Recognizing human activities and monitoring population behavior are fun- damental needs of our society. Population security, crowd surveillance, healthcare support and living assistance, lifestyle and behavior tracking are some of the main applications which require the recognition of activities. Activity recognition involves many phases, i.e. the collection, the elaboration and the analysis of information about human activities and behavior. These tasks can be fulfilled manually or automatically, even though a human-based recognition system is not long-term sustainable and scalable. Nevertheless, transforming a human-based recognition system to computer- based automatic system is not a simple task because it requires dedicated hardware and a sophisticated engineering computational and statistical techniques for data preprocessing and analysis. Recently, considerable changes in tech- nologies are largely facilitating this transformation. Indeed, new hardwares and softwares have drastically modified the activity recognition systems. For example, Micro-Electro-Mechanical Systems (MEMS) progress has enabled a reduction in the size of the hardware. Consequently, costs have decreased. Size and cost reduction allows to embed sophisticated sensors into simple devices, such as phones, watches, and even into shoes and clothes, also called wearable devices. Furthermore, low costs, lightness, and small size have made wearable devices’ highly pervasive and accelerated their spread among the population. Today, a very small part of the world population doesn’t own a smartphone. According to Digital 2020: Global Digital Overview, more than 5.19 billion people now use mobile phones. Among the western countries, smartphones and smartwatches are gadgets of people everyday life. The pervasiveness is an undoubted advantage in terms of data generation. Huge amount of data, that is big data, are produced every day. Furthermore, wearable devices together with new advanced software technologies enable data to be sent to servers and instantly analyzed by high performing computers. The availability of big data and new technology improvements, permitted Artificial Intelligence models to rise. In particular, machine learning and deep learning algorithms are predominant in activity recognition. Together with technological and algorithm innovations, the Human Ac- tivity recognition (HAR) research field has born. HAR is a field of research which aims at automatically recognizing people’s physical activities. HAR investigates on the selection of the best hardware, e. g. the best devices to be used for a given application, on the choice of the software to be dedicated to a specific task, and on the increasing of the algorithm performances. HAR has been a very active field of research for years and it is still considered one of the most promising research topic for a large spectrum of ap- plications. In particular, it remains a very challenging research field for many reasons. The selection of devices and sensors, the algorithm’s performances, the collection and the preprocessing of the data, all are requiring further investigation to improve the overall activity recognition system performances. In this work, two main aspects have been investigated: • the benefits of personalization on the algorithm performances, when trained on small size datasets: one of the main issue concerning HAR research community is the lack of the availability of public dataset and labelled data. [...] • a comparison of the performances in HAR obtained both from tradi- tional and personalized machine learning and deep learning techniques.[...]

Recognizing human activities and monitoring population behavior are fun- damental needs of our society. Population security, crowd surveillance, healthcare support and living assistance, lifestyle and behavior tracking are some of the main applications which require the recognition of activities. Activity recognition involves many phases, i.e. the collection, the elaboration and the analysis of information about human activities and behavior. These tasks can be fulfilled manually or automatically, even though a human-based recognition system is not long-term sustainable and scalable. Nevertheless, transforming a human-based recognition system to computer- based automatic system is not a simple task because it requires dedicated hardware and a sophisticated engineering computational and statistical techniques for data preprocessing and analysis. Recently, considerable changes in tech- nologies are largely facilitating this transformation. Indeed, new hardwares and softwares have drastically modified the activity recognition systems. For example, Micro-Electro-Mechanical Systems (MEMS) progress has enabled a reduction in the size of the hardware. Consequently, costs have decreased. Size and cost reduction allows to embed sophisticated sensors into simple devices, such as phones, watches, and even into shoes and clothes, also called wearable devices. Furthermore, low costs, lightness, and small size have made wearable devices’ highly pervasive and accelerated their spread among the population. Today, a very small part of the world population doesn’t own a smartphone. According to Digital 2020: Global Digital Overview, more than 5.19 billion people now use mobile phones. Among the western countries, smartphones and smartwatches are gadgets of people everyday life. The pervasiveness is an undoubted advantage in terms of data generation. Huge amount of data, that is big data, are produced every day. Furthermore, wearable devices together with new advanced software technologies enable data to be sent to servers and instantly analyzed by high performing computers. The availability of big data and new technology improvements, permitted Artificial Intelligence models to rise. In particular, machine learning and deep learning algorithms are predominant in activity recognition. Together with technological and algorithm innovations, the Human Ac- tivity recognition (HAR) research field has born. HAR is a field of research which aims at automatically recognizing people’s physical activities. HAR investigates on the selection of the best hardware, e. g. the best devices to be used for a given application, on the choice of the software to be dedicated to a specific task, and on the increasing of the algorithm performances. HAR has been a very active field of research for years and it is still considered one of the most promising research topic for a large spectrum of ap- plications. In particular, it remains a very challenging research field for many reasons. The selection of devices and sensors, the algorithm’s performances, the collection and the preprocessing of the data, all are requiring further investigation to improve the overall activity recognition system performances. In this work, two main aspects have been investigated: • the benefits of personalization on the algorithm performances, when trained on small size datasets: one of the main issue concerning HAR research community is the lack of the availability of public dataset and labelled data. [...] • a comparison of the performances in HAR obtained both from tradi- tional and personalized machine learning and deep learning techniques.[...]

(2021). Personalization of Human Activity Recognition Methods using Inertial Data. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).

Personalization of Human Activity Recognition Methods using Inertial Data

FERRARI, ANNA
2021

Abstract

Recognizing human activities and monitoring population behavior are fun- damental needs of our society. Population security, crowd surveillance, healthcare support and living assistance, lifestyle and behavior tracking are some of the main applications which require the recognition of activities. Activity recognition involves many phases, i.e. the collection, the elaboration and the analysis of information about human activities and behavior. These tasks can be fulfilled manually or automatically, even though a human-based recognition system is not long-term sustainable and scalable. Nevertheless, transforming a human-based recognition system to computer- based automatic system is not a simple task because it requires dedicated hardware and a sophisticated engineering computational and statistical techniques for data preprocessing and analysis. Recently, considerable changes in tech- nologies are largely facilitating this transformation. Indeed, new hardwares and softwares have drastically modified the activity recognition systems. For example, Micro-Electro-Mechanical Systems (MEMS) progress has enabled a reduction in the size of the hardware. Consequently, costs have decreased. Size and cost reduction allows to embed sophisticated sensors into simple devices, such as phones, watches, and even into shoes and clothes, also called wearable devices. Furthermore, low costs, lightness, and small size have made wearable devices’ highly pervasive and accelerated their spread among the population. Today, a very small part of the world population doesn’t own a smartphone. According to Digital 2020: Global Digital Overview, more than 5.19 billion people now use mobile phones. Among the western countries, smartphones and smartwatches are gadgets of people everyday life. The pervasiveness is an undoubted advantage in terms of data generation. Huge amount of data, that is big data, are produced every day. Furthermore, wearable devices together with new advanced software technologies enable data to be sent to servers and instantly analyzed by high performing computers. The availability of big data and new technology improvements, permitted Artificial Intelligence models to rise. In particular, machine learning and deep learning algorithms are predominant in activity recognition. Together with technological and algorithm innovations, the Human Ac- tivity recognition (HAR) research field has born. HAR is a field of research which aims at automatically recognizing people’s physical activities. HAR investigates on the selection of the best hardware, e. g. the best devices to be used for a given application, on the choice of the software to be dedicated to a specific task, and on the increasing of the algorithm performances. HAR has been a very active field of research for years and it is still considered one of the most promising research topic for a large spectrum of ap- plications. In particular, it remains a very challenging research field for many reasons. The selection of devices and sensors, the algorithm’s performances, the collection and the preprocessing of the data, all are requiring further investigation to improve the overall activity recognition system performances. In this work, two main aspects have been investigated: • the benefits of personalization on the algorithm performances, when trained on small size datasets: one of the main issue concerning HAR research community is the lack of the availability of public dataset and labelled data. [...] • a comparison of the performances in HAR obtained both from tradi- tional and personalized machine learning and deep learning techniques.[...]
MESSINA, VINCENZINA
MICUCCI, DANIELA
NAPOLETANO, PAOLO
human activity; personalization; inertial data; smartphone; machine learning
human activity; personalization; inertial data; smartphone; machine learning
INF/01 - INFORMATICA
English
24-feb-2021
INFORMATICA
33
2019/2020
open
(2021). Personalization of Human Activity Recognition Methods using Inertial Data. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_700978.pdf

accesso aperto

Descrizione: Personalization of Human Activity Recognition Methods using Inertial Data
Tipologia di allegato: Doctoral thesis
Dimensione 3.31 MB
Formato Adobe PDF
3.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/305222
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact