a.e. in (κε, r̃) and O(1)
denotes terms which are bounded for r in a neighbourhood of 0 uniformly with respect to ε.

Proof. By direct calculations we have that E(vεi , ·, λεi ) ∈W 1,1(κε, r̃) and

d

dr
E(vεi , r, λ

ε
i ) = (2−N)r1−N

∫
Br

(
Ã∇vεi · ∇vεi − λεi p̃|vεi |2

)
dy

+ r2−N
∫
∂Br

(
Ã∇vεi · ∇vεi − λεi p̃|vεi |2

)
dS.

Hence, in view of Proposition 5.1,

d

dr
E(vεi , r, λ

ε
i )

≥ 2r2−N
∫
∂Br

1

µ
|Ã∇vεi · ν|2 dS − λεi r2−N

∫
∂Br

p̃|vεi |2 dS

+ r1−N
∫
Br

(
(2−N)Ã∇vεi · ∇vεi + (div b)Ã∇vεi ·∇vεi − 2Jb(Ã∇vεi )·∇vεi + (dÃ∇vεi∇vεi )·b

)
dy

+ λεi r
1−N

∫
Br

(
2p̃(b · ∇vεi )vεi + (N − 2)p̃|vεi |2

)
dy.

Therefore, in view of (4.13), (5.1), (5.4), (5.3), Lemma A.1, and (5.18)

d

dr
E(vεi , ·, λεi ) ≥ 2r2−N

∫
∂Br

1

µ
|Ã∇vεi · ν|2 dS

+O(1)r2−N
∫
Br

|∇vεi |2 dy +O(1)r2−N
∫
∂Br

µ|vεi |2 dS

= 2r2−N
∫
∂Br

1

µ
|Ã∇vεi · ν|2 dS +O(1)E(vεi , r, λ

ε
i ) + rO(1)H(vεi , r)

thus proving the lemma. �
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Lemma 6.5. There exist r̄ ∈ (0, r̄0) and C > 0 such that, for all ε ∈ (0,min{ε1, r̄/κ}) and
1 ≤ i ≤ n0, N(vεi , ·, λεi ) ∈W 1,1(κε, r̄) and

(6.11)
d

dr
N(vεi , r, λ

ε
i ) ≥ −C(N(vεi , r, λ

ε
i ) + 1) for a.e. r ∈ (κε, r̄).

Furthermore, for all ε ∈ (0,min{ε1, r̄/κ}), 1 ≤ i ≤ n0, and κε ≤ r < R ≤ r̄

(6.12) N(vεi , r, λ
ε
i ) + 1 ≤ eC(R−r)(N(vεi , R, λ

ε
i ) + 1).

Proof. The fact that N(vεi , ·, λεi ) ∈ W 1,1(κε, r̄) follows directly from the fact that H(vεi , ·) and
E(vεi , ·, λεi ) belong to W 1,1(κε, r̃) and Lemma 6.1.

From (6.6) it follows that, as r → 0,

E(vεi , r, λ
ε
i ) =

r

2

d

dr
H(vεi , r) + rO(1)H(vεi , r),

which, together with (6.5) and again (6.6), yields

E(vεi , r, λ
ε
i )
d

dr
H(vεi , r)

=

(
r2−N

∫
∂Br

(Ã∇vεi · ν)vεi dS + rO(1)H(vεi , r)

)(
2r1−N

∫
∂Br

(Ã∇vεi · ν)vεi dS +O(1)H(vεi , r)

)
= 2r3−2N

(∫
∂Br

(Ã∇vεi · ν)vεi dS

)2
+ rO(1)(H(vεi , r))

2

+ r2−NO(1)H(vεi , r)

(∫
∂Br

(Ã∇vεi · ν)vεi dS

)
= 2r3−2N

(∫
∂Br

(Ã∇vεi · ν)vεi dS

)2
+ rO(1)(H(vεi , r))

2

+ rO(1)H(vεi , r)

(
1

2

d

dr
H(vεi , r) +O(1)H(vεi , r)

)
= 2r3−2N

(∫
∂Br

(Ã∇vεi · ν)vεi dS

)2
+ rO(1)(H(vεi , r))

2

+ rO(1)H(vεi , r)

(
1

r
E(vεi , r, λ

ε
i ) +O(1)H(vεi , r)

)
.

The above estimate, Lemma 6.4, the Cauchy-Schwarz inequality, and (6.1) imply that

d

dr
N(vεi , r, λ

ε
i ) =

H(vεi , r)
d
drE(vεi , r, λ

ε
i )− E(vεi , r, λ

ε
i )

d
drH(vεi , r)

(H(vεi , r))
2

≥ 2r3−2N

(∫
∂Br

1
µ |Ã∇v

ε
i · ν|2 dS

)(∫
∂Br

µ|vεi |2 dS
)
−
(∫

∂Br
(Ã∇vεi · ν)vεi dS

)2

(H(vεi , r))
2

+O(1)N(vεi , r, λ
ε
i ) + r O(1)

≥ −C (N(vεi , r, λ
ε
i ) + 1)

a.e. in (εκ, r̄), for some r̄ ∈ (0, r̄0) and C > 0 independent of ε.
Finally, estimate (6.12) follows by integration of (6.11) over the interval [r,R]. �

Lemma 6.6. For τ ∈
(
0, 1

2

)
, let Mτ be as in Lemma 4.7. Let i ∈ {1, . . . , n0}. If ε < min{ε1,

r̄
κMτ
}

and κMτε ≤ s1 < s2 ≤ r̄, then

H(vεi , s2)

H(vεi , s1)
≥ e−(4+C−1

0 )r̄

(
s2

s1

) 2α̃(1−τ)
‖µ‖L∞(Br̄)

.



26 V. FELLI, B. NORIS, AND R. OGNIBENE

Proof. Let α̃ ∈ (0, 1) be as in (5.17). By (5.18), (2.2) and Lemma 4.7, for every ε < min{ε1,
r̄

κMτ
}

and r ∈ [κMτε, , r̄]

α̃

∫
Br

|∇vεi |2 dx ≤
∫
Br

(
Ã∇vεi · ∇vεi − λεi p̃|vεi |2

)
dx+ ‖µ‖L∞(Br̄)

∫
∂Br

|vεi |2 dS

≤
∫
Br

(
Ã∇vεi · ∇vεi − λn0

p̃|vεi |2
)

dx+ ‖µ‖L∞(Br̄)

∫
∂Br

|vεi |2 dS

≤ rN−2E(vεi , r, λ
ε
i ) +

‖µ‖L∞(Br̄)r

1− τ

∫
Br

|∇vεi |2 dx

so that, using again Lemma 4.7 and recalling that α̃ − 2‖µ‖L∞(Br̄)r > 0 in view of (5.16), we
obtain that

rN−2E(vεi , r, λ
ε
i ) ≥

(
α̃−
‖µ‖L∞(Br̄)r

1− τ

)∫
Br

|∇vεi |2 dx ≥
(
α̃− 2‖µ‖L∞(Br̄)r

) ∫
Br

|∇vεi |2 dx(6.13)

≥
(
α̃− 2‖µ‖L∞(Br̄)r

) 1− τ
r

∫
∂Br

|vεi |2 dS

≥
(
α̃− 2‖µ‖L∞(Br̄)r

) 1− τ
‖µ‖L∞(Br̄)

rN−2H(vεi , r)

≥ α̃(1− τ)

‖µ‖L∞(Br̄)
rN−2H(vεi , r)− 2rN−1H(vεi , r).

From Remark 6.3 and (6.13) it follows that

d

dr
H(vεi , r) ≥

2

r
E(vεi , r, λ

ε
i )−

1

C0
H(vεi , r) ≥

2α̃(1− τ)

‖µ‖L∞(Br̄)

H(vεi , r)

r
− (4 + C−1

0 )H(vεi , r)

in [κMτε, , r̄]. The conclusion then follows by integration between s1 and s2. �

6.2. Energy estimates. By a combination of Lemma A.1 with estimates (5.5)–(5.7) it is possible
to prove the following perturbed Poincaré-type inequality.

Lemma 6.7. For any r ≤ r1 and for any u ∈ H1(Br) there holds

N − 1

r2

∫
Br

p̃u2 dy ≤ 3

(∫
Br

Ã∇u · ∇udy +
1

r

∫
∂Br

µu2 dS

)
.

Proposition 6.8. For any R,K such that R ≥ K ≥ κ there holds∫
BRε

Ã∇vεi · ∇vεi dy = O(εN−2H(vεi ,Kε)) as ε→ 0,(6.14) ∫
BRε

p̃ |vεi |
2

dy = O(εNH(vεi ,Kε)) as ε→ 0,(6.15) ∫
∂BRε

µ |vεi |
2

dS = O(εN−1H(vεi ,Kε)) as ε→ 0,(6.16)

for all i ∈ {1, . . . , n0}.

Proof. First of all, we prove that

(6.17) N (vεi , r̄, λ
ε
i ) = O(1) as ε→ 0.

We notice that

E(vεi , r̄, λ
ε
i ) ≤ r̄2−N

∫
Br̄

Ã∇vεi · ∇vεi dy

= 2r̄2−N
∫

Φ−1(B+
r̄ )

|∇ϕεi |
2

dx ≤ 2r̄2−N
∫

Ω

|∇ϕεi | = 2r̄2−Nλεi .

Since λεi ≤ λn0 for all ε ∈ (0, 1) and all 1 ≤ i ≤ n0, we have that E(vεi , r̄, λ
ε
i ) is bounded for

ε ∈ (0,min{ε1, r̄/K}). From Lemma 6.1 (ii) we know that there exists Cr̄ > 0 and αr̄ ∈ (0, r̄/K)
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such that H(vεi , r̄) ≥ Cr̄ for all ε ∈ (0,min{αr̄, ε1}). Therefore (6.17) is proved. Hence from
estimate (6.12) we deduce that there exists c0 > 0 such that

(6.18) N (vεi , r, λ
ε
i ) ≤ c0

for all ε ∈ (0,min{ε1, r̄/K, αr̄}) and all Kε ≤ r ≤ r̄.
By Lemma 6.2 and (6.18) there exist R1 ∈ (0, r̄), c1 > 0 and ε̄ ∈ (0,min{ε1, R1/R}) such that,

for any ε ∈ (0, ε̄) and for any Kε ≤ r ≤ R1

(6.19)
d
drH(vεi , r)

H(vεi , r)
≤ c1

(
1

r
+ 1

)
.

By integration of (6.19) in (Kε,Rε) we obtain that

H(vεi , Rε)

H(vεi ,Kε)
≤
(
R

K

)c1
ec1ε(R−K)

which, in turn, implies (6.16).
From (5.19) and (5.5) we have that there exists R2 ∈ (0, r̃) such that∫

BRε

(Ã∇vεi · ∇vεi − λn0
p̃ |vεi |

2
) dy ≥ α̃

2

∫
BRε

Ã∇vεi · ∇vεi dy

for all ε ∈ (0,min{ε1, R2/R}). Therefore, since λεi ≤ λn0 , there exists c2 > 0 such that∫
BRε

Ã∇vεi · ∇vεi dy ≤ c2εN−2E(vεi , Rε, λ
ε
i )

for all ε ∈ (0,min{ε1, R2/R}). Then (6.18) (with r = Rε) yields

(6.20)

∫
BRε

Ã∇vεi · ∇vεi dy ≤ c0c2εN−2H(vεi , Rε),

for all ε ∈ (0,min{ε1, R2/R, αr̄}). This fact, together with (6.16), proves (6.14). Applying Lemma
6.7 with r = Rε, for ε sufficiently small, and u = vεi , in view of (6.14) and (6.16) we obtain (6.15),
thus concluding the proof. �

Hereafter, we denote

(6.21) β := 2α̃/ ‖µ‖L∞(Br̄) .

Proposition 6.9. Let τ ∈ (0, 1/2), Mτ > 1 as in Lemma 4.7 and β as in (6.21). Then, for any
R ≥Mτκ, there holds ∫

BRε

Ã∇vεi · ∇vεi dy = O(εN−2+β(1−τ)) as ε→ 0,(6.22) ∫
BRε

p̃ |vεi |
2

dy = O(εN+β(1−τ)) as ε→ 0,(6.23) ∫
∂BRε

µ |vεi |
2

dS = O(εN−1+β(1−τ)) as ε→ 0,(6.24)

for all i ∈ {1, . . . , n0}.

Proof. From Lemma 6.6 we know that there exists a constant C > 0 such that

(6.25) H(vεi , Rε) ≤ Cεβ(1−τ)H(vεi , r̄) for all ε ∈ (0, r̄/R).

Combining estimates (5.5) and (5.6) with Lemma 4.7, we obtain that

(6.26) H(vεi , r̄) ≤
3r̄2−N

(1− τ)

∫
Br̄

Ã∇vεi · ∇vεi dy.

By definition of Ã and monotonicity of eigenvalues, we have that∫
Br̄

Ã∇vεi · ∇vεi dy = 2

∫
Φ−1(B+

r̄ )

|∇ϕεi |
2

dx ≤ 2λεi ≤ 2λn0
.
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This, together with (6.26) and (6.25), implies (6.24). Moreover, (6.22) follows from (6.20) and
(6.24), while (6.23) comes as a consequence of Lemma 6.7, (6.22) and (6.24). �

The following result is a straightforward consequence of the previous two propositions.

Corollary 6.10. Let τ ∈ (0, 1/2). Then for any K ≥ κ there exist C̄, q, ε̃ > 0 such that

(6.27) H(vεn0
,Kε) ≥ C̄εq for all ε ∈ (0, ε̃).

Moreover, letting Mτ be as in Lemma 4.7, β as in (6.21) and K ≥ Mτκ, we have that, for all
i ∈ {1, . . . , n0},

(6.28) H(vεi ,Kε) = O(εβ(1−τ)) as ε→ 0.

Proof. If we integrate (6.19) between Kε and R1 we obtain that

H(vεn0
, R1)

H(vεn0
,Kε)

≤
(
R1e

R1

K

)c1
ε−c1 .

Then, in view of Lemma 6.1 point (ii), (6.27) follows with

C̄ := CR1

(
K

R1eR1

)c1
and q := c1.

Finally (6.28) directly comes from Proposition 6.9. �

7. Upper bound on λn0
− λεn0

Hereafter we fix τ ∈ (0, 1/2) and

Kτ > 2κMτ

with κ as in Lemma 4.5 and Mτ as in Lemma 4.7. For convenience in the exposition, hereafter
we denote

(7.1) Θr := Φ−1(B+
r )

for any r ∈ (0, r1), with Φ as in (4.5).
For every i ∈ {1, . . . , n0}, R ≥ Kτ and ε ∈ (0,min{ε1, r̃/R}) we consider the following mini-

mization problem

(7.2) min

{∫
ΘRε

|∇u|2 dx : u ∈ H1(ΘRε), u− (ηRε ◦ Φ)ϕεi ∈ H1
0 (ΘRε)

}
,

where ηRε(x) = ηR(x/ε) and ηR is as in (3.1). By standard variational methods, it is easy to prove
that this problem has a unique solution ξint

i,R,ε, which weakly satisfies
−∆ξint

i,R,ε = 0, in ΘRε,

ξint
i,R,ε = ϕεi , on (∂ΘRε)

+,

ξint
i,R,ε = 0, on (∂ΘRε)

0,

where

(∂ΘRε)
+ := ∂ΘRε ∩ Ω and (∂ΘRε)

0 := ∂ΘRε ∩ ∂Ω.

Lemma 7.1. For any R ≥ Kτ the following estimates hold as ε→ 0∫
ΘRε

∣∣∇ξint
i,R,ε

∣∣2 dx = O(εN−2H(vεi ,Kτε)),(7.3) ∫
ΘRε

∣∣ξint
i,R,ε

∣∣2 dx = O(εNH(vεi ,Kτε)),(7.4) ∫
(∂ΘRε)+

∣∣ξint
i,R,ε

∣∣2 dS = O(εN−1H(vεi ,Kτε)),(7.5)
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together with ∫
ΘRε

∣∣∇ξint
i,R,ε

∣∣2 dx = O(εN−2+β(1−τ)),(7.6) ∫
ΘRε

∣∣ξint
i,R,ε

∣∣2 dx = O(εN+β(1−τ)),(7.7) ∫
(∂ΘRε)+

∣∣ξint
i,R,ε

∣∣2 dS = O(εN−1+β(1−τ)),(7.8)

for all i ∈ {1, . . . , n0}, where β is defined in (6.21).

Proof. By the change of variable induced by the diffeomorphism Φ, problem (7.2) is equivalent to

min

{∫
B+
Rε

A∇u · ∇udy : u ∈ H1(B+
Rε), u− ηRεu

ε
i ∈ H1

0 (B+
Rε)

}
,

with A as in (4.10), and the minimum is attained by ξint
i,R,ε ◦ Φ−1. If one tests the problem above

with u = ηRεu
ε
i , the following is obtained, in view also of (5.5), (5.7) and (3.1),∫

ΘRε

∣∣∇ξint
i,R,ε

∣∣2 dx =

∫
B+
Rε

A∇(ξint
i,R,ε ◦ Φ−1) · ∇(ξint

i,R,ε ◦ Φ−1) dy

≤ 3

2

∫
B+
Rε

|ηRε∇uεi + uεi∇ηRε|
2

dy

≤ 96

∫
B+
Rε

(
A∇uεi · ∇uεi +

1

(Rε)2
p |uεi |

2

)
dy.

Combining this estimate with (6.14) and (6.15) proves (7.3), while combining it with (6.22) and
(6.23) proves (7.6). Since ξint

i,R,ε = ϕεi on (∂ΘRε)
+, estimates (7.5) and (7.8) are trivial in view

of (6.16) and (6.24). Finally, (7.4) and (7.7) come from the other estimates, Lemma 6.7, and the
change of variable induced by the diffeomorphism Φ. �

Using the functions ξint
i,R,ε that solve (7.2), we construct a family of competitors (see (7.20))

to test the Rayleigh quotient for λn0 and obtain a sharp estimate from above of the eigenvalue
variation λn0

− λεn0
. To this aim, we also provide suitable energy estimates for such competitors,

see (7.21)–(7.26). For all i ∈ {1, . . . , n0}, R ≥ Kτ and ε ∈ (0,min{ε1, r̃/R}) we define

(7.9) ξi,R,ε(x) :=

{
ϕεi (x), if x ∈ Ω \ΘRε,

ξint
i,R,ε(x), if x ∈ ΘRε.

We observe that ξi,R,ε ∈ H1
0 (Ω) thanks to the fact that R ≥ Kτ > 2κ, which guarantees that

εV ⊂ ΘRε
2

. Moreover it is easy to verify that the family {ξ1,R,ε, . . . , ξn0,R,ε} is linearly independent

in H1
0 (Ω), for ε sufficiently small. We also define

(7.10) ZεR(x) :=
(ξint
n0,R,ε

◦ Φ−1)(εx)√
H(ε)

, Υε(x) :=
uεn0

(εx)√
H(ε)

,

where we denote

(7.11) H(ε) :=
1

2
H(vεn0

,Kτε) =
1

(Kτε)N−1

∫
S+
Kτε

µ|uεn0
|2 dS.

As a consequence of the estimates given in Propositions 6.8 and 6.9 and Lemma 7.1, we are able
to prove the following result.
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Lemma 7.2. For any R ≥ Kτ we have that, as ε→ 0,∫
Ω

|∇ξn0,R,ε|
2

dx = λεn0
+ εN−2H(ε)

(∫
B+
R

A(εy)∇ZεR ·∇ZεRdy −
∫
B+
R

A(εy)∇Υε ·∇Υεdy

)
,(7.12) ∫

Ω

|∇ξi,R,ε|2 dx = λεi +O(εN−2+β(1−τ)), for all i = 1, . . . , n0,(7.13) ∫
Ω

∇ξi,R,ε · ∇ξn0,R,ε dx = O
(
εN−2+ β

2 (1−τ)
√
H(ε)

)
, for all i = 1, . . . , n0 − 1,(7.14) ∫

Ω

∇ξi,R,ε · ∇ξj,R,ε dx = O(εN−2+β(1−τ)), for all i, j = 1, . . . , n0, i 6= j,(7.15) ∫
Ω

|ξn0,R,ε|
2

dx = 1 +O(εNH(ε)),(7.16) ∫
Ω

|ξi,R,ε|2 dx = 1 +O(εN+β(1−τ)), for all i = 1, . . . , n0,(7.17) ∫
Ω

ξi,R,ε ξn0,R,ε dx = O(εN+ β
2 (1−τ)

√
H(ε)), for all i = 1, . . . , n0 − 1, ,(7.18) ∫

Ω

ξi,R,ε ξj,R,ε dx = O(εN+β(1−τ)), for all i, j = 1, . . . , n0, i 6= j.(7.19)

Proof. By definition of ξn0,R,ε we have∫
Ω

|∇ξn0,R,ε|
2

dx =

∫
Ω

∣∣∇ϕεn0

∣∣2 dx−
∫

ΘRε

∣∣∇ϕεn0

∣∣2 dx+

∫
ΘRε

∣∣∇ξint
n0,R,ε

∣∣2 dx.

Since, by (1.8)– (1.9),
∫

Ω

∣∣∇ϕεn0

∣∣2 dx = λεn0
, by the change of variable y = Φ(x) and the definition

of ZεR and Υε given in (7.10), we obtain (7.12). Similarly, for any i = 1, . . . , n0,∫
Ω

|∇ξi,R,ε|2 dx = λεi −
∫

ΘRε

|∇ϕεi |
2

dx+

∫
ΘRε

∣∣∇ξint
i,R,ε

∣∣2 dx.

Then (7.13) follows from (6.22) and (7.6).
For all i = 1, . . . , n0 − 1 we have that∫

Ω

∇ξi,R,ε · ∇ξn0,R,ε dx = −
∫

ΘRε

∇ϕεi · ∇ϕεn0
dx+

∫
ΘRε

∇ξint
i,R,ε · ∇ξint

n0,R,ε dx,

since the perturbed eigenfunctions are orthogonal, therefore (7.14) follows from Cauchy-Schwartz
inequality and estimates (6.14), (6.22), (7.3) and (7.6). Finally, again by orthogonality, for any
i, j = 1, . . . , n0, i 6= j, we have that∫

Ω

∇ξi,R,ε · ∇ξj,R,ε dx = −
∫

ΘRε

∇ϕεi · ∇ϕεj dx+

∫
ΘRε

∇ξint
i,R,ε · ∇ξint

j,R,ε dx

and so (7.15) easily follows from Cauchy-Schwartz inequality and estimates (6.22) and (7.6). The
proof of (7.16)–(7.19) is completely analogous and it is therefore omitted. �

We now construct an orthogonal basis {ξ̂1,R,ε, . . . , ξ̂n0,R,ε} of the space span {ξ1,R,ε, . . . , ξn0,R,ε}.
To this aim we recursively define

(7.20) ξ̂n0,R,ε := ξn0,R,ε and ξ̂i,R,ε := ξi,R,ε −
n0∑

j=i+1

dR,εi,j ξ̂j,R,ε for i = 1, . . . , n0 − 1,

where

dR,εi,j :=

∫
Ω
ξi,R,εξ̂j,R,ε dx∫
Ω
|ξ̂j,R,ε|2 dx

.
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The functions {ξ̂1,R,ε, . . . , ξ̂n0,R,ε} are orthogonal in L2(Ω). Moreover they satisfy the following
estimates:∫

Ω

|∇ξ̂n0,R,ε|2dx = λεn0
+ εN−2H(ε)

(∫
B+
R

A(εy)∇ZεR ·∇ZεR dy −
∫
B+
R

A(εy)∇Υε · ∇Υε dy

)
,(7.21) ∫

Ω

|∇ξ̂i,R,ε|2 dx = λεi +O(εN−2+β(1−τ)), for all i = 1, . . . , n0,(7.22) ∫
Ω

∇ξ̂i,R,ε · ∇ξ̂n0,R,ε dx = O(εN−2+ β
2 (1−τ)

√
H(ε)), for all i = 1, . . . , n0 − 1,(7.23) ∫

Ω

∇ξ̂i,R,ε · ∇ξ̂j,R,ε dx = O(εN−2+β(1−τ)), for all i, j = 1, . . . , n0, i 6= j,(7.24) ∫
Ω

|ξ̂n0,R,ε|2 dx = 1 +O(εNH(ε)),(7.25) ∫
Ω

|ξ̂i,R,ε|2 dx = 1 +O(εN+β(1−τ)), for all i = 1, . . . , n0.(7.26)

The proof of estimates (7.21)–(7.26) consists in direct computations and comes from Lemma 7.2

and the following estimates on the coefficients dR,εi,j

dR,εj,n0
= O(εN+ β

2 (1−τ)
√
H(ε)) for all j = 1, . . . , n0 − 1,

dR,εj,k = O(εN+β(1−τ)) for all k = 2, . . . , n0, j < k.

We are now ready to prove an upper bound of the eigenvalue variation λn0
− λεn0

.

Proposition 7.3. For any R ≥ Kτ we have that

(7.27) λn0 − λεn0
≤ εN−2H(ε)(fR(ε) + o(1)) as ε→ 0,

where

(7.28) fR(ε) =

∫
B+
R

A(εy)∇ZεR · ∇ZεR dy −
∫
B+
R

A(εy)∇Υε · ∇Υε dy.

Moreover

(7.29) fR(ε) = O(1) as ε→ 0.

Proof. By the Courant-Fischer Min-Max variational characterization of the eigenvalues, see (2.1),
we have that

λn0 = min

 max
a1,...,an0

∈R∑n0
i=1 a

2
i=1

‖∇ (
∑n0

i=1 aiui)‖
2

L2(Ω)

‖
∑n0

i=1 aiui‖2L2(Ω)

: {u1 . . . , un0
} ⊂ H1

0 (Ω)
linearly independent

 .

We test the above minimization problem with the orthonormal family{
ui :=

ξ̂i,R,ε

‖ξ̂i,R,ε‖L2(Ω)

}
i=1,...,n0

,

where ξ̂i,R,ε is defined in (7.20); we thus obtain

λn0 − λεn0
≤ max
a1,...,an0

∈R∑n0
i=1 a

2
i=1

∫
Ω

∣∣∣∣∇( n0∑
i=1

ai
ξ̂i,R,ε

‖ξ̂i,R,ε‖L2(Ω)

)∣∣∣∣2dx− λεn0
= max
a1,...,an0

∈R∑n0
i=1 a

2
i=1

n0∑
i,j=1

Mε
i,jaiaj ,

with

Mε
i,j =

∫
Ω
∇ξ̂i,R,ε · ∇ξ̂j,R,ε dx

‖ξ̂i,R,ε‖L2(Ω)‖ξ̂j,R,ε‖L2(Ω)

− λεn0
δji .
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From estimates (7.21)–(7.26) we deduce the behaviour of the coefficients Mε
i,j ’s as ε→ 0, that is

Mε
n0,n0

= εN−2H(ε)(fR(ε) + o(1)),

Mε
i,i = λεi − λεn0

+ o(1), for all i = 1, . . . , n0 − 1,

Mε
i,n0

= O(εN−2+ β
2 (1−τ)

√
H(ε)), for all i = 1, . . . , n0 − 1,

Mε
i,j = O(εN−2+β(1−τ)), for all i, j = 1, . . . , n0 − 1, i 6= j.

Moreover, (6.14) and (7.3) yield that fR(ε) = O(1) as ε → 0, while from Corollary 6.10 we have
that, for all ε ∈ (0, ε̃), H(ε) ≥ C̄εq for some C̄, q, ε̃ > 0. Therefore the assumptions of Lemma A.2
are fulfilled with

σ(ε) = εN−2H(ε), µ(ε) = fR(ε) + o(1), as ε→ 0,

a =
1

2
(N − 2 + β(1− τ)) > 0, M >

N − 2 + q

a
− 2.

Hence

max
a1,...,an0

∈R∑n0
i=1 a

2
i=1

n0∑
i,j=1

Mε
i,jaiaj = εN−2H(ε)(fR(ε) + o(1))

as ε → 0 and the proof of (7.27) is complete. As already observed, (7.29) is a consequence of
(6.14) and (7.3). �

8. Lower bound on λn0
− λεn0

In this section we provide a lower bound for the eigenvalue variation λn0
− λεn0

. In order to do
this, we first construct a family of competitors for the Rayleigh quotient of λεn0

; then, exploiting
the local energy estimates stated in Lemma 8.2, we prove a blow-up result for their scaling, see
Lemma 8.3.

Recalling the definition of ψi given in (1.14), from (1.13) and (4.6)–(4.7) we easily deduce that

(8.1)
(ϕi ◦ Φ−1)(rx)

rγi
→ ψi in H1(BR) as r → 0, for every R > 0.

From (8.1) and Lemma A.1 we deduce the following estimates for ϕi ◦ Φ−1, i = 1, . . . , n0.

Lemma 8.1. There exists C̃ > 0 such that, for all i ∈ {1, . . . , n0−1}, for all R > 1 and ε ∈ (0, r1R ),

‖∇(ϕi ◦ Φ−1)‖2
L2(B+

Rε)
≤ C̃(Rε)N ,

‖ϕi ◦ Φ−1‖2
L2(B+

Rε)
≤ C̃(Rε)N+2,

‖ϕi ◦ Φ−1‖2
L2(S+

Rε)
≤ C̃(Rε)N+1,

where, for r > 0, B+
r and S+

r are defined in (3.8), and

‖∇(ϕn0 ◦ Φ−1)‖2
L2(B+

Rε)
≤ C̃(Rε)N+2γ−2,

‖ϕn0
◦ Φ−1‖2

L2(B+
Rε)
≤ C̃(Rε)N+2γ ,

‖ϕn0
◦ Φ−1‖2

L2(S+
Rε)
≤ C̃(Rε)N−1+2γ ,

where γ is defined in (1.16).

For every R > κ and 0 < ε < r1
R , we define

(8.2) wn0,R,ε(x) =

{
ϕn0

(x), if x ∈ Ω \ΘRε,

wint
n0,R,ε

(x), if x ∈ ΘRε,

where the notation ΘRε has been introduced in (7.1),

wint
n0,R,ε(x) = wR,ε(Φ(x))
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and wR,ε is the unique H1(B+
Rε)-function satisfying wR,ε − (ϕn0 ◦ Φ−1) ∈ H1

0,∂B+
Rε\Σ̃ε

(B+
Rε) and

achieving

min
{
‖∇w‖2

L2(B+
Rε)

: w ∈ H1(B+
Rε), w − (ϕn0

◦ Φ−1) ∈ H1
0,∂B+

Rε\Σ̃ε
(B+

Rε)
}
.

By classical variational methods, wR,ε exists and it is the unique solution to

(8.3)

wR,ε − (ϕn0 ◦ Φ−1) ∈ H1
0,∂B+

Rε\Σ̃ε
(B+

Rε),∫
B+
Rε
∇wR,ε · ∇φ dx = 0 for every φ ∈ H1

0,∂B+
Rε\Σ̃ε

(B+
Rε).

As a consequence of Lemma 8.1 and Lemma A.1 we obtain the following estimates.

Lemma 8.2. Letting C̃ > 0 be as in Lemma 8.1, we have that, for all R > κ and ε ∈ (0, r1R ),

‖∇wR,ε‖2L2(B+
Rε)
≤ C̃(Rε)N+2γ−2,

‖wR,ε‖2L2(B+
Rε)
≤ C̃(Rε)N+2γ ,

‖wR,ε‖2L2(S+
Rε)
≤ C̃(Rε)N+2γ−1.

For every R > κ, 0 < ε < r1
R , and x ∈ B+

R , we let

(8.4) UR,ε(x) =
wR,ε(εx)

εγ
.

Lemma 8.3. For all R > κ, limε→0 ‖UR,ε − UR‖H1(B+
R) = 0, where UR is as in Lemma 3.3.

Proof. Let R > κ. From a change of variables and Lemma 8.2 we have

‖∇UR,ε‖2L2(B+
R)

= ε−N−2γ+2‖∇wR,ε‖2L2(B+
Rε)
≤ C̃RN+2γ−2

and ∫
S+
R

U2
R,ε dS = ε1−N−2γ

∫
S+
Rε

w2
R,ε dS ≤ C̃RN+2γ−1

for all ε ∈ (0, r1/R), so that the family {UR,ε}ε∈(0,r1/R) is bounded in H1(B+
R) in view of

Lemma A.1.
We deduce that there exist W ∈ H1(B+

R) and a sequence εn → 0 such that UR,εn ⇀W weakly

in H1(B+
R) as n→∞. Letting

(8.5) Vε(x) =
(ϕn0

◦ Φ−1)(εx)

εγ
,

from (8.1) we have that

(8.6) Vε → ψ in H1(B+
R) as ε→ 0.

Hence

UR,εn − Vεn ⇀W − ψ as n→∞ in H1(B+
R).

Since (8.3) yields that UR,ε − Vε ∈ H1
0,∂B+

R\(
1
ε Σ̃ε)

(B+
R), the above convergence and Remark 4.1

imply that

W − ψ ∈ H1
0,∂B+

R\Σ
(B+

R).

We observe that the equation satisfied by UR,ε is

(8.7)

∫
B+
R

∇UR,ε · ∇φ dx = 0 for every φ ∈ H1
0,∂B+

R\(
1
ε Σ̃ε)

(B+
R).

Let φ ∈ C∞c (B+
R∪Σ). From (4.6)–(4.7) we easily deduce that φ ∈ C∞c (B+

R∪( 1
ε Σ̃ε)) for ε sufficiently

small, hence φ ∈ H1
0,∂B+

R\(
1
ε Σ̃ε)

(B+
R) and (8.7) is satisfied for ε = εn and large n. Therefore we

can pass to the limit to infer that
∫
B+
R
∇W · ∇φ dx = 0 for every φ ∈ C∞c (B+

R ∪ Σ) and then,

by density, for all φ ∈ H1
0,∂B+

R\Σ
(B+

R). By uniqueness of the solution to (3.10), we conclude that
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W = UR. Since the limit UR is the same along every subsequence, the Urysohn’s Subsequence
Principle implies that the whole family UR,ε weakly converges to UR in H1(B+

R) as ε→ 0.
It remains to show the strong H1-convergence. To this aim, we choose in (8.7) φ = UR,ε − Vε

for all ε ∈ (0, r1/R). We obtain∫
B+
R

|∇UR,ε|2 dx =

∫
B+
R

∇UR,ε · ∇Vε dx→
∫
B+
R

∇UR · ∇ψ dx =

∫
B+
R

|∇UR|2 dx,

as ε→ 0, where the convergence above is justified by the fact that UR,εn ⇀ UR weakly in H1(B+
R)

and Vε → ψ strongly in H1(B+
R), and the last equality follows from (3.10). �

From (8.2), (8.4), and (8.5) it follows that, for all R > κ fixed,∫
Ω

|∇wn0,R,ε(x)|2 dx = λn0
−
∫

ΘRε

|∇ϕn0
(x)|2 dx+

∫
ΘRε

|∇wint
n0,R,ε(x)|2 dx(8.8)

= λn0 − εN−2+2γ

∫
B+
R

(
A(εy)∇Vε(y) · ∇Vε(y)−A(εy)∇UR,ε(y) · ∇UR,ε(y)

)
dy,

= λn0
− εN−2+2γ

(∫
B+
R

(
|∇Vε(y)|2 − |∇UR,ε(y)|2

)
dy + o(1)

)
,

as ε → 0, where the last estimate follows from (5.1) and boundedness of {Vε}ε and {UR,ε}ε in
H1(B+

R) (see Lemma 8.3).
The main goal of this section is to prove the following result.

Proposition 8.4. For all R > κ, we have that

(8.9) λεn0
− λn0 ≤ εN+2γ−2(gR(ε) + o(1)) as ε→ 0,

where

(8.10) gR(ε) =

∫
B+
R

(
|∇UR,ε(y)|2 − |∇Vε(y)|2

)
dy

with Vε and UR,ε defined in (8.5) and (8.4) respectively. Furthermore limε→0 gR(ε) = gR, where

(8.11) gR = ‖∇UR‖2L2(B+
R)
− ‖∇ψ‖2

L2(B+
R)
.

Proof. We use the Min-Max characterization of the eigenvalue λεn0
recalled in (2.1), that we rewrite

as follows

(8.12) λεn0
= min

 max
a1,...,an0

∈R∑n0
i=1 a

2
i=1

‖∇ (
∑n0

i=1 aiui)‖
2

L2(Ω)

‖
∑n0

i=1 aiui‖2L2(Ω)

: {u1 . . . , un0
} ⊂ H1

0,∂Ω\Σε(Ω)

linearly independent

 .

Let us fix R > κ. We define

ŵi,R,ε = ϕi for all i = 1, 2, . . . , n0 − 1,

and

ŵn0,R,ε = wn0,R,ε −
n0−1∑
i=1

cεiϕi,

where

cεi =

∫
Ω

wn0,R,εϕi dx.

Let

w̃i,R,ε =
ŵi,R,ε

‖ŵi,R,ε‖L2(Ω)
, i = 1, . . . , n0.

We note that the family {w̃i,R,ε}i=1,...,n0
is orthonormal in L2(Ω) and linearly independent in

H1
0,∂Ω\Σε(Ω).



EIGENVALUES WITH MOVING MIXED BOUNDARY CONDITIONS 35

Lemmas 8.1 and 8.2, (8.2) and (4.7) imply that, for all i ∈ {1, 2, . . . , n0 − 1},

(8.13) cεi = O(εN+1+γ) and

∫
Ω

∇wn0,R,ε · ∇ϕi dx = O(εN+γ−1) as ε→ 0.

Then, from (8.8) we deduce that∫
Ω

|∇ŵn0,R,ε(x)|2 dx(8.14)

= λn0
− εN−2+2γ

(∫
B+
R

(
|∇Vε(y)|2 − |∇UR,ε(y)|2

)
dy + o(1)

)
+O(ε2(N+γ))

= λn0
− εN−2+2γ

(∫
B+
R

(
|∇Vε(y)|2 − |∇UR,ε(y)|2

)
dy + o(1)

)
as ε→ 0. Furthermore (8.13) implies that, for all i = 1, . . . , n0 − 1,

(8.15)

∫
Ω

∇ŵn0,R,ε(x) · ∇ŵi,R,ε(x) dx = O(εN+γ−1) as ε→ 0,

while (8.2), Lemma 8.1, Lemma 8.2, and (8.13) yield

(8.16)

∫
Ω

|ŵn0,R,ε(x)|2 dx = 1 +O(εN+2γ), as ε→ 0.

Choosing as test functions in (8.12) ui = w̃i,R,ε we obtain the following estimate

λεn0
− λn0

≤ max
a1,...,an0

∈R∑n0
i=1|ai|

2=1

∫
Ω

∣∣∣∣∣∇
(

n0∑
i=1

aiw̃i,R,ε

)∣∣∣∣∣
2

dx− λn0
= max

a1,...,an0∈R∑n0
i=1|ai|

2=1

n0∑
i,j=1

Lεi,jaiaj ,

where

Lεi,j =

∫
Ω
∇ŵi,R,ε · ∇ŵj,R,ε dx

‖ŵi,R,ε‖L2(Ω)‖ŵj,R,ε‖L2(Ω)
− λn0δ

j
i .

From estimates (8.14), (8.15), and (8.16) it follows that

Lεn0,n0
= εN+2γ−2(gR(ε) + o(1)), Lεi,n0

= Lεn0,i = O(εN+γ−1) for all i < n0,

Lεi,i = λi − λn0 < 0 for all i < n0, Lεi,j = 0 for all i, j < n0, i 6= j,

as ε → 0. We observe that gR(ε) = O(1) as ε → 0 by (8.6) and Lemma 8.3. Therefore estimate
(8.9) follows from Lemma A.2. Finally the limit limε→0 gR(ε) = gR is a direct consequence of
(8.10), Lemma 8.3, and (8.6). �

With the purpose of deducing from (8.9) a more precise estimate from above of the eigenvalue
variation λεn0

− λn0
and, in particular, of recognizing a sign in the right-hand side of (8.9), we are

now going to compute the limit of the function gR, as R diverges. To this aim we define

χR(r) :=

∫
S+

1

UR(rθ)Ψ(θ) dS, for R > 2 and 1 ≤ r ≤ R,(8.17)

χ(r) :=

∫
S+

1

U(rθ)Ψ(θ) dS, for r ≥ 1.(8.18)

In addition, hereafter we denote

(8.19) π0 = π0(n0) :=

∫
S+

1

Ψ2 dS.

We first establish the following preliminary result.

Lemma 8.5. Let mn0
(Σ) be the constant defined in (3.4), let χR be as in (8.17), χ as in (8.18)

and π0 as in (8.19). Then

(8.20) χ(1) = lim
R→+∞

χR(1) = π0 −
2mn0

(Σ)

N + 2γ − 2
.
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Proof. The fact that χR(1)→ χ(1) as R→ +∞ is a consequence of Lemma 3.5 and continuity of
the trace map from H1(B+

R) to L2(S+
1 ). We now claim that

(8.21) r−γχ(r)→ π0 as r → +∞.

To prove (8.21), we first observe that

(8.22) χ(r) = π0r
γ +

∫
S+

1

w0(rθ)Ψ(θ) dS,

since U(x) = w0(x)+|x|γ Ψ(x/ |x|) by (3.6). By considering the Kelvin transform of the restriction
of w0 on RN+ \B+

1 and observing that it must vanish at 0 at least with vanishing order 1 (see [12]),
we deduce that

|w0(x)| = O(|x|−N+1) as |x| → +∞.
Combining the above estimate with (8.22) we obtain claim (8.21), being γ ≥ 1.

In view of the definition of χ given in (8.18), the equation satisfied by U and the fact that Ψ
is a spherical harmonic of degree γ, it’s easy to prove that χ(r) solves the following differential
equation

(rN+2γ−1(r−γχ(r))′)′ = 0 in [1,+∞).

Integration of the the above equation yields that

(8.23) r−γχ(r) = χ(1) + C
1− r−N−2γ+2

N + 2γ − 2
, for all r ≥ 1

and for some C ∈ R. Taking into account (8.21), we obtain the exact value of the constant C, i.e.

C = (N + 2γ − 2)(π0 − χ(1)).

Then (8.23) can be rewritten as

(8.24) χ(r) = π0r
γ − (π0 − χ(1))r−N−γ+2,

whose derivative is

χ′(r) = π0γr
γ−1 − (N + γ − 2)(χ(1)− π0)r−N−γ+1(8.25)

= (N + 2γ − 2)π0r
γ−1 − N + γ − 2

r
χ(r), for all r ≥ 1.

Then, by computing the derivative in (8.18) as well, and evaluating it at r = 1, we have that

(8.26)

∫
S+

1

Ψ∂νU dS = (N + 2γ − 2)π0 − (N + γ − 2)χ(1).

Thanks to the harmonicity of the function ψ, the definition of U given in (3.6) and (3.5), one can
see that ∫

B+
1

∇ψ · ∇U dx =

∫
S+

1

U∂νψ + 2mn0(Σ).

On the other hand, being ψ a γ-homogeneous polynomial ∂νψ = γψ on S+
1 and so

(8.27)

∫
B+

1

∇ψ · ∇U dx = γχ(1) + 2mn0(Σ).

Moreover, by (3.7) and integration by parts we have that∫
B+

1

∇ψ · ∇U dx =

∫
S+

1

Ψ∂νU dS.

Combining the identity above with (8.27) and (8.26) and rearranging the terms, we finally obtain
(8.20) and complete the proof. �

As a byproduct of the proof of the previous Lemma, we obtain the following result, which is
needed in the Section 10.
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Corollary 8.6. For all R > 1 there holds

(8.28)

∫
S+
R

ψ∂νU dS = π0γR
N+2γ−2 +

2(N + γ − 2)

N + 2γ − 2
mn0(Σ)

as well as

(8.29) χ(R) = π0R
γ − 2mn0

(Σ)

N + 2γ − 2
R−N−γ+2.

Proof. By definition (8.18) we have that∫
S+
R

ψ∂νU dS = RN+γ−1χ′(R).

Plugging (8.25), (8.24) and (8.20) into the previous identity, one can deduce (8.28). On the other
hand (8.29) can be easily proved by plugging (8.20) into (8.24). �

We are now able to compute the limit of gR as R diverges.

Lemma 8.7. Let gR be as in (8.11) and mn0
(Σ) as in (3.4). Then limR→∞ gR = 2mn0

(Σ).

Proof. From (3.9), harmonicity of ψ and the fact that ψ = 0 on ∂RN+ it follows that

(8.30) gR =

∫
S+
R

ψ∂νUR dS −
∫
S+
R

ψ∂νψ dS.

Let us compute the two terms at the right hand side of (8.30). If χR is the function defined in
(8.17), then

(8.31) χ′R(R) =

∫
S+

1

Ψ(θ)∂νUR(Rθ) dS = R−N−γ+1

∫
S+
R

ψ∂νUR dS.

On the other hand, one can easily prove that the function χR solves the following ODE

(rN+2γ−1(r−γχR(r))′)′ = 0 in [1, R],

so that, by integration, there exists C ∈ R such that

r−γχR(r) = χR(1) + C
1− r−N−2γ+2

N + 2γ − 2
for all r ∈ [1, R].

Since UR = ψ = RγΨ on S+
R , then, by (8.17) and (8.19), χR(R) = π0R

γ . Therefore the constant
C above is explicitly given by

C =
(N + 2γ − 2)(π0 − χR(1))

1−R−N−2γ+2
.

Hence, in view of (8.31), we can rewrite the first term in (8.30) as

(8.32)

∫
S+
R

ψ∂νUR dS = RN+γ−1χ′R(R) =
π0(N + γ − 2)− χR(1)(N + 2γ − 2) + π0γR

N+2γ−2

1−R−N−2γ+2
.

Concerning the second term in (8.30), from (8.19) and the fact that

ψ∂νψ = γR2γ−1Ψ2 on S+
R ,

we may easily deduce that ∫
S+
R

ψ∂νψ dS = π0γR
N+2γ−2.

Plugging the previous identity and (8.32) into (8.30) we obtain that

gR =
(π0 − χR(1))(N + 2γ − 2)

1−R−N−2γ+2
.

In view of Lemma 8.5, passing to the limit as R → ∞ in the previous identity, we draw the
conclusion. �

Combining Proposition 8.4 and Lemma 8.7 we directly obtain the following lower bound for
the eigenvalue variation λn0 − λεn0

.
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Corollary 8.8. We have that

lim inf
ε→0

λn0 − λεn0

εN+2γ−2
≥ −2mn0

(Σ) > 0.

Combining Proposition 7.3 and Corollary 8.8 we finally obtain the following result.

Corollary 8.9. For any R ≥ Kτ fixed we have that

−2mn0
(Σ) + o(1) ≤

λn0 − λεn0

εN+2γ−2
≤ H(ε)

ε2γ
(fR(ε) + o(1)) as ε→ 0,

where fR(ε) and H(ε) are defined in (7.28) and (7.11) respectively. In particular

(8.33)
ε2γ

H(ε)
= O(1) as ε→ 0.

9. Blow-up analysis

The analysis performed in the previous sections led, in Corollary 8.9, to an estimate of the
eigenvalue variation in terms of the normalization factor H(ε). In order to detect the sharp
asymptotic behaviour of H(ε) as ε → 0, in the present section we perform a blow-up analysis
for scaled eigenfunctions. The identification of the limit profile of blown-up eigenfunctions will be
possible thanks to the energy estimate in Proposition 9.3 below, which is based on the invertibility
of the Fréchet derivative of the operator T , defined as

T : H1
0 (Ω)× R −→ H−1(Ω)× R(9.1)

(ϕ, λ) 7−→ T (ϕ, λ) :=

(
−∆ϕ− λϕ,

∫
Ω

|∇ϕ|2 dx− λn0

)
,

where

H−1(Ω)〈−∆ϕ− λϕ, v〉H1
0 (Ω) :=

∫
Ω

(∇ϕ · ∇v − λϕv) dx.

From the normalization (1.11) it easily follows that

T (ϕn0 , λn0) = (0, 0).

Additionally, as a consequence of the simplicity assumption (1.15) and the Fredholm Alternative,
it is easy to prove the following invertibility result for the Fréchet derivative of T at (ϕn0

, λn0
).

One can see [1, Lemma 7.1] for the proof in a similar framework.

Lemma 9.1. The functional T defined in (9.1) is Fréchet-differentiable at (ϕn0 , λn0) and its
Fréchet derivative

dT (ϕn0
, λn0

) : H1
0 (Ω)× R −→ H−1(Ω)× R,

dT (ϕn0
, λn0

)(ϕ, λ) =

(
−∆ϕ− λϕn0

− λn0
ϕ, 2

∫
Ω

∇ϕn0
· ∇ϕdx

)
,

is invertible.

The following Lemma states that the function ξn0,R,ε, defined in (7.9), is a good approximation
of the limit eigenfunction ϕn0

for small values of ε.

Lemma 9.2. Let R ≥ Kτ and let ξn0,R,ε be as in (7.9). Then

ξn0,R,ε → ϕn0
in H1

0 (Ω), as ε→ 0.

Proof. We first observe that, by definition,

(9.2)

∫
Ω

|∇(ξn0,R,ε − ϕn0
)|2 dx =

∫
Ω

∣∣∇(ϕεn0
− ϕn0

)
∣∣2 dx

−
∫

ΘRε

∣∣∇(ϕεn0
− ϕn0)

∣∣2 dx+

∫
ΘRε

∣∣∇(ξint
n0,R,ε − ϕn0)

∣∣2 dx.
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In view of Proposition 2.4, estimates (6.22), (7.6) and Lemma 8.1, we can estimate the right hand
side of (9.2), thus obtaining∫

Ω

|∇(ξn0,R,ε − ϕn0)|2 dx ≤ o(1) +O(εN−2+β(1−τ)) +O(εN+2γ−2) = o(1) as ε→ 0.

The proof is thereby complete. �

We now state a crucial energy estimate that quantifies the rate of convergence in Lemma 9.2.

Proposition 9.3. Let R ≥ Kτ . Then

(9.3)

∫
Ω

|∇(ξn0,R,ε − ϕn0
)|2 dx = O(εN−2H(ε))

and

(9.4)

∫
Ω\ΘRε

∣∣∇(ϕεn0
− ϕn0

)
∣∣2 dx = O(εN−2H(ε)), as ε→ 0.

Proof. Let T be as in (9.1). Being T differentiable at (ϕn0
, λn0

), in view of Lemma 9.2 and
Proposition 2.3 there holds

(9.5) T (ξn0,R,ε, λ
ε
n0

) = dT (ϕn0
, λn0

)(ξn0,R,ε − ϕn0
, λεn0

− λn0
)

+ o(‖ξn0,R,ε − ϕn0
‖H1

0 (Ω) +
∣∣λεn0

− λn0

∣∣)
as ε→ 0, where

‖v‖H1
0 (Ω) :=

(∫
Ω

|∇v|2 dx

)1/2

for all v ∈ H1
0 (Ω).

Applying (dT (ϕn0
, λn0

))−1 to both sides in (9.5) and taking the norms, we obtain that

‖ξn0,R,ε − ϕn0‖H1
0 (Ω) +

∣∣λεn0
− λn0

∣∣ ≤ ∥∥dT (ϕn0 , λn0)−1
∥∥∥∥T (ξn0,R,ε, λ

ε
n0

)
∥∥
H−1(Ω)×R (1 + o(1)),

as ε→ 0, where the norm of dT (ϕn0 , λn0)−1 is intended in the space of linear bounded operators
from H−1(Ω)× R to H1

0 (Ω)× R and it is a constant independent of R and ε. Therefore

(9.6) ‖ξn0,R,ε − ϕn0‖H1
0 (Ω) +

∣∣λεn0
− λn0

∣∣
≤ C

(∥∥−∆ξn0,R,ε − λεn0
ξn0,R,ε

∥∥
H−1(Ω)

+
∣∣∣‖ξn0,R,ε‖

2
H1

0 (Ω) − λn0

∣∣∣) (1 + o(1)),

as ε→ 0. We first observe that the definition of ξn0,R,ε given in (7.9), (7.3), (6.14), and Proposition
7.3 imply that

(9.7)
∣∣∣‖ξn0,R,ε‖

2
H1

0 (Ω) − λn0

∣∣∣ ≤ ∣∣∣∣∫
Ω

|∇ξn0,R,ε|
2

dx− λεn0

∣∣∣∣+
∣∣λεn0

− λn0

∣∣ = O(εN−2H(ε)),

as ε→ 0. Let us now study the other term at the right hand side of (9.6). For any v ∈ H1
0 (Ω) we

have that, by definition of ξn0,R,ε as in (7.9),

H−1(Ω)〈−∆ξn0,R,ε − λεn0
ξn0,R,ε, v〉H1

0 (Ω) =

∫
Ω

(∇ξn0,R,ε · ∇v − λεn0
ξn0,R,εv) dx

=

∫
ΘRε

(∇ξint
n0,R,ε · ∇v − λ

ε
n0
ξint
n0,R,εv) dx−

∫
ΘRε

(∇ϕεn0
· ∇v − λεn0

ϕεn0
v) dx.

Now, thanks to the boundedness with respect to ε of {λεn0
}, Cauchy-Schwartz inequality and by

virtue of estimates (6.14), (6.15), (7.3), (7.4) and Poincaré inequality, we have that

H−1(Ω)〈−∆ξn0,R,ε − λεn0
ξn0,R,ε, v〉H1

0 (Ω) = O
(
ε
N−2

2

√
H(ε)

)
‖v‖H1

0 (Ω) +O
(
ε
N
2

√
H(ε)

)
‖v‖L2(Ω)

= O
(
ε
N−2

2

√
H(ε)

)
‖v‖H1

0 (Ω) ,

as ε→ 0 and this readily implies that∥∥−∆ξn0,R,ε − λεn0
ξn0,R,ε

∥∥
H−1(Ω)

= O
(
ε
N−2

2

√
H(ε)

)
, as ε→ 0.
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Statement (9.3) follows by plugging the previous estimate and (9.7) into (9.6).
Since by (7.9) we have that∫

Ω

|∇(ξn0,R,ε − ϕn0
)|2 dx ≥

∫
Ω\ΘRε

∣∣∇(ϕεn0
− ϕn0

)
∣∣2 dx,

estimate (9.4) directly follows from (9.3). �

We are now ready to perform a blow-up analysis for scaled eigenfunctions.

Theorem 9.4 (Blow-up). Let U be as in (3.6) and Υε be as in (7.10). Then, for all R ≥ Kτ ,

(9.8) Υε → 1√
Λτ

U in H1(B+
R) as ε→ 0

and

(9.9)
H(ε)

ε2γ
→ Λτ as ε→ 0,

where

(9.10) Λτ :=
1

KN−1
τ

∫
S+
Kτ

U2 dS > 0.

In particular, for all R ≥ Kτ , we have that

(9.11)
uεn0

(εx)

εγ
→ U(x) in H1(B+

R) as ε→ 0.

Proof. Let εn → 0 as n → ∞. Firstly, from (8.33) we deduce that there exists c ∈ R such that
c ≥ 0 and, up to a subsequence,

(9.12) q(εn) :=
εγn√
H(εn)

→ c as n→∞.

Secondly, thanks to Proposition 6.8, we have that, for any R ≥ Kτ ,∫
B+
R

A(εnx)∇Υεn(x) · ∇Υεn(x) dx = O(1) and

∫
B+
R

p(εnx) |Υεn |2 dx = O(1)

as n → ∞. Therefore, by a diagonal process there exists Ũ ∈ H1
loc(RN+ ) such that, up to a

subsequence,

(9.13) Υεn ⇀ Ũ weakly in H1(B+
R), Υεn → Ũ strongly in L2(B+

R),

and

(9.14) Υεn → Ũ strongly in L2(S+
R ),

as n→∞ and for all R ≥ Kτ . Since, by definition,∫
S+
Kτ

µ(εnx) |Υεn |2 dS = KN−1
τ ,

thanks to (5.3) and (9.14) we can pass to the limit and infer that

(9.15)

∫
S+
Kτ

Ũ2 dS = KN−1
τ ,

which implies that Ũ 6≡ 0 in RN+ . From the convergence, as ε → 0, in the sense of Mosco

of RN \
(
∂RN+ \

(
1
ε Σ̃ε

))
to the set RN \

(
∂RN+ \ Σ

)
, observed in Remark 4.1, we derive that

Ũ ∈ H1
0,B′R\Σ

(B+
R) for all R ≥ Kτ . In addition, Ũ weakly solves

(9.16)


−∆Ũ = 0, in RN+ ,

Ũ = 0, on ∂RN+ \ Σ,

∂νŨ = 0, on Σ.
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In particular

(9.17)

∫
B+
R

|∇Ũ |2 dx =

∫
S+
R

Ũ∂νŨ dS, for all R ≥ Kτ .

We now aim at proving that

(9.18) Υεn → Ũ strongly in H1(B+
R), as n→∞,

for all R ≥ Kτ . For every R ≥ Kτ , we have that, for n sufficiently large, Υεn weakly solves

− div(A(εnx)∇Υεn)(x) = ε2
nλ

εn
n0
p(εnx)Υεn(x), in B+

R ,

Υεn(x) = 0, on B′R \ 1
εn

Σ̃εn ,

A(εnx)∇Υεn(x) · ν(x) = 0, on 1
εn

Σ̃εn ,

Υεn(x) =
uεnn0

(εnx)√
H(εn)

, on S+
R .

For R ≥ Kτ , if we consider the restriction of Υεn to B+
R \B

+
R/2 and we oddly reflect it through the

hyperplane {xN = 0}, given the equation this function satisfies, from classical elliptic regularity
theory (see e.g. [18, Theorem 2.3.3.2]) we know that {Υεn}n is bounded in H2(BR \ BR/2).
Therefore, up to a subsequence (still denoted by εn), we have that

(9.19) ∂νΥεn → ∂νŨ in L2(S+
R ), as n→∞.

Furthermore, from the equation satisfied by Υεn , (5.1), (5.7), (9.14) and (9.19) we have, as n→∞,∫
B+
R

|∇Υεn |2 dx = (1 + o(1))

∫
B+
R

A(εnx)∇Υεn(x) · ∇Υεn(x) dx

= (1 + o(1))

(
O(1)ε2

nλ
εn
n0

∫
B+
R

|Υεn |2 dx+

∫
S+
R

Ũ∂νŨ dS + o(1)

)
.

Therefore, thanks to (9.13) and (9.17), we conclude that∫
B+
R

|∇Υεn |2 dx→
∫
B+
R

|∇Ũ |2 dx,

which, together with (9.13), proves (9.18).
Now let us fix R ≥ Kτ . From (9.4), we know that there exist CR > 0 and nR ∈ N such that∫

ΘR̃ε\ΘRε

∣∣∇(ϕεnn0
− ϕn0)

∣∣2 dx ≤ CRεN−2
n H(εn),

for all R̃ > R and n > nR. In fact, up to a change of variable, this is equivalent to∫
B+

R̃
\B+

R

A(εnx)∇ (Υεn − q(εn)Vεn) (x) · ∇ (Υεn − q(εn)Vεn) (x) dx ≤ CR

for all R̃ > R and n > nR, where q(εn) is defined in (9.12) and Vεn in (8.5). Passing to the limit
as n→∞ in the above estimate and taking into account (9.12), (9.18), (5.1) and (8.6), we obtain
that ∫

B+

R̃
\B+

R

|∇Ũ − c∇ψ|2 dx ≤ CR

for all R̃ > R and this readily implies that

(9.20)

∫
RN+
|∇Ũ − c∇ψ|2 dx <∞.

We now claim that c > 0. Indeed, if this were not the case, then
∫
RN+
|∇Ũ |2 dx <∞. Then, since

U = 0 on ∂RN+ \ Σ, in view of [15, Lemma 2.3] we would have Ũ ∈ D1,2(RN+ ∪ Σ); since Ũ weakly

solves (9.16), this would imply that Ũ ≡ 0, thus raising a contradiction.
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From (9.20) and [15, Lemma 2.3] it follows that c−1Ũ−ψ ∈ D1,2(RN+ ∪Σ); hence, by uniqueness

of the limit profile constructed in Lemma 3.1, we conclude that c−1Ũ − ψ = w0. Hence, by the
definition of U in (3.6), we have that

Ũ = cU.

Moreover, in view of (9.15), we conclude that

c =
1√
Λτ

,

with Λτ as in (9.10). Since the limit of Υεn is independent of the choice of the sequence {εn}n
and of the extracted subsequence, by Uryshon Subsequence Principle we may conclude that the
convergence holds as ε→ 0. Finally, (9.11) is a direct consequence of (9.8) and (9.9). �

As a consequence of the Blow-up Theorem 9.4, we are able to prove the strong convergence as
ε→ 0 of the family {ZεR}ε defined in (7.10).

Corollary 9.5. For any R > Kτ , there holds

ZεR →
1√
Λτ

ZR in H1(B+
R) as ε→ 0,

where ZR is defined in Lemma 3.4.

Proof. Let us fix R > Kτ . We observe that ZεR weakly solves
− div(A(εx)∇ZεR) = 0, in B+

R ,

ZεR = Υε, on S+
R ,

ZεR = 0, on B′R,

hence the function

W ε
R := ZεR − Λ−1/2

τ ZR − ηR(Υε − Λ−1/2
τ U),

with ηR being as in (3.1), weakly solves− div(A(εx)∇W ε
R) = div

(
A(εx)− IN√

Λτ
∇ZR +A(εx)∇

(
ηR

(
Υε − U√

Λτ

)))
, in B+

R ,

W ε
R = 0, on ∂B+

R ,

i.e.∫
B+
R

A(εx)∇W ε
R · ∇φ dx = − 1√

Λτ

∫
B+
R

(A(εx)− IN )∇ZR · ∇φ dx

−
∫
B+
R

A(εx)∇
(
ηR

(
Υε − U√

Λτ

))
· ∇φ dx for every φ ∈ H1

0 (B+
R).

Testing the above equation with φ = W ε
R and using (5.1), we then obtain that∫

B+
R

A(εx)∇W ε
R · ∇W ε

R dx ≤ const ‖∇W ε
R‖L2(B+

R)

(
ε+

∥∥∥∥ηR(Υε − U√
Λτ

)∥∥∥∥
H1(B+

R)

)
,

which implies that

(9.21) W ε
R → 0 in H1

0 (B+
R) as ε→ 0,

thanks to (5.1) and Theorem 9.4. Since ZεR − Λ
−1/2
τ ZR = W ε

R + ηR(Υε − Λ
−1/2
τ U), from (9.21)

and Theorem 9.4 we deduce that ZεR − Λ
−1/2
τ ZR → 0 in H1(B+

R). �

We conclude this section with the proof of Theorem 1.4.

Proof of Theorem 1.4. It can be easily derived from the change of variable x = Φ(y), (9.11) and
Dominated Convergence Theorem. �
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10. Proof of Theorem 1.2

From Theorem 9.4 and Corollary 9.5 it follows that, letting fR(ε) be as in (7.28),

(10.1) lim
ε→0

fR(ε) =
1

Λτ

(∫
B+
R

|∇ZR|2 dx−
∫
B+
R

|∇U |2 dx

)
for all R > Kτ , in view also of (5.1).

Combining (10.1) with (9.9) and Corollary 8.9, at this point we know that

−2mn0
(Σ) ≤ lim inf

ε→0

λn0
− λεn0

εN+2γ−2
≤ lim sup

ε→0

λn0 − λεn0

εN+2γ−2
≤
∫
B+
R

|∇ZR|2 dx−
∫
B+
R

|∇U |2 dx,

or all R > Kτ . Therefore the proof of Theorem 1.2 amounts to the proof of the following Lemma,
which the rest of the Section is devoted to.

Lemma 10.1. There holds

(10.2) lim
R→+∞

(∫
B+
R

|∇ZR|2 dx−
∫
B+
R

|∇U |2 dx

)
= −2mn0

(Σ).

A first step in this direction is given by the following lemma.

Lemma 10.2. There holds

lim
R→+∞

(∫
B+
R

|∇ZR|2 dx−
∫
B+
R

|∇U |2 dx−
∫
S+
R

ψ∂ν(ZR − U) dS

)
= 0.

Proof. Integration by parts and equations (3.7) and (3.11) imply that∫
B+
R

|∇ZR|2 dx−
∫
B+
R

|∇U |2 dx−
∫
S+
R

ψ∂ν(ZR − U) dS

=

∫
S+
R

(U − ψ)∂ν(ψ − U) dS +

∫
S+
R

(U − ψ)∂ν(ZR − ψ) dS.

Therefore the conclusion follows if we prove that

lim
R→+∞

∫
S+
R

(U − ψ)∂ν(U − ψ) dS = 0,(10.3)

lim
R→+∞

∫
S+
R

(U − ψ)∂ν(ZR − ψ) dS = 0.(10.4)

First, we observe that integration by parts and the fact that U − ψ ∈ D1,2(RN+ ∪ Σ) is harmonic

in RN+ imply that ∫
S+
R

(U − ψ)∂ν(U − ψ) dS =

∫
RN+ \B

+
R

|∇(U − ψ)|2 dx.

Since U − ψ ∈ D1,2(RN+ ∪ Σ), the right hand side vanishes as R→ +∞, thus implying (10.3).

In order to prove (10.4), we let R > 2 and consider the equation satisfied by ZR−ψ ∈ H1(B+
R)

in B+
R , i.e. 

−∆(ZR − ψ) = 0, in B+
R ,

ZR − ψ = 0, on B′R,

ZR − ψ = U − ψ, on S+
R .

If we multiply both sides of the above equation by ηR(U−ψ), where ηR is as in (3.1), and integrate
by parts, we obtain that∫

S+
R

(U − ψ)∂ν(ZR − ψ) dS =

∫
B+
R

∇(ZR − ψ) · ∇(ηR(U − ψ)) dx.
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Therefore, from the Cauchy-Schwartz inequality and the Dirichlet principle it follows that

(10.5)

∣∣∣∣∣
∫
S+
R

(U − ψ)∂ν(ZR − ψ) dS

∣∣∣∣∣ ≤
∫
B+
R

|∇(ηR(U − ψ))|2 dx.

Thanks to (3.1), we have that

(10.6)

∫
B+
R

|∇(ηR(U − ψ))|2 dx ≤ 32

(∫
B+
R\B

+
R/2

|U − ψ|2

|x|2
dx+

∫
B+
R\B

+
R/2

|∇(U − ψ)|2 dx

)
.

Now, since U −ψ ∈ D1,2(RN+ ∪Σ) and since the Hardy inequality holds in this space, we have that∫
B+
R\B

+
R/2

|U − ψ|2

|x|2
dx+

∫
B+
R\B

+
R/2

|∇(U − ψ)|2 dx→ 0 as R→ +∞.

Combining this fact with (10.6) and (10.5) we obtain (10.4), thus concluding the proof. �

We are now ready to prove Lemma 10.1.

Proof of Lemma 10.1. By virtue of Lemma 10.2, to prove (10.2) it is enough to show that

(10.7) lim
R→+∞

∫
S+
R

ψ∂ν(ZR − U) dS = −2mn0
(Σ).

For R > 2 we let

ΓR(r) :=

∫
S+

1

ZR(rθ)Ψ(θ) dS for any 0 < r ≤ R.

From (3.11) and the fact that Ψ is a spherical harmonic of degree γ it easily follows that

(rN+2γ−1(r−γΓR(r))′)′ = 0 in (0, R).

Integrating this ODE in (r,R) we obtain that

r−γΓR(r) = R−γΓR(R) +
C

N + 2γ − 2

[
R−N−2γ+2 − r−N−2γ+2

]
for some constant C ∈ R and for all r ∈ (0, R). Multiplying both sides by rN+2γ−2 leads to

rN+γ−2ΓR(r) = R−γrN+2γ−2ΓR(R) +
C

N + 2γ − 2

[
R−N−2γ+2rN+2γ−2 − 1

]
.

Tanking into account that, by regularity of ZR, limr→0 ΓR(r) is finite, thanks to the previous
identity, we may conclude that C = 0, thus implying that

ΓR(r) =
( r
R

)γ
ΓR(R).

Moreover, since ZR = U on S+
R , we have that ΓR(R) = χ(R) and then

(10.8) ΓR(r) =
( r
R

)γ
χ(R).

By definition of ΓR, we know that∫
S+
R

ψ∂νZR dS = RN+γ−1Γ′R(R)

which, in view of (10.8), becomes∫
S+
R

ψ∂νZR dS = γRN+γ−2χ(R).

Then, taking into account (8.29), we have that∫
S+
R

ψ∂νZR dS = π0γR
N+2γ−2 − 2γmn0

(Σ)

N + 2γ − 2
.
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Combining this identity with (8.28) yields∫
S+
R

ψ∂ν(ZR − U) dS = − 2γmn0(Σ)

N + 2γ − 2
− 2(N + γ − 2)

N + 2γ − 2
mn0(Σ) = −2mn0(Σ),

which implies (10.7). The proof is thereby complete. �

11. Proof of Theorem 1.1

In this section, we drop assumptions (1.22)–(1.23) on the set V and prove Theorem 1.1 under
the sole assumption (1.3) on V. Let 0 < rV < RV < r0 be such that BrV ⊂ V ⊂ BRV (such rV , RV
exist because V is an open bounded set containing 0). For every ω ⊂ RN bounded open set, we
denote as λεn0

(ω) the n0-th eigenvalue of problem (1.9) with Σε given by (εω) ∩ ∂Ω (i.e. with V
replaced by ω). Then, from (2.1) and the fact that εBrV ⊂ εV ⊂ εBRV it follows that

(11.1) λεn0
(BRV ) ≤ λεn0

(V) ≤ λεn0
(BrV ).

Since BrV and BRV satisfy assumptions (1.22) and (1.23), Theorem 1.2 and Lemma 3.2 yield the
following asymptotic expansions for λεn0

(BRV ), λεn0
(BrV ):

λεn0
(BRV ) = λn0 −R

N+2γ−2
V Cn0ε

N+2γ−2 + o(εN+2γ−2),

λεn0
(BrV ) = λn0 − r

N+2γ−2
V Cn0ε

N+2γ−2 + o(εN+2γ−2),

as ε→ 0, so that, in view of (11.1),

rN+2γ−2
V Cn0

+ o(1) =
λn0 − λεn0

(BrV )

εN+2γ−2
≤
λn0 − λεn0

(V)

εN+2γ−2

≤
λn0
− λεn0

(BRV )

εN+2γ−2
= RN+2γ−2

V Cn0 + o(1)

as ε→ 0. The above chain of inequalities directly proves Theorem 1.1.

Appendix A.

We recall from [14, Lemma 4.1] the following Poincaré-type inequality on balls and half-balls.

Lemma A.1. Let r > 0. Then

N − 1

r2

∫
B+
r

u2 dx ≤
∫
B+
r

|∇u|2 dx+
1

r

∫
S+
r

u2 dS for every u ∈ H1(B+
r ),

and
N − 1

r2

∫
Br

u2 dx ≤
∫
Br

|∇u|2 dx+
1

r

∫
∂Br

u2 dS for every u ∈ H1(Br).

From [1] we recall the following result, regarding the maximum of quadratic forms with coeffi-
cients depending on a parameter (see also [14]).

Lemma A.2. For every ε > 0 let us consider a quadratic form

Qε : Rn0 −→ R,

Qε(z1, . . . , zn0
) =

n0∑
i,j=1

Mi,j(ε)zizj ,

with real coefficients Mi,j(ε) such that Mi,j(ε) = Mj,i(ε). Let us assume that there exist a > 0,
ε 7→ σ(ε) ∈ R with σ(ε) ≥ 0 and σ(ε) = O(ε2a) as ε→ 0, and ε 7→ µ(ε) ∈ R with µ(ε) = O(1) as
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ε→ 0, such that the coefficients Mi,j(ε) satisfy the following conditions:

Mn0,n0(ε) = σ(ε)µ(ε),

for all i < n0 Mi,i(ε)→Mi < 0, as ε→ 0,

for all i < n0 Mi,n0(ε) = O(εa
√
σ(ε)) as ε→ 0,

for all i, j < n0 with i 6= j Mi,j = O(ε2a) as ε→ 0,

there exists M ∈ N such that ε(2+M)a = o(σ(ε)) as ε→ 0.

Then
max
z∈Rn0
‖z‖=1

Qε(z) = σ(ε)(µ(ε) + o(1)) as ε→ 0,

where ‖z‖ = ‖(z1, . . . , zn0)‖ =
(∑n0

i=1 z
2
i

)1/2
.
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