We prove a radial maximal function characterisation of the local atomic Hardy space h1(M) on a Riemannian manifold M with positive injectivity radius and Ricci curvature bounded from below. As a consequence, we show that an integrable function belongs to h1(M) if and only if either its local heat maximal function or its local Poisson maximal function is integrable. A key ingredient is a decomposition of Hölder cut-offs in terms of an appropriate class of approximations of the identity, which we obtain on arbitrary Ahlfors-regular metric measure spaces and generalises a previous result of A. Uchiyama.
Martini, A., Meda, S., Vallarino, M. (2022). Maximal characterisation of local Hardy spaces on locally doubling manifolds. MATHEMATISCHE ZEITSCHRIFT, 300(2), 1705-1739 [10.1007/s00209-021-02856-x].
Maximal characterisation of local Hardy spaces on locally doubling manifolds
Meda S.;
2022
Abstract
We prove a radial maximal function characterisation of the local atomic Hardy space h1(M) on a Riemannian manifold M with positive injectivity radius and Ricci curvature bounded from below. As a consequence, we show that an integrable function belongs to h1(M) if and only if either its local heat maximal function or its local Poisson maximal function is integrable. A key ingredient is a decomposition of Hölder cut-offs in terms of an appropriate class of approximations of the identity, which we obtain on arbitrary Ahlfors-regular metric measure spaces and generalises a previous result of A. Uchiyama.File | Dimensione | Formato | |
---|---|---|---|
Martini-2023-Math Z_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
552.68 kB
Formato
Adobe PDF
|
552.68 kB | Adobe PDF | Visualizza/Apri |
Martini-2022-Math Z-AAM.pdf
accesso aperto
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Licenza open access specifica dell’editore
Dimensione
564.9 kB
Formato
Adobe PDF
|
564.9 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.