We study a perturbed Schrödinger equation in the plane arising from the coupling of quantum physics with Newtonian gravitation. We obtain some existence results by means of a perturbation technique in Critical Point Theory.

Bernini, F., Secchi, S. (2020). Existence of solutions for a perturbed problem with logarithmic potential in $mathbb{R}^2$. MATHEMATICS IN ENGINEERING, 2(3), 438-458 [10.3934/mine.2020020].

Existence of solutions for a perturbed problem with logarithmic potential in $mathbb{R}^2$

Bernini, Federico;Secchi, Simone
2020

Abstract

We study a perturbed Schrödinger equation in the plane arising from the coupling of quantum physics with Newtonian gravitation. We obtain some existence results by means of a perturbation technique in Critical Point Theory.
Articolo in rivista - Articolo scientifico
Finite-dimensional reduction; Perturbation methods; Variational methods;
English
2020
2
3
438
458
open
Bernini, F., Secchi, S. (2020). Existence of solutions for a perturbed problem with logarithmic potential in $mathbb{R}^2$. MATHEMATICS IN ENGINEERING, 2(3), 438-458 [10.3934/mine.2020020].
File in questo prodotto:
File Dimensione Formato  
Bernini F., Secchi S. - Existence of solutions for a perturbed problem with logarithmic potential in R2.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 359.65 kB
Formato Adobe PDF
359.65 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/346844
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact