Polymer electrolytes (PEs) have attracted tremendous research interest for their potential to offer improved safety and energy capacity in next-generation battery technologies. Among the different classes of PEs, single-ion conductors (SICs) are particularly interesting due to their high transference numbers. Nevertheless, a detailed understanding of how molecular structure impacts the properties of SIC-PEs is absent, limiting the ability to design improved materials. Here, we present the synthesis and characterization of a new class (seven examples provided) of polyanions featuring fluorinated aryl sulfonimide tagged (FAST) anions as side chains. These "polyFAST"salts are shown to outperform the widely used poly[(4-styrenesulfonyl) (trifluoromethanesulfonyl)imide] due to their strongly electron-withdrawing side chains and enhanced distance between anionic sites, providing higher electronic conductivities at all salt concentrations and in some cases superior electrochemical oxidative stability. Moreover, they provide a platform for discovery of fundamental relationships between macromolecular composition, as programmed through monomer structure, and SIC-PE bulk properties. Finally, we leverage the electron-deficient nature of polyFAST salts to demonstrate a new poly(solvate ionic liquid) (polySIL) concept that offers a promising pathway toward high-performance PEO-free SIC-PEs.

Zhang, W., Feng, S., Huang, M., Qiao, B., Shigenobu, K., Giordano, L., et al. (2021). Molecularly Tunable Polyanions for Single-Ion Conductors and Poly(solvate ionic liquids). CHEMISTRY OF MATERIALS, 33(2), 524-534 [10.1021/acs.chemmater.0c03258].

Molecularly Tunable Polyanions for Single-Ion Conductors and Poly(solvate ionic liquids)

Giordano L.;
2021

Abstract

Polymer electrolytes (PEs) have attracted tremendous research interest for their potential to offer improved safety and energy capacity in next-generation battery technologies. Among the different classes of PEs, single-ion conductors (SICs) are particularly interesting due to their high transference numbers. Nevertheless, a detailed understanding of how molecular structure impacts the properties of SIC-PEs is absent, limiting the ability to design improved materials. Here, we present the synthesis and characterization of a new class (seven examples provided) of polyanions featuring fluorinated aryl sulfonimide tagged (FAST) anions as side chains. These "polyFAST"salts are shown to outperform the widely used poly[(4-styrenesulfonyl) (trifluoromethanesulfonyl)imide] due to their strongly electron-withdrawing side chains and enhanced distance between anionic sites, providing higher electronic conductivities at all salt concentrations and in some cases superior electrochemical oxidative stability. Moreover, they provide a platform for discovery of fundamental relationships between macromolecular composition, as programmed through monomer structure, and SIC-PE bulk properties. Finally, we leverage the electron-deficient nature of polyFAST salts to demonstrate a new poly(solvate ionic liquid) (polySIL) concept that offers a promising pathway toward high-performance PEO-free SIC-PEs.
Articolo in rivista - Articolo scientifico
Polymer electrolytes, ion conductors;
English
2021
33
2
524
534
none
Zhang, W., Feng, S., Huang, M., Qiao, B., Shigenobu, K., Giordano, L., et al. (2021). Molecularly Tunable Polyanions for Single-Ion Conductors and Poly(solvate ionic liquids). CHEMISTRY OF MATERIALS, 33(2), 524-534 [10.1021/acs.chemmater.0c03258].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/348381
Citazioni
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 32
Social impact