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Abstract
Recognizing human activities and monitoring population behavior are fun-

damental needs of our society. Population security, crowd surveillance, health-
care support and living assistance, lifestyle and behavior tracking are some of
the main applications which require the recognition of activities. Activity
recognition involves many phases, i.e. the collection, the elaboration and the
analysis of information about human activities and behavior. These tasks can
be fulfilled manually or automatically, even though a human-based recognition
system is not long-term sustainable and scalable.

Nevertheless, transforming a human-based recognition system to computer-
based automatic system is not a simple task because it requires dedicated hard-
ware and a sophisticated engineering computational and statistical techniques
for data preprocessing and analysis. Recently, considerable changes in tech-
nologies are largely facilitating this transformation. Indeed, new hardwares
and softwares have drastically modified the activity recognition systems. For
example, Micro-Electro-Mechanical Systems (MEMS) progress has enabled a
reduction in the size of the hardware. Consequently, costs have decreased. Size
and cost reduction allows to embed sophisticated sensors into simple devices,
such as phones, watches, and even into shoes and clothes, also called wearable
devices. Furthermore, low costs, lightness, and small size have made wearable
devices’ highly pervasive and accelerated their spread among the population.
Today, a very small part of the world population doesn’t own a smartphone.
According to Digital 2020: Global Digital Overview1, more than 5.19 billion
people now use mobile phones. Among the western countries, smartphones
and smartwatches are gadgets of people everyday life.

The pervasiveness is an undoubted advantage in terms of data generation.
Huge amount of data, that is big data, are produced every day. Furthermore,
wearable devices together with new advanced software technologies enable
data to be sent to servers and instantly analyzed by high performing comput-
ers.

1https://datareportal.com/reports/digital-2020-global-digital-overview



The availability of big data and new technology improvements, permitted
Artificial Intelligence models to rise. In particular, machine learning and deep
learning algorithms are predominant in activity recognition.

Together with technological and algorithm innovations, the Human Ac-
tivity recognition (HAR) research field has born. HAR is a field of research
which aims at automatically recognizing people’s physical activities. HAR in-
vestigates on the selection of the best hardware, e. g. the best devices to be
used for a given application, on the choice of the software to be dedicated to
a specific task, and on the increasing of the algorithm performances.

HAR has been a very active field of research for years and it is still con-
sidered one of the most promising research topic for a large spectrum of ap-
plications. In particular, it remains a very challenging research field for many
reasons. The selection of devices and sensors, the algorithm’s performances,
the collection and the preprocessing of the data, all are requiring further in-
vestigation to improve the overall activity recognition system performances.

In this work, two main aspects have been investigated:

• the benefits of personalization on the algorithm performances, when
trained on small size datasets: one of the main issue concerning HAR
research community is the lack of the availability of public dataset and
labelled data. That is, even though the technologies, such as smartphones
and wearable devices potentially facilitate the collection of data, the lack
of large labelled datasets still remains a predominant issue. Since the al-
gorithms performance hardly depends on the dataset size, many studies
have faced this issues by exploiting different personalization definitions.
In general, including subject’s metadata in the classification, such as age,
gender, weight, height, lifestyle, and physical abilities improves the al-
gorithm capability to classify a new instance, even when it is trained on
small datasets.

• a comparison of the performances in HAR obtained both from tradi-
tional and personalized machine learning and deep learning techniques.
In the recent years, machine learning and deep learning techniques have
spread in many different field, among them HAR, showing very promis-
ing results. We defined and evaluated two novel models: Personalized
Machine Learning (PML) and Personalized Deep Learning (PDL) mod-
els. We compared them to traditional Machine Learning (ML) and Deep
Learning (DL) models.
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Chapter 1

Introduction

1.1 Motivation

Recognizing human activities and monitoring population behavior are fundamental needs
of our society. It is astonishing how many sectors of our socio-economical system are
more and more investing in resources, employees, instruments, methods, and techniques,
for these purposes.

For instance, security and surveillance detect people’s behavior and anomalous activi-
ties as well as tracking suspects, victims and witnesses in police investigations. In contexts
such as supermarkets, museums, airports, or even cities it is essential to monitor human
and crowd behavior to assure high level of security, to prevent thefts and robberies, to
organize and manage queues, and to provided smart solutions to optimize journey time.
In tactical scenarios, precise information on the soldiers’ activities along with their loca-
tions and health conditions, is highly beneficial for their performance and safety. Such
an information is also helpful to support decision making in both combat and training
scenarios. In the hospital environment, invalid patients have to be daily assisted and
continuously monitored. In the home environment, activity monitoring helps to complete
some actions such as taking medicine, helps in assistance and rehabilitation, and permits
detection or even prevention of accidents. Activities monitoring regards also the popu-
lation lifestyle, human daily behavior, changes in behavior, which can be used for social
intervention as well as for commercial purposes. Last, but not least, monitoring people
becomes essential in a pandemic scenario, for example to manage with social distance,
to monitor and avoid assemblies, to support and stimulate people which may stop to do
physical activities during isolation.

Monitoring information about human activities and behavior can be manual or au-
tomatic. In general, employing a person to monitor other persons’ activity seems to be
one simple way, but constant monitoring is not realistic [55]. For instance, in huge and
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CHAPTER 1. INTRODUCTION

complex contexts, such as airports or supermarkets, or in intimate places, such as homes
and hospitals, automatic monitoring becomes essential, or even the only possible solution.
These scenarios require huge costs for manual monitoring which are drastically decreased
by using automatic engines. A particular example is related to the healthcare systems.
The World Health Organization reports that expectancy of life is dramatically increased
in the last decades: "a child born in Brazil or Myanmar in 2015 can expect to live 20
years longer than one born in those countries just 50 years ago". Figure 1.1 shows the
population growth over the future years.

Figure 1.1: Youngh children and older people as a percentage of the global population:
1950 - 2050. Source: World Population Prospects: the 2010 Revision, UN.

Aged population in high income countries presents high rate of neurodegenerative
and non-communicable diseases which typically need to be constantly monitored. As a
consequence, an aging population increases the number of hospitals’ access, resources for
assistance and the need of investments for rehabilitation. In this context, a manual recog-
nition system becomes unsustainable since the rate between elderly and worker population
is drastically decreasing. The possibility to rely on an automatic and remote monitoring
presents twofold benefits; on one hand it substantially reduces the healthcare costs. On
the other hand, it improves the patients’ life quality and their independence.

Transforming a human-based recognition system to computer-based automatic recog-
nition system is not a simple task. Recognizing an activity or understanding a situation are
relative easy for humans but become extremely complex for computers. Indeed, automatic
recognition systems require both a dedicated hardware and a sophisticated engineering
computational and statistical techniques for data preprocessing and analysis.

2



1.1. MOTIVATION

Human Activity Recognition (HAR) is the field of research which focuses on all these
tasks. HAR automatically recognizes human activity by analyzing signals acquired by
sensors. Signals are usually acquired through two main typologies of devices: environ-
mental and wearable. Among the environmental devices, cameras are the most used, while
wearable devices encompass all on body worn sensors, such as smart-shirt, smart-shoes,
ad-hoc Inertial Measurement Unit (IMU), smartphones and smartwatches.

It is not possible to define a preference between using environmental or wearable
devices. The choice depends on the specific application domain. For instance, cameras are
preferable in security, surveillance and assistance living scenarios where the monitoring is
based on indoor scenarios and on the interactions between users, environment and objects
together. However, environmental devices are not spread among the population because
they need to be installed and maintained, which often results in high costs. They are also
often perceived intrusive in terms of privacy [131]. In contrast, wearables are preferable
for outdoor applications, even though they present several limitations in terms of energy
consumption, computation capability, among others.

Nevertheless, wearable devices have gained more and more attention from the HAR
research community for many reasons. First, they show more flexibility in terms of porta-
bility. Indeed, they can be carried outdoor, they do not have to be installed and most
of them are part of user’s daily life. Wearable enables to receive information about user
context, and are normally perceived less intrusive in terms of privacy. Second, the micro-
electro-mechanical systems (MEMS) technology evolution has reduced sensor size, cost,
and power needs, while sensor’s capacity, precision and accuracy have increased. Wearable
devices are usually equipped with many micro-sensors, such as accelerometer, gyroscope,
GPS, and can be easily integrated with external sensors. Thanks to these sensors, they
are able to record many information about user’s daily life without being invasive.

Recent hardware and software technologies allow modern wearable devices to perform
multitasks activities. Nowadays, a smartphone is able to capture motion, location, and
estimate user’s activities, while he\she is reading an email. Low cost, high performing
technology, and portability lead wearables to drastically spread among the population.
Among wearables, smartphones became the most used devices in human’s daily life [38].

According to Digital 2020: Global Digital Overview1, more than 5.19 billion people
now use mobile phones. Figure 1.2 show the distribution in how we use the smartphone
applications. People use apps in almost every aspect of their lives, whether it’s staying in

1https://datareportal.com/reports/digital-2020-global-digital-overview
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touch with friends and family, relaxing on the couch, managing their finances, getting fit,
or even finding love. To be pointed out is that the population uses application for maps
65%, games 47%, and health and fitness 26% which mostly base on HAR technologies
1.2.

Figure 1.2: Use of Mobile Apps by Category January 2020. Source: DataReportal.

The growing pervasiveness results in the possibility to generate high amount of data, of-
ten characterized as big data. Availability of big data and technology’s improvements,
permitted Artificial Intelligence models to rise.

In terms of algorithms, supervised machine learning and deep learning methods are
predominant in HAR [55].

Both techniques are valid and powerful and have been largely investigated in the litera-
ture. Nevertheless, the application of these techniques remains challenging. In particular,
traditional machine learning and deep learning techniques are limited in their ability to
generalize to new users and/or new environments, and require considerable effort and
customization to achieve good performance in a real-context. One of the most relevant
difficulties to face with new situations is due to the population diversity problem, that
is, the natural differences between users’ activity patterns, which implies that different
executions of the same activity are different. In particular two factors influence why the
same activity is carried out in a different way [151]:

• Inter-subject variability, which refers to anthropometric differences of body parts
or to incongruous personal styles in accomplishing the scheduled action. In other
words, it refers to the intrinsic differences between subjects in performing the same

4
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activity. For instance, acceleration signal of a young woman’s walk is different from
old man one.

• Intra-subject variability, which represents the random nature of a single action class
and reflects the fact that the same subject never performs an action in the same way.

Ideally, algorithms should be trained on a representative number of subjects and on as
many cases as possible. The number of subjects present in the data set does not just
impact the quality and robustness of the induced model, but also the ability to evaluate
the consistency of results across subjects [83]. When the availability of the data is scarce
and limited the responsibility of generalization is left to the activity classification models
which should be able to adapt as much as possible with respect to the final user.

One solution is represented from the personalized models. Personalized models en-
compass all the techniques which extract additional information directly from the user’s
metadata or from context’s sources to complete and reinforce the algorithm’s training.
In the state-of-the-art different approaches using users-based information have have been
explored. These personalization approaches can be split into three groups: data-based,
classifier-based, and similarity-based personalization.

The data-based approach bases on different selections of training and test dataset
and encompasses: subject-independent, subject-dependent, and hybrid. The subject-
independent model does not use the end user data for the training of the activity recogni-
tion model. The subject-dependent model only uses the end user data for the development
of the activity recognition model. The hybrid model uses the end user data and the data
of the other users for the development of the activity recognition model. These three
splits, aim at capturing in different ways the influence of including or excluding the test
user in the training procedure of the classification.

Classifier-based approach obtains generalization from several and weighed combina-
tions of activity recognition models which permits to achieve better activity recognition
performance for the final user.

Similarity-based approach which consider the similarity between users as crucial factor
for obtaining a classification models able to adapt to new situations. In particular, studies
demonstrated that different physical characteristics are associated to different data pat-
terns, for the same activity. Consequently, further user’s information are able to better
address the classification decision.

Taking inspiration from the state-of-the art personalization approaches, we developed
novel personalized machine learning and personalized deep learning models to improve
traditional machine learning and deep learning techniques in terms of generalization ca-
pability. This work aims at showing how we implemented these models and at comparing
these model with benchmark results.
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All models have been trained and tested on public datasets to assure the reproducibil-
ity of the results.

1.2 Contributions

The main contributions of this work focus on the improvement of traditional machine
learning and deep learning techniques, based on the personalization approaches. In par-
ticular, the following points summarize the crucial investigation of the work:

• personalized machine learning models: novel classification models based on the
personalization of machine learning techniques have been proposed. In particular,
machine learning algorithms have been integrated with a weights matrix, called
similarity matrix, based on three main user’s characteristics: physical, signal, and a
combination of both. Each element sim(i , j) of the similarity matrix spans between
0 and 1 and represent the similarity between the subject i and j , reliant to the three
above mentioned characteristics. The most similar the subjects are, the closest to
1 is the value of the element sim(i , j), the most the subject i data counts for the
classification of the user i . Different machine learning classifier have been tested,
and between Support Vector Machine, k-NN and Adaboost, the latter have show
more flexibility and best results.

• comparison between machine learning and deep learning techniques: since large
scale inertial datasets are not available, it is therefore not obvious which method
between deep and traditional machine learning methods is the most appropriate.
We implement machine learning and deep learning models varying between different
input features. Support Vector Machine, k-NN and Residual Neural Network have
been compared. The experiments have been based on unimodal and multimodal
sensors data. Results demonstrate high robustness in terms of input data, and
overall better performance using deep learning techniques.

• comparison between personalized machine learning and deep learning techniques:
a comparison between deep learning and personalized machine learning methods
have been implemented with the aim at investigating the robustness of the deep
learning techniques in terms of intra and inter variability across subjects. Results
demonstrated that deep learning accuracy outperforms personalized machine learn-
ing accuracy in most of the cases.

• personalized deep learning techniques and comparison with personalized machine
learning : novel classification models based on the personalization of deep learning
techniques have been proposed. Along the line of the personalized machine learning
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models, the similarity matrix has been exploited to select the most similar subject’s
data, with respect to the test user, as training dataset for an end-to-end deep learn-
ing. The comparison with personalized machine learning models doesn’t show a
clear difference between personalization-based machine learning and deep learning
models.

All algorithms have been trained and tested on public dataset for guaranteeing the
reproducibility of the results.

1.3 Outline
The rest of the work is organized as follows:

• Chapter 2 gives an overview about the state-of-the-art in Human Activity Recog-
nition. Devices and sensors, methods and techniques, data elaboration and public
datasets are discussed in the context of HAR

• Chapter 3 discusses the importance to build personalized machine learning models,
and shows how personalized machine learning models have to be implemented and
the results in comparison with state-of-the-art approaches. An introductory data
preprocessing procedure is described

• Chapter 4 aims at comparing deep learning techniques against machine learning.
In particular, we compared deep learning with traditional machine learning and
with personalized machine learning. Furthermore, we propose a personalized deep
learning method and we compared its performances with machine learning methods.

• Chapter 5 presents a final discussion about the results of the study and sketches the
conclusions.
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Chapter 2

HAR State-of-the-art

The first work on human activity recognition date back to the late ’90s [47]. During the
last 30 years, the Human Activity Recognition research community has been very active
and has produced methods, techniques, results and datasets in abundance. Additionally,
last hardware and software technology improvement together with the continuously in-
creasing pervasiveness of low cost devices, rises the role of HAR in many research and
business contexts, such as surveillance, healthcare, delivering, among others.

In the context of HAR, a precise protocol called Activity Recognition Process (ARP)
is defined and illustrated in Figure 2.1. The ARP is composed of four phases, acquisition,
preproccessing, segmentation, and feature extraction.

In data acquisition phase, a receiver obtains data from sensors located in different part
of the body or embedded in a device. In smartphones, data from acceleration, angular
velocity, magnetic field are normally recorded and stored into files. Files are then transfert
to a computer to be elaborated. Data coming from sensors typically include artifacts
and noises due to many reasons, such as electronic fluctuation, sensors calibration and
malfunctions and have to be processed. The preprocessing phases is responsible for the
elimination of artifacts and noise. Generally, preprocessing is based on filtering techniques.

In HAR literature, Butterworth low-pass filter is widely used [7, 23, 125]. It is stated
that the cut-off frequency of 15Hz is enough to capture human body motion [9]. After
having been filtered, data pass to the data segmentation phase. Data segmentation is a
process responsable to split data into segments, also called windows. Windows can be
of different size, normally expressed in seconds. They may contain different number of
value, depending on the sample rate. Other typologies of data segmentation are used in
HAR, see 2.2.2.1 for further details.

Data segmentation is a common practice which facilitates feature extraction phase.The
features extraction phase aims at extracting the more important information from the
data to be given to the classification algorithm, while reducing data dimensionality. The
classification is the last phase of the process. It consists in training and testing the
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CHAPTER 2. HAR STATE-OF-THE-ART

algorithm. That is, the parameters of the classification model are estimated during the
training procedure. Thereinafter, the classification performances of the model are tested
in the testing procedure, see 2.3.2.3.

Figure 2.1: Activity Recognition Process: All phases, from data acquisition to classifica-
tion and evaluation.

In this work, we didn’t perform data acquisition and preprocessing phases because
usually data provided from public datasets have been already passed these phases.

This Chapter is a survey concerning the last state-of-the-art HAR community trends
about all the phases of the ARP. The analysis of the state-of-the-art encompasses scientific
articles and papers selected based on the following criteria and keywords:

• first 100 papers found in Google Scholar with key words: human activity recog-
nition smartphone,

• first 100 papers found in Google Scholar with key words: human activity recog-
nition smartphone starting from 2015,

• first 100 papers found in Google Scholar with key words: personalized human
activity recognition smartphone,

• first 100 papers found in Google Scholar with key words: personalized human
activity recognition smartphone staring from 2015

This Chapter is organized as follows. In Section 2.1 we describe devices and sensors
exploited in HAR for data acquisition with a particular focus on wearable devices and
embedded sensors. We explain why in this work we selected smartphone’s data for our
analysis, and consequently, why they are preferable among other devices. In Section 2.2,
we discuss about benchmark datasets and the data elaboration, i.e. the data segmentation
and the feature extraction. In Section 2.3, we describe the most recent classification
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2.1. DATA ACQUISITION: DEVICES AND SENSORS

methods, their strength and weakness. We explain the concept of personalization and why
the personalization of those techniques is necessary to improve the overall classification
performance.

2.1 Data Acquisition: Devices and Sensors

Over the past decade, a considerable progress in hardware and software technologies has
modified habits of the entire population and business. On one hand, the micro-electro-
mechanical systems (MEMS) have reduced sensors size, costs, and power needs of sensors,
while capacity, precision and accuracy have increased. On the other hand, the spread of
the Internet of Things (IoT) has enabled the spread of easy and fast connections between
devices, objects and environments.

The pervasiveness and the reliability of these new technologies enable, nowadays, the
acquisition and the storage of a large amount of multimodal data [100]. Most recent
devices are extremely interconnected, accessible to people and handsome in terms of
capability to collect and share large amount of data very quickly. Smartphones, smart-
watches, home assistants, drones are daily used and represent essential instruments for
many economy business, such as remote healthcare, merchandise delivering, agricoltore,
and others. New technologies together with large availability of data gained the attention
from research community, including human activity recognition.

The goal of this Section is to present the most used devices for data acquisition in
HAR. According to [73], two main categories of devices are generally used in this context:
environmental and wearable devices, see following lines for further details.

2.1.1 Environmental Devices and Sensors

Environmental devices are fixed in predetermined points of interest, so the inference of
activities entirely depends either on their location, for instance in case of cameras, or on
the voluntary interaction of the users with the sensors, for instance in case of sensors
placed on objects.

Environmental devices and sensors are historically related to the definition of envi-
ronmental monitoring. According to [94, 37], the environmental monitoring was used
to measure physical environmental parameters, such as temperature, humidity, pressure.
Progressively with the technology development, the monitoring of other environmental
parameters became more accessible and easier to acquire, i.e. the number of people inside
the environment and their position, the position and the actions performed inside the en-
vironment. More recently environmental devices are mostly used to detect the interaction
between users and environment. Cameras, for instance, generated video sequences or dig-
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italized visual data which are largely used in human activity recognition for surveillance
[56], understanding dynamic scene activity [27], and assisted living [96, 116, 147, 54].
WiFi is a local-area wireless network connection technology which uses a transmitter to
send signals to a receiver. Since human bodies are good reflectors of wireless signals,
human activities can be recognized by monitoring changes in WiFi signals [139]. Other
environmental technologies mentioned in human activity recognition are Radio-frequency
identification (RFID) which is based on using electromagnetic fields to automatically iden-
tify and track the tags embedded in everyday objects, which contains electronically stored
information[25], and Radar which uses transmitters and antennas which are mounted on
the same side of users. Doppler effect is the basis of the radar-based system[78].

There are several advantages in exploiting environmental devices for human activity
recognition as discussed in the following. First, they are much more proficient to recognize
complex activities, such as eating, drinking, having a shower, teeth brushing, and others,
because data are related to the interaction between many object sensors and the user.
Second, environmental devices enable continuous monitoring independently from a battery
and from the user. Third, they can be used to detect actions and interaction of multi-
residents simultaneously. Finally, environmental devices outperform wearables in terms
of in-door localization efficacy.

Nonetheless, nothing can be done if the user is out of the reach of the sensors or they
perform activities that do not require interaction with them. However, all outdoor activ-
ities cannot be monitored or recognized by environmental devices. In addition, privacy
intrusiveness and pervasiveness make difficult to let environmental devices to be totally
accepted from users. Furthermore, installation and maintenance of the sensors usually
entail high costs which hinders a real time HAR system to be scalable [73].

Advantages of using environmental devices strictly depend on the context and on the
application. The next paragraph aims at presenting typologies, strengths and weaknesses
of wearable devices and sensors.

2.1.2 Wearable Devices and Sensors

Wearable devices encompass all accessories attached to the person’s body or clothing
incorporating computer technologies, such as smart clothing, and ear-worn devices [53].
They enable to capture attributes of interest as motion, location, temperature and ECG,
among others.

Wearable devices and HAR are very interconnected. Indeed, over the last years, wear-
ables gained the attention of HAR because of many reasons. Despite environmental,
wearable devices are possible to carry out-door and are much cheaper. Recently, most
of wearable devices have spread among the population, and, consequently, a tremendous
increase in wearable’s use in many application’s areas has been reported [122]. Wearables
are used for security, wellness, medical, sport, and many others.
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Smartphones and smartwatches are the most used wearable devices among the pop-
ulation. In particular, the smartphone is one of the most used devices in people’s daily
lives and it have been stated that it is the first thing people reach for after waking up in
the morning [33, 97].

Smartphone’s pervasiveness over last years, is due mostly because it provides the op-
portunity to connect with people, to play games, to read emails, and, in general, to achieve
almost all online services that a user needs. In particular, their high diffusion is a crucial
aspect because the more the users, the more data availability. The more data availability,
the more information and the more the possibility to create robust models. A the same
time, smartphones are preferable over other wearables because a huge amount of sensors
and softwares are already installed and permit to acquire many kind of data, potentially,
all day long. Figure 2.2 shows all embedded sensors in a smartphone.

The choice of the sensors plays an important role for the activity recognition perfor-
mances for which abundant literature has been written[115].

The aim of this section is to describe the most used sensors for HAR tasks and clas-
sification.

Figure 2.2: Smartphone’s embedded sensors.

Accelerometer. The accelerometer is an electromechanical sensor dedicated to cap-
ture the rate of change of the velocity of an object over a time laps, i.e. the acceleration.
It is composed of many other sensors, including some microscopic crystal structures that
become stressed due to accelerative forces. The accelerometer interprets the voltage com-
ing from the crystals to understand how fast the device is moving and which direction it is
pointing in. A smartphone records three dimension acceleration, which join the reference
devices axes. Thus, a trivariate time series is produced. The measuring unit is meters
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over second squared (m/s2) or g - forces.

Gyroscope. The gyroscope measures three-axial angular velocity. Its unit is mea-
sured in degrees over second (degrees/s). Although accelerometer still remains the most
used sensor for HAR, many studies have exploited also gyroscope for activity [113]. The
reason is two folds: the addition of more information about the device mouvements, and
the possibility to infer the device’s position..

Magnetometer. A magnetometer measures the change of a magnetic field at a par-
ticular location. The measurement units are Tesla (T), and is usually recorded on the
three axes.

Global Positioning System. GPS units inside phones gets a ping from a satellite in
space and based on angles intersection they calculate the device location. It is normally
used for sport tracking and it is mostly combined with the accelerometer.

For the sake of completeness, we briefly mention other state-of-the-art sensors. In [91]
the barometer have been used. Its functionality is related to vertical activities, such as
ascending and descending stairs. Pressure is mentioned in [32, 48], and biometric sensors,
as electromyography(EMG) for fine-grained motions has been used in [150]. Electrocar-
diography (ECG) in [81].

Accelerometer is the most popular sensor in HAR because it measures the directional
movement of a subject’s motion status over time [13, 76, 109, 140, 90, 3]. Neverthe-
less, it struggles to resolve lateral orientation or tilt, and to find out the location of the
user, which are precious information for activity recognition. For these reasons, some
sensor’s combinations have been proposed as valid solution in HAR. In most of the cases
accelerometer and gyroscope are combined [4, 60, 58].

Authors in [113] demonstrated that gyroscope based classification achieves better
results than accelerometer for specific activities, i.e. walking downstairs and upstairs.
Furthermore, as afore mentioned, gyroscope data permit to infer device position that
drastically impacts recognition performances [127, 17].

Other studies combined accelerometer and magnetometer simultaneously [118], accel-
eration and gyroscope with magnetometer [149, 119], accelerometer with microphone and
GPS [72], and many other combinations [77].

2.1.3 Conclusions

The recent years have been characterized from drastic software and hardware changes. On
the hardware side, abundant number of low cost devices and sensors have been developed.
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For instance, smartphones and smartwatches are, nowadays, very cheap and equipped by
many different micro-sensors.

On the software side, new devices are able to store huge amount of data, interconnect
many devices at once and share information. Human activity recognition exploited these
new technologies to acquire, store and analyze data. In particular, two types of devices are
used in HAR: environmental and wearable devices. Environmental devices are installed
in the environment or placed on objects, such as camera and tags. Wearable devices are
placed on the user’s body, e.g. smartphone, smartwatches, and ad-hoc devices. In general,
wearables are suitable for out-door context, e.g. for sport tracking or activity recognition,
while environmental sensors are preferable for complex activities related to the in-door
context. However, the choice between environmental or wearable devices is a difficult
task and should be done depending on several factors, such as the application domain,
the activities of interest, i.e. complex activity or basic activity, the general context, e.g.
if out-door or in-door.

Nevertheless, in the recent years, wearables gained a large attention in the human
activity research community mostly because of their pervasiveness among the population.
According to [33], smartphones are the most used devices in the population’s daily
life. HAR developed many methods and instruments to manage data based on wearables
devices and on smartphones. Among sensors, 3-axis acceleration is the most exploited
sensor in HAR. Normally used alone, it is also combined with the gyroscope.

The possibility to monitor people daily activities, risky activity or changes in behavior,
e.g. falls or disease’s development, habits, with a simple smartphone is very attractive and
actual. For this reason, in this work, we concentrated on data recorded by smartphones
for the classification. In particular, we consider data acquired from 3-axis accelerometer
and gyroscope embedded in a smartphone.

2.2 Data Preprocessing

In Section 2.1, the most suitable devices for human activity recognition are presented
and describes. In the recent years, the spread of wearable devices has lead to a huge
availability of physical activity data. Smartphones and smartwatches are become more
and more pervasive and ubiquity in our everyday life. This high diffusion and portability
of wearable devices has permitted scientists to easy produce plenty of labeled raw data
for human activity recognition.

Several public datasets are open to the HAR community and are easy accessible on the
web, see for instance the UC Irvine Machine Learning Repository [14]. In this study we
discuss and analyze smartphone-based datasets. We believe indeed that the pervasiveness
and portability of smartphones make this device the most powerful among wearables, in
terms of capability of monitoring user’s daily life.
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Usually, public datasets collected by research groups and repositories provide raw data,
which need to be processed and structured before to be considered valid input data for
analysis and machine learning engine.

In subsection 2.2.1 the available public benchmark datasets are presented, while in
subsection 2.2.2 state-of-the-art approaches for data segmentation and feature extraction
are described.

2.2.1 Benchmark Datasets

In the last decade, a huge amount of public datasets for HAR has been produced. As
discussed in Section 2.1, activity recognition classifiers exploit data collected from envi-
ronment, object and wearable devices. According to the goal of this work, we selected
datasets which collect inertial sensor data of Activity of Daily Living (ADLs) recorded
from smartphones.

In Table 2.1, we show the main characteristics of the most exploited datasets in the
state-of-the-art. Datasets which combine smartphones and IMUs or smartphones and
smartwatches are also considered, see datasets D03, D010, D11, and D16.
In column # Activities the number of ADLs is shown. Usually, from about 6 to 10 ADLs
are recorded and in some cases, both ADLs and Falls data are considered, as in datasets
D08, D09, D11. We decided to do not discard Falls data when collected with ADLs and
include them into our analysis.

The column # Subjects reports the number of the subjects which performed the activ-
ities. Considering a restricted number of subjects in the analysis does not just impact the
quality and robustness of the classification, but also the ability to evaluate the consistency
of results across subjects [83]. In others words, the number of the subjects includes in the
training set of the algorithm is crucial in terms of generalization capability of the model
to classify a new unseen instance.

Nevertheless, the different between people, also called population diversity, could lead
to poor classification, as largely discussed in [72]. Unfortunately, most of the datasets are
limited in terms of subject numerousness. To overcome this issues, recently, several HAR
research groups implemented strategies for merging datasets [46, 117]. Other techniques,
such as transfert learning and personalization, have been investigated for robustness of
results [104, 41, 82].

Column Devices reports typologies and number of devices that have been used to
collect data. In particular, datasets D03, D04, D05, D06, D11, D12 collected data from
several wearable devices at the same time, which is due to the following reasons. First,
the device position influences the performance of the classification. Several works inves-
tigated which position leads to the best classification [69, 113]. Furthermore, it is also
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challenging to investigate device’s fusion, which has a not negligible positive effects on
the classification performances and reflects realistic situation where users use many smart
devices at once [128, 65, 5, 90].

Position-aware and position-unaware scenario have been presented in [113]. In position-
aware scenario the recognition accuracy on different positions individually is evaluated,
while in position-unaware scenario the classification performance of the combination of de-
vices positions is measured. It is shown that the latter approach highly improves the clas-
sification performance for some activities, such as walking, walking upstairs and walking
downstairs. In [3] they exploited deep learning technique for classification and demon-
strated its capability to produce an effective position-independent HAR. In this study,
we do not focus on a specific position of smartphone because we concentrate mostly on
subject-related classification effects.
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2.2. DATA PREPROCESSING

Column Sensors lists the sensors exploited in data collection. Tri-axial acceleration
data (A) is the most exploited inertial sensor among the literature[73]. Most recent
studies exploiting machine learning and deep learning techniques largely used acceleration
sensor [140, 104, 5]. Datasets D9, D14, and D15 even collected just acceleration data.
Acceleration is very popular because it directly captures the subject’s physiology motion
status and its low energy consumption [62].

Acceleration has been combined with other sensors, such as gyroscope, magnetome-
ter, GPS, and biosensors with the aim of improving activity classification performance.
In general, data captured from several sensors carry additional informations about the
activity and about the device settings. For instance, information derived from gyroscope
is used to maintain reference direction in the motion system and permit to determine
mobile orientation [125, 4]. Performances comparison between gyroscope, acceleration
and their combination for human activity recognition have been explored in many studies
[43, 113].

Authors in [43] showed that accelerometer is more performing than the gyroscope and
their combination leads to an overall improvement of about 10%. In [113], authors state
that in situations where accelerator and gyroscope individually perform with low accura-
cies, their combination improved the overall performance, while when one of the sensors
performs with higher accuracy, the performance doesn’t improve combining sensors.

In column Sampling Rate is shown the frequency the data are acquired. As stated
above, data acquisition phase is responsable to take into account how data are recorded.
The sampling rate has to be high enough to capture most significant behavior of data. In
HAR most used sampling rate is 50Hz.

Column Metadata list characteristics regarding the subjects which perform the ac-
tivities. In D07-11, D15 physical characteristics are annotated. In D15 environmental
characteristics have been also stored, such as the kind of shoes wear, floor characteristics
and place where activities have been preformed. As discussed in section 2.3 there are
benefits in using metadata on the activity recognition performance. Indeed, metadata are
precious additional information, which help to overcome population diversity issue. For
experiments on datasets D07, D08, D09, using metadata, see section 3.

Figure 2.3 shows datasets distribution over last decade.
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[67]

2011 2012

[7, 115]

2012

[70, 120]

2013 2014

[113]

2015

[123, 7]

2016

[114, 135]
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[127]
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[88, 29]

2017

[132]

2018
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Figure 2.3: Distribution of HAR Datasets on wearable devices over last decade.
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2.2.2 From Raw Data to Input Data

The community of HAR have collected and published plenty of datasets. Generally, data
collected in datasets are still considered raw data because they are not ready to use as
input data for analysis. Depending on the analysis, data have to be transformed and
prepared. For machine learning techniques, data should pass the Activity Recognition
Process (ARP), which is composed in four phases shown in Figure 2.1.

In the following sections, more details about Data Segmentation, Features Extrac-
tion, and Classification phases have been discussed. Data acquisition and pre-proccessing
phases haven’t been considered because out of our study context.

2.2.2.1 Data Segmentation

Data segmentation is the process that partitions raw signals into smaller data segments,
also called windows. It can be classified into three categories, namely activity-defined
windows, event-defined windows and sliding windows. Initial and end point of the activity-
defined windows are selected by detecting patterns of the activity changes.

Event-defined windowing procedure consists of creating a window around a detected
event. In some studies it is also mentioned as windows around peak [88]. Sliding windows
is the most widely employed segmentation technique in activity recognition, especially
for periodic and static activities [11]. It consists of splitting data into windows of fixed
size, without gap between two consecutive windows, and, in case, overlapped, as shown
in Figure 2.5.

Data segmentation is essential to overcome some limitations related to many acquisi-
tion and pre-proccessing aspects. First, the data sampling: data recorded from different
subjects may present different lengths in time which is generally a limit for the classifi-
cation process. Second, the time consumption: multidimensional data can lead to a very
high computational time consumption. Split data into smaller segments helps the algo-
rithm to face with high volume of data. Third, it helps the computation of the features
extraction procedure in terms of more simplicity and lower time consuming.

Data segmentation phase is crucial for the analysis because it determines the the input
data’s structure which is critical for the classification performance and for availability of
results.

In particular, the choice of the window size is determinant for the accuracy of the
classification [30]. The choice of the window size is not trivial. It should be large enough
to guarantee to contain at least one cycle of an activity and to differentiate similar move-
ments, and, at the same time, incrementing it too much doesn’t improve necessarily the
performance.

In [113], authors showed that 2s is enough for recognizing basic physical activities.
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2.2. DATA PREPROCESSING

Figure 2.4 shows distribution of windows size among state-of-the-art studies we considered.
In the 56% of the cases, windows size is less or equal than 3 seconds. Window size between
3 and 5 seconds is considered in the 17% of the cases, while the 13% chose it between 5
and 10 seconds. In very few case, the 4%, windows size exceeds 10 seconds. The impact
of windows size on the classification performance still remains a challenging task for HAR
community and continues to be largely studied in the literature [113, 65, 11].

<=3s
56%

3-5s
17%

5-10s
13%

>10s
4%

Other
10%

Figure 2.4: State-of-the-art Sliding Window’s Size.

Another parameter to be chosen is the percentage of overlap. Sliding windows are
often overlapped which means that a percentage of a window is repeated in the subsequent
window. This leads to two main advantages: it avoids noise due to the truncation of data
during the windowing process and increases the performance by increasing the data points
number. Generally, the higher the number of data points, the higher the classification
performance.

For these reasons, overlapped sliding windows is the most common choice in the liter-
ature. Figure 2.6 shows the distribution of the percentage overlap instate-of-the-art. In
more than 50% of the papers we selected, the 50% of overlap has been chosen.In some
cases [28, 140, 4, 68] no-overlap has been chosen, for instance to allow a fast response in
real time and for detection of short duration movements.

Given the advantages to use overlapped windows, our analysis is based on this ap-
proach.

In the following details about data segmentation of this work are exposed. Let’s be x ,
y , z the 3-axis acceleration values. After data segmentation phase, data are organized in
vectors vi as follows:

vi =
(x1, x2, x3 ... xn︸ ︷︷ ︸

x−dimension

, y1, y2, y3, ... yn︸ ︷︷ ︸
y−dimension

, z1, z2, z3, ... zn︸ ︷︷ ︸
z−dimension

)
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Figure 2.5: Sliding windows with and without Overlap
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Figure 2.6: Overlap % used among state-of-the-art.

where vi is a 1 × (n × k) vector, which represents the i -th window. k refers to the
number of the sensor dimension, for instance if 3-axial acceleration is recorded k = 3.
The number n is the total length of the windows which depends on two factors: the size
of the widows, normally in seconds, and the sampling rate. The sampling rate is define as
the number of the data points recorded in a second and expressed in Hertz. For instance,
if the frequency rate of sampling is equal to 50Hz, it means that 50 values per second are
recorded. This parameter is normally set during the acquisition phase. Modern device
can be set with a specific sample rate value. The choice of the sampling rate is crucial.

In the literature different sampling rates have been chosen. For instance, in [88] the
sample rate is set at 50Hz, in [68] at 45Hz, and from 30 to 32Hz in [4]. Although
the choice is not unanimous in the literature, 50Hz define a suitable sampling rate that
properly permits to model human activities [101]. In this study we considered dataset
at their own sample rate, larger or equal to 50Hz, while in some case we use a linear
interpolation procedure to homogeneize all sampling rate at 50Hz.
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2.2.2.2 Features Extraction

Theoretical analysis and experimental studies indicate that many algorithms scale poorly
in domains with large number of irrelevant and\or redundant data.

In literature it is shown that using a set of features instead of raw data improves the
classification accuracy [40]. Furthermore, features extraction reduces the data dimension-
ality while extracting the most important peculiarity of the signal by abstracting each
data segments into an high-level representation of the segment.

From a mathematical point of view, features extraction is defined as a process that
extracts a set of new features from the original data segment through some functional
mapping [80]. For instance, let be x = {x1, x2, ... , xn} ∈ Rn a segment of data, an extracted
feature fi is given by

fi = gi(x1, x2, ... , xn) for i = 1, ... ,m

where gi : Rn → R is a map. Features space is of dimension m ≤ n, which means that
features extraction reduces raw data space dimension, in general.

In the classification context, the choice of gi is crucial. In fact, in the recognition
process, g has to be chosen such that the original data are mapped in separated regions
of the features space. In other words, the researcher assumes that in the feature space
data separate better than in the original space. The accuracy of activity recognition ap-
proaches dramatically depends on the choice of the features [30]. In the literature, the
way features gi are extracted is divided into two main categories, hand crafted features
and learned features.

Hand-crafted features are the most used features in HAR [82, 70, 5]. The term
"hand-crafted" reminds to the fact that the features are selected from an expert using
heuristics. Hand-crafted features, in turn, are generally split in time domain and on
frequency domain features. The signal domain is changed from the time to the frequency
based on the Fourier transformation. In Table 2.2 most used time domain and frequency
domain features are listed and described.

Low computational complexity and calculation simplicity make hand-crafted features
still a good practice for activity recognition. Nevertheless, they present many disadvan-
tages, such as an high dependency on the sensor choice and the dependency on the expert
knowledge. Hence, a different set of features need to be defined for each different type
of input data i.e. accelerometer, gyroscope, time-domain and frequency domain. In ad-
dition, hand-crafted features highly depend on expert prior knowledges and manual data
investigation and it is still not always clear which features are likely to work best.
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2.2. DATA PREPROCESSING

It is a common practice to chose the features through empirical evaluation of different
combinations of features or with the aid of feature selection algorithms [108].

Learned Features: the goal of feature learning is to automatically discover mean-
ingful representations of raw data to be analyzed [98]. According to [71], main features
learning methods from sensor data are the following:

• Codebooks [137, 111] consider each sensor data window as a sequence, from which
subsequences are extracted and grouped into clusters. Each cluster centre is a
codeword. Then, each sequence is encoded using a bag-of-words approach using
codewords as features.

• Principal Component Analysis (PCA) [2], is a multivariate technique, commonly
used for dimensionality reduction. The main goal of PCA is the extraction of a set
of orthogonal features, called principal component, which are linear combination of
the original data and such as the variance extracted from the data is maximal. It
is also used for features selection.

• Deep Learning, uses Neural Networks engine to learn patterns from data. Neural
Networks are composed from a set of layers. In each layer, the input data are
transformed through combinations of filters and topological maps. The output of
each layer becomes the input of the following layer and so on. At the end of this
procedure, the result is a set of features more or less abstract depending on the
number of layers. The more the number of layers is high, the more the features
are abstract. These features can be used for classification. Different deep learning
methods for features extraction have been used for time series analysis [44].

Features learning techniques avoid the issue to create and select manually the features.
Recently, promising results are more and more lead the research community to exploit
learned feature in their analysis.

2.2.3 Conclusions

HAR community has published plenty of datasets for human activity recognition based
on inertial sensors embedded in smartphones, but data have to be transformed before
to be ready for the classification. Activity Recognition Process (ARP) is responsible to
transform raw data into input data through four phases: data acquisition, data prepro-
cessing, data segmentation, feature extraction, classification. Usually, public datasets
have already passed data acquisition and data preprocessing phases.

In this work, the analysis have been done on public datasets and for this reason,
only data segmentation, features extraction and classification have been discussed in this
section. All phases are critical for the performance of the classification and each of them
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depends on many parameters that have to be choose. In this work, we based on state-of-
the-art best results and benchmarks to implement our ARP. We selected three datasets to
implement the personalized model for machine learning and deep learning, namely Motion
Sense (D7), MobiAct (D8), and UniMiB-SHAR (D9), because they encompass physical
characteristics of the subjects. For other experiments we add UCI HAR (D1), as it is the
most used dataset in the literature.

2.3 Classification and Evaluation: Methods for Auto-
matic HAR

Over the last years, hardware and software development has increased wearable devices
capability to face with complex applications and tasks. For instance, smartphones are,
nowadays, able to acquire, store, share and elaborate huge amount of data in a very short
time. As consequence of this technological development, new instruments related to the
data availability, data processing, data analysis are born. The capability of a simple
smartphone to meet some complex tasks, e. g. steps count, life style monitoring, is the
results of a very recent scientific changes regarding methods and techniques.

In general, more traditional data analysis methods, based on model-driven paradigms,
have been largely substituted by more flexible techniques, developed during the recent
years, based on data-driven paradigms. In a few words, the main difference between
these two approaches is given by the a priori assumption about the relationship between
independent and response variables.

The strength and the success of data-driven approaches are due to their capability
to manage and to analyze large amount of variables that characterize a phenomenon
without assuming any a-priori relation between the independent and response variables.
From a certain point of view, this flexibility can be also a weakness because the lack of a
well-known relation also can be interpreted as a lack of cause-effect knowledge. In model-
driven approaches, in contrast, cause-effect relation is known by definition, but their loose
in performance in estimating high-dimensionality relations. In activity recognition con-
text, model-driven approaches are not powerful and data-driven approaches are preferred.

Among data-driven algorithms, Artificial Intelligence (AI) have produced very promis-
ing results over the last years and have been largely used for data analysis, for information
extraction and for classification tasks. AI emulates the human behavior, reasoning and
learning. AI algorithms encompasses machine learning which, in turns, encompasses deep
learning methods. Machine learning uses statistical exploration techniques to enable the
machine to learn and improve with the experiences without being explicitly programmed.
Deep learning emulates human neural system to analyze and extract features from data.
Figure 2.7 shows the relationship between AI, machine learning and deep learning. In

26



2.3. CLASSIFICATION AND EVALUATION: METHODS FOR AUTOMATIC HAR

this study, we concentered on machine learning and deep learning algorithms.

Figure 2.7: Artificial Intelligence, Machine Learning and Deep Learning.

The choice of the classification’s algorithm drastically influences the classification per-
formance, but up to now, there is no evidence of a best classifier and its choice still remains
a challenging task for the HAR community.

In particular, machine learning and deep learning methods struggle to achieve good
performances for new unseen users. This lost of performance is mostly caused by the
subjects variabilities, also called population diversity [72] which is related of the natural
users heterogeneity in terms of data.

Before entering into details, traditional state-of-the-art machine learning and deep
learning techniques are presented in Section 2.3.1. In Section 2.3.2 we investigated and
discussed about personalized machine learning and deep learning techniques as solutions
to overcome the population diversity issue.

2.3.1 Traditional Learning Methods

As mentioned above, Artificial Intelligence (AI) algorithms base on the emulation of the
human learning. According to [148], the word learning refers to a process to acquire
knowledge or skill about a thing. A thing can always be viewed as a system, and the
general architecture of the knowledge of the thing follows the FCBPSS architecture, in
which F: function that refers to the role a particular structure plays in a particular con-
text; C: context that refers to the environment as well as pre-condition and post-condition
surrounding a structure; B: behavior that refers to causal relationships among states of
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a structure; P: principle that refers to the knowledge that governs a behavior of a struc-
ture; S: state that describes the property or character of a structure; S: structure that
represents elements or components of the system or thing along with their connections [79].

Machine learning and deep learning both refer to the word learning and, indeed, they
are implemented so that they emulate the human capability of learning. In the following,
more details about traditional learning methods are highlighted, in particular we concen-
trate on machine and deep learning.

Machine learning techniques used in HAR are mostly subdivided into supervised and
unsupervised approaches. Supervised machine learning encompasses all techniques re-
ferred to labeled data. Unsupervised machine learning are techniques which based on
data devoid of labels.

In terms of classification algorithm structure, the subdivision between supervised and
unsupervised is crucial. Let x and y be, respectively, a set of data and their corresponding
labels. A classification task is a procedure which goal is to predict the value of the label
ŷ from the data input x. In other terms, assuming that there exists a linear or non-
linear relation f between x and y, the goal of the classification is to find f such as the
prediction’s error, i.e. the distance between y and ŷ, is minimal. In supervised machine
learning, data and corresponding labels are known and the algorithm learns f by iterating
a procedure until the global minimum of a loss function is reached. The loss function is
again a measure about the prediction’s error, estimated by the difference between y and
ŷ. The optimization procedure, i.e. finding the loss global minimum, is computed on the
training dataset, which is a subset of the whole dataset. Once the minimum is achieved,
the model is ready to be tested on the test dataset. The algorithm performance measure
the model’s capability to classify new instances, see Section2.2 for more details about the
performance measures.

In unsupervised approaches, the labels y are unknown and the evaluation of the al-
gorithm goodness bases on statistical indices, such as the variance or the entropy. Con-
sequently, the choice between supervised or unsupervised methods determines how the
relation f between x and y is learnt. Since a human activity recognition system should
return a label such as walking, sitting, running, etc., most of HAR systems work in a su-
pervised fashion. Indeed, it might be very hard to discriminate activities in a completely
unsupervised context [73].

In the following paragraph, traditional machine learning is discussed. The term tra-
ditional refers to the standard machine learning and deep learning methods. In Figure2.8
the distribution of traditional machine learning and deep learning algorithms used for
human activity recognition is shown. This distribution is the result of the state-of-the-
art study we mentioned at the beginning of this chapter. We can notice that machine
learning as well as deep learning techniques are largely exploited in HAR. In the following
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paragraphs, we will describe the most used techniques in HAR with the related literature.

Figure 2.8: Traditional Machine Learning and Deep Learning classifiers distribution.

2.3.1.1 Traditional Machine Learning

Machine learning techniques have been largely used for activity recognition tasks. More
and more sophisticated methods have been developed to face with the complexity related
to activity recognition tasks. In this section we describe traditional machine learning
algorithms that have been mostly exploited for human activity recognition, according to
the Figure 2.8.

Support Vector Machines (SVM) belongs to domain transform algorithms. It im-
plements the following idea: it is assumed that the input data x are not linearly separable
with respect to the classes y in the data space, but there exists an higher dimensional space
where the linearity is achieved. Once data are mapped into this space a linear decision
surface (or hyperplane) is constructed and used as recognition model. Thus, guided from
the data, the algorithm searches for the optimal decision surface by minimizing the error
function. The projection of the optimal decision surface into the original space marks the
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areas belonging to a specific class which are used for the classification [34]. The trans-
formation of the original space into a higher dimensional space is made through a kernel
which is defined as a linear or non linear combination of the data, e.g. polynnomial kernel,
sigmoid kernel and radial basis function (RBF) kernel, see Table 2.3. Originally, SVM have
been implemented as two-class classifier. The computation of the multi-class SVM bases
on two strategies: one-versus-all where one class is labeled with 0 and the other classes as
1, and one-versus-one where the classification is made between two class at a time [31].
Among HAR classifiers, SVM is the most popular one[4, 58, 6, 134, 143, 64, 15, 31].

Kernel Linear Polynnomial RBF

Formula xT
i xj (xT

i xj + c)d exp

(
||xi−xj ||2

2σ2

)

Table 2.3: Kernel in Support Vector Machines.

k-Nearest Neighbors (k-NN) is a particular case of instance based methods. The
nearest neighbour algorithm compares each new instance with existing ones using a dis-
tance metric, see Table 2.4, and the closest existing instance is used to assign the class to
the new one. This is the simplest case where k = 1. If k > 1, the majority class of the
closest k neighbors is assigned to the new instance [141]. It is a very simple algorithm
and belongs to the lazy algorithms. Lazy algorithms have no parameters to learnt from
the training phase [4, 6, 134, 114, 31]. k-NN depends only on the number k of the nearest
neighbors.

Distance Eucleadin City Block Chebychev

Formula
√∑n

i=1(xi − xj )2
∑n

i=1 |xi − xj | maxi=1...n |xi − xj |

Distance Cosine Correlation Mahalnobis

Formula 1−
xixT

j√
(xixT

i )(xjxT
j )

1− (xi−x̄i )(xj−x̄j )
T

√
(xi−x̄i )(xi−x̄i )

T
√

(xj−x̄j )(xj−x̄j )
T

√
(xi − xj )C−1(xi − xj )T

wher C is the covariance matrix

Table 2.4: Distance metrics in k-nearest neighbor.

J48 and C4.5 belong to decision tree algorithms. Decision tree algorithms build a hi-
erarchical model in which input data are mapped from the root to leafs through branches.
the path between the root and a leaf is a classification rule [73]. Sometimes, trees length
has to be modified and growing and pruning algorithms are used. The construction of a
tree involves determining split criterion, stopping criterion and class assignment rule [103].
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J48 and C4.5 are the most used decision tree in HAR [140, 90, 134, 114].

Random Forest (RF) is a classifier consisting of a collection of tree-structured classi-
fiers {h(x, Θk), k = 1, ...} where the {Θk} are independent identically distributed random
vectors and each tree casts a unit vote for the most popular class at input x [24]. Random
Forest generally achieves high performance with high dimensional data by increasing the
number of trees [65, 140, 149, 99, 12, 15, 31].

Naive Bayes (NB) belongs to bayesian methods which prediction of new instances
is based on the estimation of the a posterior probability as a product of the likelihood,
which is a conditional probability estimated on the training set given the class, and a
prior probability. In Naive Bayes, data are assumed independent given the class values.
Thus, given y be a certain class and xi ...xn the data, Naive Bayes classifier based on the
baysian rules and the likelihood splits in the product of the conditional probabilities given
the class

P(y |x1...xn) =
P(y)P(x1, ...xn|y)

P(x1, ...xn)
=

P(y)
∏n

i=1 P(xi |y)

P(x1, ...xn)

Decision rules is the maximum a postriori (MAP) given by

arg max
y

P(y |x1...xn) = arg max
y

n∏
i=1

P(xi |y)

Naive Bayes has been applied in activity recognition because its simple assumption on
the likelihood, which is usually violated in practice [8, 140, 134, 114]

Adaboost is part of the classifier ensembles. Classifier ensembles encompasses all
algorithms that combine different classifiers together. The combination between the clas-
sifiers is meant in two ways: either using the same classifiers with different parameter’s
settings, e.g. random forest with different lengths, or using different classifiers, e.g. ran-
dom forest, support vector machines and k-NN together. The ensemble classifiers encom-
pass bagging, stacking, blending, and boosting. In bagging, n samplings are generated
from training set and a model is created on each. The final output is a combination of
each model’s prediction. Normally, either the average or a quantile is used. In stacking,
the whole training dataset is given to the multiple classifiers which are trained using the
k-fold-cross-validation. After training they are combined for final prediction. In blending,
the same procedure as staking is performed but instead of the cross-validation, the dataset
is divided into training and validation. Finally, in boosting, the final classifier is composed
of a weighted combination of models. The weights are initially equal for each model and
are iteratively updated based on the models performance, e.g. Adaboost [73, 72, 93].
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Human activity recognition is mainly carried out with the support of machine learn-
ing techniques. Machine learning techniques are preferable to deep learning techniques
because of many reasons. They are very performant even with low amount of labeled
data and are low time-consumption methods. Nevertheless, machine learning techniques
remain highly expertise dependent algorithms. Input data feeding machine learning algo-
rithms are normally features, a processed version of the data. Features permit to reduce
data dimensionality and computational time. However, features are handcrafted and are
expert knowledge and tasks dependent. Furthermore, engineered features cannot repre-
sent salient feature of complex activities, and involve time consuming feature selection
techniques the select the best features[49, 144]. Additionally, approaches using hand-
crafted features make it very difficult to compare between different algorithms due to
different experimental grounds and encounter difficulty in discriminating very similar ac-
tivities [149]. In recent years, deep learning techniques are increasingly become more and
more attractive in human activity recognition.

Indeed, they have shown many advantages over the machine learning, among them
the capability to automatically extract features. In particular, depending on the depth
of the algorithm, it is possible to achieve a very high abstraction level for the features,
despite machine learning techniques [138]. In these terms, deep learning techniques are
considered valid algorithms to overcome machine learning dependency on the feature
extraction procedure and show crucial advantages in algorithm performance.

The next paragraph is dedicated to the traditional deep learning algorithms descrip-
tion.

2.3.1.2 Traditional Deep Learning

Generally, the relation between input data and labels is very complex and mostly non-
linear. Among Artificial Intelligence algorithms, Artificial Neural Network (ANN) is a
set of supervised machine learning techniques which emulate human neural system with
the aim at extracting non-linearity relations from data for classification. Human neural
system is composed by neurons (about 86 billions) which are connected with synapses
(around 1014). Neurons receive input signals from the outer, e.g. visual or olfactory,
and based on the synaptic’s strength they fire and produce some output signals to be
transmit to other neurons. Artificial Neural Network bases on the same neurons and
synapses concept.

Figure 2.9 depicts this analogy. On the top left one human brain’s neuron, on the
button left a 3D simulation of a fly’s brain neurons (around 25000 neurons) [142]. On
the right side their mathematical models. We briefly explain the structure of the ANN
depicts on the right button side.

Each data input value is associated to a neuron and its synapses strength is measured
by a functional combination of input data x and randomly chosen weights w. This value
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is passed to an activation functions σ which is responsable to determine the synapse
strength and eventually to fire the neuron. The output of the activation function is given
by y = σ(wTx). If it fires, the output becomes the next neuron’s input, see Table 2.5 for
more details about activation functions.

A set of neurons is called layer. A set of layers and synapses is called network. The
input data x, is passed from the first layers to the last layer, called, respectively the
input layer and the output layer, through intermediary layers, called hidden layers. The
term Deep Learning comes from to the network’s depth, i.e. when the number of hidden
layers grows. Neurons belonging to same layers are not communicating to each others,
while neurons belonging to different layers are connected and share the information passed
through the activation function. If each neuron of the previous layer is connected to all
neurons of the next layer, the former is called fully connected or dense layer.

The output layer, also called classification layers in case of classification task or re-
gression layer in case of continuous estimation, is responsable to estimate the predicted
value ŷ of the labels y. Once the last output is computed, the feed-forward procedure is
completed. At this point the classification error is estimated through the loss-function as

Figure 2.9: From a real neural system to Neural Networks.

a measure of the difference between the predicted value ŷ and the labels y, see Table 2.6
for loss function’s functional forms.

Thereafter, an iterative procedure is computed to minimize the loss-function. This
procedure is called back propagation and is responsible to minimize the loss function
with respects to the weights wi . The weight’s values, indeed, represent how strong is the
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relation between neurons belonging to different layers and how far the input information
has to be transferred through the network.

The minimization procedure bases on gradient descent algorithms, which iteratively
search for weights, that reduce the value of the gradient of the loss until it meets the
global minimum or a stopping criteria. In general, a greedy-wise tuning procedure over
the hyper-parameters is performed to the aim at achieving the best network configura-
tion. Most important hyper-parameters are: the number of layers, the kernel’s number
and size, the pooling’s size, and the regularization parameter, such as the learning rate.
As discussed in Chapter 4 we performed a grid search procedure over the layer’s and the
features maps number.

According to Figure 2.8, most used deep learning algorithms are described in the fol-
lowing:

Multi-Layer Perceptron (MLP) is the most widely used Artificial Neural Network
(ANN) which are a collection or neurons organized in a layers structure, connected in an
acyclic graphs. Each neuron that belongs to a layer produces an output which becomes
the input of the neurons of the next adjacent layer. Most common layer type is the fully
connected layer, where each neurons share their output with each adjacent layer’s neuron,
while same layer’s neurons are not connected. MLP is made up of the input layer, one (or
more) hidden layer and the output layer [145]. Used in HAR as baseline deep learning
techniques, it has been often compared with machine learning, such as SVM [126, 15],
RF [15], k-NN [126], DT [126], and deep learning techniques, LSTM [92], CNN [92, 126].

Convolutional Neural Networks(ConvNet or CNN) is a class of ANN based on
convolution products between kernels and small patches of the input data of the layer. The
input data is organized in channels if needed, e.g. in tri-axial accelerometer data each axes
is represented by one channel, and normally convolution is performed independently on
each channel. The convolutional function is computed by sliding a convolutional kernel
of the size of m × m over the input of the layer. That is, the calculation of the l-th
convolutional layer is given by

x l ,ji = f

(
m∑

a=1

w j
a · x

l−1,j
i+a−1 + bj

)

where m is the kernel size, x l ,ji is the j-th kernel on the i -th unit of the convolutional layer
l . w j

a is the convolutional kernel matrix and bj is the bias of the convolutional kernel.
This value is mapped through the activation function σ. Thereafter, a pooling layer is
responsable to compute the maximum or average value on a patch of the size r × r of
the resulting activation’s output. Mathematically, a local output after the max pooling
or the average pooling process is given by
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max pooling x l ,ji = maxra,b=1(xa,b)

average pooling x l ,ji = 1
r2

∑r
a,b=1(xa,b)

The pooling layer is responsable to extracts important features and to reduces the
data size’s dimension.

This convolutional-activation-pooling layers block can be repeated may time if nec-
essary. The number of repetition time determines the depth of the network. Generally,
between the last block and the output layer one (or more) fully-connected layer is added
to perform a fusion of the information extracted from all sensor channels [145]. After
the feed-forward procedure is ended, the back propagation is performed on the convolu-
tional weights until the convergence to the global minimum or until a stopping criterion
is met. Figure 2.10 depicts CNN example in HAR, with 6 channels, corresponding to
xyz-acceleration and xyz-angualr velocity data, tow convolutional-activation-max pooling
layers, one fully connected layer and a soft-max layer which compute the class probability
given input data.

Figure 2.10: Convolutional Neural Network schema.

CNN is a very robust model under many aspects: in terms of local dependency due
to the the signals correlation, in terms scale invariance for different paces or frequencies,
and in terms sensor position [138, 3]. For this reasons, CNN have been largely studied
in HAR. Additionally, CNN have been compared to other techniques, as follows. CNN
outperforms SVM in [143] and baseline Random Forest in [76]. In [106] they demon-
strate that CNN outperforms state-of-the-art techniques, which are all using hand-crafted
features. More recently ensemble classification algorithm with CNN-2 and CNN-7 shows
better performance when compared with machine learning random forest, boosting and
traditional CNN-7 [149].

Residual Neural Networks (ResNet) is a particular convolutional neural network
composed by blocks and skip connections which permit to increase the number of layers
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in the network. Success of Deep Neural network has been accredited to the additional
layer, but authors in [59] empirically showed that there exists a maximum threshold for
the network’s depth without avoiding vanishing \ explosion gradient’s issues.

In Residual Neural Networks the output xt−1 is both passed as an input to the next
convolutional-activation-pooling block and directly added to the output of the block
f (xt−1). The former addiction is called shortcut connection. The resulting output is
xt = f (xt−1) + xt−1. This procedure is repeated many times and permit to deepen the
network without adding neither extra parameters nor computation complexity. En exam-
ple of ResNet is shown in Figure 2.11. Authors in [19] state that ResNet represents the
most performing network in the state of the art, while authors in [40, 42] demonstrated
that ResNet outperforms traditional machine learning techniques.
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Figure 2.11: ResNet full schema.

Activation Function Step Sigmoid tanh ReLU

Formula
{

0 if x < 0
1 if 0 ≤ x

1
1+ex

tan(x) max(0, x)

Table 2.5: Activation functions.

Loss Function Cross-Entropy Hinge Euclidian Absolute value

Formula −
∑M

y=1 y · log(px ,y ) max(0, 1− ŷ · y)
∑M

y=1(ŷ − y)2
∑M

y=1 |ŷ − y |

Table 2.6: Loss functions for Neural Networks.. M = number of classes, x = input data,
y = class, px ,y = probability of being y given x .

Long-Short-Term-Memory Networks is a variant of the Recurrent Neural Net-
work which enables to store information over time in an internal memory, overcoming
gradient’s vanishing issue. Given a sequence of inputs x = {x1, x2, ..., xn}, LSTM’s exter-
nal inputs are its previous cell state ct−1, the previous hidden state ht−1 and the current
input vector xt . LSTM associates each time step with an input gate, forget gate and
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output gate, denoted respectively as it , ft and ot , which all are computed by applying an
activation function of the linear combination of weights, input xi and hidden state ht−1.
An intermediate state c̃i is also computed through the tahnh of the linear combination of
weights, input xi and hidden state ht−1. Finally, the cell and hidden state are updated as

ct = ft · c̃t + it · c̃t

ht = ot · thanh(ct)

The forget gate decides how much of the previous information is going to be forgot-
ten. The input gate decides how to update the state vector using the information from
the current input. Finally, the output gate decides what information to output at the
current time step [90]. Figure 2.12 represents the network schema. Although LSTM is a
very powerful techniques when data temporal dependencies have to be considered during
classification, it takes into account only past information. Bidirectional-LSTM (BLSTM)
offers the possibility to consider past and future information. In [57], The authors il-
lustrate how their results based on LSTM and BLSTM, verified on a large benchmark
dataset, are the state-of-the-art.

Figure 2.12: LSTM Networks schema.

During the last decade, a plenty of traditional machine learning as well as deep learning
methods have been proposed for HAR [70, 95, 144, 107, 138]. Both kind of methods have
been largely used in HAR and still there exists no evidence about the best methods.
Traditional machine learning methods have been firstly used and have produced high
performant results. Nonetheless, traditional machine learning methods present limitations
related to the features extraction dependency on expert knowledge.

More recently, the advent of deep learning has widely modified the approaches in sig-
nal processing and features extraction fields [22]. First applied to 3D and 2D context in
particular in vision computing domain [35, 85], deep learning methods have been shown
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to be valid methods also adapted to the 1D case, i.e. for time series classification [75],
such as HAR. In particular, deep learning techniques enable automatic high-level feature
extraction [138] and present many advantages over the traditional machine learning tech-
niques, as mentioned in the above sections. In the most recent literature, deep learning
methods have been become predominant [138].

However, deep learning techniques, unlike traditional machine learning approaches,
require a large number of samples and an expensive hardware to estimate the model [42].
Large scale inertial datasets with millions of signals recorded by hundreds of human sub-
jects are still not available, and instead several smaller datasets made of thousands of
signals and dozens of human subjects are publicly available [117]. It is therefore not
obvious in this domain, which method between deep and machine learning is the most
appropriate, especially in those case where the hardware is low cost.

Scarcity of data results in an important limit of machine learning and deep learning
approaches in activities classification: the difficulties in being able to generalize the models
against the variety of movements performed by different subjects [18]. This variety occurs
in relation to heterogeneity in the hardware on which the inertial data is collected, different
inherent capabilities or attributes relating to the users themselves, and differences in the
environment in which the data is collected. One of the most relevant difficulty to face
with new situations is due to the population diversity problem [72], that is, the natural
differences between users’ activity patterns, which implies that different executions of
the same activity are different. A solution is to leverage labeled user-specific data for a
personalized approach to activity recognition [26]. Personalization methods are presented
in the next Section 2.3.2.

2.3.2 Personalized Learning Methods

Although research on activity recognition techniques from wearable devices is very active,
the traditional systems are limited in their ability to generalize to new users and/or
new environments, and require considerable effort and customization to achieve good
performance in a real-context [61, 63].

One of the most relevant difficulty to face with new situations is due to the population
diversity problem [72], that is, the natural differences between users’ activity patterns,
which implies that different executions of the same activity are different.

Ideally, algorithms should be trained on a representative number of subjects and on
as many cases as possible. The number of subjects present in the data set does not just
impact the quality and robustness of the induced model, but also the ability to evaluate
the consistency of results across subjects [83]. Furthermore, although new technology
potentially enable to store large amount of data from varied devices, the real availability
data is very scarce and public datasets are normally very limited, see Section 2.2. In
particular, it is very difficult to source labeled data necessary to train supervised machine
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learning algorithms. To face this problem, activity classification models should be able to
generalize as much as possible with respect to the final user.
In the following sections we discuss state-of-the-art results related to population diversity
issue based on the personalization of machine learning and deep learning algorithms.

2.3.2.1 Personalized Machine Learning

In order to achieve generalizable activity recognition models based on machine learning
algorithms, three approaches are mainly adopted in literature:

• Data based approach encompass three data split configurations: subject - in-
dependent, subject - dependent, and hybrid.The subject - independent (also called
impersonal) model does not use the end user data for the development of the activ-
ity recognition model. It is based on the definition of a single activity recognition
model that must be flexible enough to be able to generalize the diversity between
users and it should be able to have good performance once a new user is to be
classified. The subject - dependent (also called personal) model only uses the end
user data for the development of the activity recognition model. The specific model,
being built with the data of the final user, is able to capture her/his peculiarities,
thus it should well generalize in the real context. The flaw is that it must be im-
plemented for each end user [16]. The hybrid model uses the end user data and the
data of the other users for the development of the activity recognition model.

In other words the classification model is trained both on the data of the users and
on a part of the data of the final user. The idea is that the classifier should recog-
nize easier the activity performed by the final user. Figure 2.13 shows a graphical
depiction of the three models to better clarify their differences. Tapia et al. [130]
introduced the subject - independent and subject - dependent models, and later
Weiss at al. [140] the hybrid model.
The models were compared by different researchers and also extended in order to
achieve better performance. Medrano et al. [87] demonstrated that the subject - de-
pendent approach achieves higher performance then subject - independent approach
for falls detection, called respectively personal and generic fall detector.
Shen et al. [110] achieved similar results for activity recognition and come to the
conclusion that the subject - dependent (termed personalized) model tends to per-
form better than the subject - independent (termed generalized) one because user
training data carries her/his personalized activity information.
Lara et al. [74] consider subject - independent approach more challenging because in
practice, a real-time activity recognition system should be able to fit any individual
and they consider not convenient in many cases to train the activity model for each
subject.
Weiss at al. [140] and Lockhart et al. [82] compared the subject - independent and
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the subject - dependent (termed impersonal and personal respectively) with the hy-
brid model. They concluded that the models built on the subject - dependent and
the hybrid approaches achieve same performance and outperform the performance
of the model based on the subject - independent approach.
Similar conclusions are achieved by Lane et al. [72], who compare subject - depen-
dent and subject - independent (respectively named isolated and single) models with
another model called multi-naive. In this case, subject - dependent approach out-
performed the other two approaches as the amount of the available data increases.
Chen et al. [31] compared the subject - independent, subject - dependent, and hy-
brid (respectively called rest-to-one, one-to-one, and all-to-one) models, and once
again the subject - dependent model outperforms the subject - independent model,
whereas the hybrid model achieves the best performance. The authors also classify
subject - independent and hybrid models as generalized models, while the subject -
dependent model falls into the category of the personalized models.
Same results have been achieved by Vaizman et al. [132], who compared the sub-
ject - independent, subject - dependent, and hybrid (respectively called universal,
individual, and adapted) models. Furthermore, they introduced context-based infor-
mation by exploiting many sensors, such as, location, audio, and phone-state sensors.

• Similarity based approach which consider the similarity between users as crucial
factor for obtaining a classification model able to adapt to new situations. In these
direction, Sztyler et al. [128, 129] proposed a personalized variant of the hybrid
model. The classification model is trained using the data of those users that are
similar to the final user based on signal patterns similarity. They found that people
with same fitness level also have similar acceleration patterns regarding the running
activity, whereas gender and physique could characterize the walking activity.
The heterogeneity of the data is not eliminated but it is managed in the classifica-
tion procedure.
A similar approach is presented by Lane et al. [72]. The proposed approach consists
in exploiting the similarity between users in order to weight the collected data. The
similarities are calculated based on signal pattern data, or on physical data (e.g.,
age and height), or on lifestyle index. The value of similarity is used as weight. The
higher the weight, the more similar two users are and the more that signals from
those users is used for classification.
Garcia-Ceja et al. [50, 51] exploited inter-class similarity instead of the similarity
between subjects (called inter-user similarity) presented by Lane et al. [72]. The
final model is trained using only the instances that are similar to the target user for
each class.
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Figure 2.13: A graphical representation of subject-independent, subject-dependent and
hybrid models.

• Classifier based approach obtains generalization from several combinations of
activity recognition models. Hong at al. [61] proposed a different solution where the
generalization is obtained by a combination of activity recognition models (trained
by a subject - dependent approach). This combination permits to achieve better
activity recognition performance for the final user. Reiss et al. [102] proposed a
model that consists of a set of weighted classifiers (experts). Initially all the weights
have the same values. The classifiers are adapted to a new user by considering a
new set of suitable weights that better fit the labeled data of the new user.

2.3.2.2 Personalized Deep Learning

Personalized Deep learning for heterogeneity with users in activity recognition have been
explored in the literature and mainly refer to two approaches:

• Incremental Learning refers to recognition methods that can learn from stream-
ing data and adapt to new moving style of a new unseen person without retrain-
ing [121]. Yu et al. [146] exploited the hybrid model and compare it to a new model
called incremental hybrid model. The latter is trained first with the subject - in-
dependent approach and then it is incrementally updated based on personal data
from a specific user. The difference from the hybrid is that the incremental hybrid
model gives more weights to personal data during training.
Similarly, Siirtola et al. [119] proposed an incremental learning method. The method
initially uses a subject - independent model, which is updated with a 2-steps fea-
ture extraction method from the test subject data. Afterwards, the same authors
proposed a 4 steps subject - dependent model [118]. The proposed method initially
uses a subject - independent model, collects and labels the data from the user based
on the subject - independent model, trains a subject - dependent model on the
collected and labelled data, and classifies activity based on the subject - dependent
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model.
Vo et al. [136] exploited a similar approach. The proposed approach first trains a
subject - dependent model from data of subject A. The model of subject A is then
transferred to subject B . Then, the unlabelled samples of subject B are classified to
the model of subject A. These data are finally used to adjust model for the subject
B .
Abdallah et al. [1] propose an incremental learning algorithm based on clustering
procedure which aims at tuning the general model to recognize a given user’s per-
sonalised activities.

• Transfer Learning bases on pre-trained network, it adjusts weights using new
user’s data. This procedure permits to reduce the time consumption of the training
phase. In addition, it is a powerful method for when scarcity of labeled data does
not permit to train a network from scratch. Rokni et al. [104] propose to personal-
ize their HAR models with transfer learning. In the training phase, a CNN is firstly
trained with data collected from a few participants. In the test phase, only the top
layers of the CNN are fine-tuned with a small amount of data for the target users.

Personalized machine learning has been largely investigated in literature and many differ-
ent approaches have been proposed. In particular, personalized machine learning methods
emphasize the user’s perspective, e.g. the models are modified in order to involve user’s
physical, sensors characteristics and her\him intra-, inter-variability. In contrast, state-
of-the-art deep learning approaches do not concentrate on subject variability by explicitly
computing extra evaluation on the user’s characteristics, and user’s heterogeneity is left
to the weights update of the network. In other words, deep-learning methods focus rather
on update and slightly modify pre-trained models when new user’s data are available.
The capability of deep-learning techniques to extract very high level features from data
overcomes the necessity of additional information and intrinsically user’s variability is
extracted directly from data.

2.3.2.3 Evaluation of the Classification performance

The evaluation of the classification performances aims at evaluate the reliability of the
results. For now on, we focus on supervised machine learning methods because is the core
of this thesis.

In supervised machine learning algorithms, the classification based on the definition
three datasets: the training, the validation and the test datasets. The training set is
designed to estimate the relation between input and output, together with the model
parameters. The validation set is designed to affine and tune the model parameters and
hyper-parameters. With hyper-parameters, it is meant the parameters which are not
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necessarily directly involved in the model, but define the structure of the algorithm, such
as, for instance, the number of the channels in a deep network. Finally, the test set is
used to evaluate the classification performance of the resulted classification model.

Training, validation and test sets are generally defined as a partition of the original
dataset and mostly representing, for instance, the 70%, 20%, and 10% of the number
of the samples. It is a common practice to perform the k-fold cross-validation procedure
[114, 15, 105]. The k-fold-cross-validation is a procedure that helps to achieve more robust
results and helps to avoid that the algorithm specializes on a specific partitions of the
original dataset.

In particular, it consists in split the training and test set in k-folds. The entire classi-
fication procedure is performed on each split, k times. Thus, k models are estimated, and
their performances are evaluated and averaged. Especially in HAR, there are several vari-
ants of k-fold cross-validation. More in details, HAR community has defined three main
approaches: subject-independent, subject-dependent, and hybrid [130] [140] [44]. The
subject-independent (also called impersonal) approach does not use the end user data for
the development of the activity recognition model. That is, the training set contains all
subject but the end-user subject. The subject-dependent (also called personal) approach
only uses the end user data for the development of the activity recognition model. Thus,
the training and test set collect only data of end-user.

The flaw of this approach is that it must be implemented for each end user . The
hybrid approach uses the end user data and the data of the other users in the training
and test set. The classification model is trained both on the data of the users and on a
part of the data of the final user. The idea is that the classifier should recognize easier
the activity performed by the final user.

The classification performance is calculated through heuristic metrics based on the
correctly classified samples. In particular, these metrics are all derived from the confusion
matrix. In supervised machine learning, the confusion matrix compares the groundtruth
(the observed labels) with the estimated labels. The binary case is shown in Table 2.7

Estimated
Groundtruth 1 0

1 True Positives (TP) False Negatives (FP)
0 False Positives (FN) True Negatives (TN)

Table 2.7: The Confusion Matrix: a representation of true negative, true positive, false
negative and false positive.

True Positives are observed 1-class samples which are classified as 1. True Negatives
represent the number of observed 0-class samples which are classified as 0. False Negatives
are 0-class samples which are classified as class 1. Viceversa, False Positives represent the
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number of samples classified as 1-class but which truly belongs to 0-class. The confusion
matrix can be extended to the multi-class classification problem. In this case, on the
principal diagonal are displayed the number of correctly classified samples, while out of
the principal diagonal miss-classified samples are listed.
The classification performance can be measured by focusing either on the number of cor-
rect classified samples or by giving more importance on the miss-classification. The choice
of the evaluation metric accentuates either one or the other aspect of the classification.
In the context of HAR, the accuracy is the most used metric for the evaluation of the
classification performance [72, 124, 60, 149]. According to the confusion matrix showed
in Table2.7, accuracy (Acc) is defined as follows:

Acc =
TP + TN

TN + FP + FN + TP

It calculates the percentage of correctly classified samples over the total number of the
samples. The accuracy highlights the correct classification performance and gives more
emphasis to the classification of the true positives and of the true negatives.

In some cases, it is required that the evaluation of the classification performance
accentuates the miss-classifications, such as either the false positive or the false negatives
cases. For instance, in the case of falls detection, the algorithm should be more penalized if
it does not recognize a fall, when it occurs (false negative) instead that it does recognize a
normal behavior as fall (false positive). An appropriate metric for this case is the Fβ-score.
It is defined as function of the recall and precision. The recall is also called sensitivity or
true positive rate and is calculated as the number of correct positive predictions divided
by the total number of positives, the best value correspond to 1, the worst to 0. The
precision is also called positive predictive value and is calculated as the number of correct
positive predictions divided by the total number of positive prediction, the best precision
is 1 whereas the worst is 0. Formula are given by:

precision = TP
TP+FP

percentage of true positive among the positive classified samples

recall = TP
TP+FN

percentage of true positive among the real number of positive samples

Fβ = · (1+β2)·precision·recall
β2·precision+recall

combination of precision and recall measures

If β = 1, F1-score is the harmonic mean of the precision and the recall.
The specificity, also called true negative rate (TNR), is calculated as the number of

correct negative predictions divided by the total number of negatives. Best value cor-
responds to 1, while the worst is 0. Together with the sensitivity, the specificity helps
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to determine best parameter value, when a tuning procedure is computed. A common
practice is to compute the Receiver Operating Characteristic curve (ROC) which plots
the value of the sensitivity against the 1-specificity by varying the values of the model
parameters. The curve is valid instrument which takes into account both the sensitivity
and the specificity for the models parameter choices. From the ROC it is possible to
compute the Area Under the Curve (AUC), which represents another measure of the clas-
sification performance. In particular, it provides an aggregated measure of the algorithm
performance across all possible classification models. It can also be interpreted as the
probability that the model ranks a random positive example more highly than a random
negative example.

2.3.3 Conclusions

Today portable devices have advanced computing capability and connectivity and usually
include several sensors, such as a accelerometer and gyroscope, which provide a consider-
able amount of data. Those factors have stimulated the interest of the scientific community
in developing artificial intelligence methods for automatic Human Activity Recognition.
In particular, HAR community focuses on machine learning and deep learning techniques.
In Section 2.3.1, state-of-the-art traditional methods have been presented.

As discussed, traditional methods presents several limitations. Traditional machine
learning methods are low cost in terms of time consumption, data, and complexity, but the
dependency on expert knowledge in the features extraction phase generates non-robust
models, which are often difficult to compare. Deep learning methods remains stable in
terms of feature extraction, which is mainly automatically done, but the training phase
requires much more data, and, consequently, it is either very time consuming or requires
expansive hardware. Particularly in HAR, traditional machine learning and deep learning
systems are limited in their ability to generalize to new users and/or new environments,
and require considerable effort and customization to achieve good performance in a real-
context due together to the inter-\ intra-subject variability and to the scarcity of data.

Personalized machine learning and deep learning state-of-the-art solutions have been
reported. In particular, state-of-the-art machine learning solutions mostly refer to three
personalization concepts: data-based personalization, similarity-based personalization
and classifier-based personalization. That is, a preprocess is made before training the
model, aimed at managing subject’s variability, based either on different training and
test datasets split or on user’s similarity metrics. The preprocess, generally, improves
the algorithms capability to discriminate between subjects and their differences. A new
instance becomes easier to classify because of additional user’s information which address
the algorithm choices.

In the following chapters we will discuss in more details about machine learning and
deep learning techniques and their personalization. In particular, the work is subdivided
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in two main chapters. A new personalized machine learning method is defined in chapter
3 and compared to traditional machine learning methods.

In Chapter 4 we evaluate deep learning methods for HAR and propose a new person-
alized deep learning methods based on subjects similarity and compare the results with
the traditional and personalized machine learning techniques.
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Chapter 3

Personalization in HAR and Machine
Learning

3.1 Motivation

During the last decade, plenty of traditional machine learning as well as deep learning
methods for HAR that use accelerometers have been proposed in literature [112, 73, 144,
107, 138]. However, real-world HAR systems achieve non satisfying recognition accuracy
in real world applications mostly because HAR techniques struggle to generalize to new
users and/or new environments [61, 63].
Several factors may affect the accuracy of activity recognition methods: i) position of the
device: pocket, hand, bag, etc; ii) differences between different brands of sensors, in terms
of sensitivity range and sampling frequency; iii) human characteristics, such as age, gender,
weight, height, lifestyle, and physical abilities. While factors related to the position and
the characteristics of the devices have been largely investigated, few works have explored
the effects of human characteristics on recognition accuracy [10, 72, 140, 87, 61].
Lane et al. [72] proposed a new method to take into account human factors. This
method exploits the similarity between users to weight training data and thus to improve
the recognition accuracy. Unfortunately, results achieved by these researchers are not
reproducible because the dataset used for the experimentation is not publicly available
and moreover, the authors mainly focused on the automatic annotation of inertial signals
and not classification of activities of subjects. The approach proposed by Lane et al.[72]
deserves further investigation and thus it has been the starting point of the research we
performed and whose results are presented in this section. Our research question was:
does personalization machine learning methods be employed for increasing the accuracy of
traditional machine learning techniques based on accelerometer signals? To reply to this
research question, we have:

• experimented several personalization methods on three public datasets, MobiAct,
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Motion Sense and UniMiB-SHAR, in order to make the results reproducible and
thus allowing future research on this topic;

• defined a suitable procedure to split the experimental data into training, validation,
and test sets;

• defined a new personalization method that includes and generalizes the different
ideas discussed in the state-of-the-art.

The Chapter is organized as follows. Section 3.2 presents the proposed models. In
particular, section 3.2 describes the Activity Recognition Process (ARP) applied on three
dataset, the implementation of the personalization models, and the classification algo-
rithms we exploited for the analysis. Section 3.3 describes the experiment setup in which
the description of the datasets is presented together with a preliminary statistical analysis.
Section 3.4 discusses a comparison between personalized machine learning and traditional
machine learning techniques. Finally, section 3.5 the conclusions.

3.2 Proposed Methods

In this section we propose personalization models based on similarity between users in
term of physical attributes and/or signals patterns. Personalization models are used to
weight users training data of the classifier, that in our case is the Adaboost classifier. We
demonstrate that a classifier trained on data personalized in this way is more powerful, in
terms of recognition accuracy, with respect to a classifier trained without personalization.

The rationale behind similarity-based personalizations is based on two intuitions:

1. Users with different physical characteristics, such as age or weight, walk or run in a
different way. This results in a different accelerometer signal. Focusing the training
data on those users that are more similar to the user under test may help to increase
recognition capabilities of the classifier. We refer to this aspect as physical-based
similarity.

2. Independently from similarities based on physical characteristics, accelerometer sig-
nals from two different users may be more similar with respect to other users per-
forming the same activity. We refer to this aspect as signal-based (or sensor-based)
similarity.

Before entering into the core of the methods we propose, we introduce a method of
data split for training and testing data that we consider an indispensable step in order to
reliably validate the methods of personalization under test. Figure 3.1 shows the steps of
the method that are described in the following.
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1) Sampling rate
homogenization

2) Data
Segmentation

3) Data
Split

4) Feature
Extraction

Subsequent segments

Peak Centered Segments

Training Test

Features

Input Datasets Homogeneous Signals

x, y, z, mean, std, ...
x, y, z, mean, std, ...

Figure 3.1: Data preparation and feature extraction pipeline.

3.2.1 Data preparation

For validating personalization models we selected three different datasets: UniMiB-SHAR [88],
MobiAct [135], and Motion Sense [86]. Each signal of the datasets is composed of three
accelerometer components along the x, y, and z axis. Since public available datasets are
usually acquired by different research groups using different devices and protocols, it is
common to have non-homogeneous characteristics in terms of data collection, such as po-
sition of the sensor, sampling frequency of the sensor, number of participants, activities
not performed by all users, etc. This inhomogeneity leads sometimes to not-comparable
results among different datasets.

Machine learning methods take a segment made of N subsequent accelerometer samples
as input. It means that the original accelerometer signals need to be segmented before
being fed into a classifier.

Another important point concerning data preparation is represented by the split be-
tween training and test set. In literature there are two very common procedures, that
are the k-cross and leave-one-subject-out validation. Those are mutually exclusive. As
described later on, for our scope, we had to employ the k-cross validation on the top of
the leave-one-subject-out one.

Defining a common protocol for data preparation is necessary in order to manage
different datasets and it is important for the reproducibility of the experiments.

In the following we describe the steps of the data preparation protocol that are pictured
in Figure 3.1.

3.2.1.1 Sampling rate homogenization

Sensors acquire data at a given sampling frequency, with a given range of intensity values,
and so on. Each manufacturer designs its own sensor with operating specifications that
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may be different from the typical ones. Moreover, sensors acquire data at not constant
sampling frequency. The three datasets we considered have different sampling rates. Since
machine learning methods require input data in a given format (e.g., number of samples
per second and intensity range), that is, consistent over time, we had to pre-process data
from the datasets in order to make them homogeneous in terms of sampling rate. To this
end, we have chosen the lowest sampling rate among all the sampling rates of the datasets,
then we have subsampled all the signal to fit that frequency. The sampling rate chosen
is 50 Hz. Literature suggests that about 50Hz is a suitable sampling rate that permits to
model human activities [101], thus our choice does not negatively affect the results. This
step is represented by the action number 1 in Figure 3.1.

3.2.1.2 Data segmentation

It is a common practice to divide the original signal data in segments, or windows, which
contain a certain number of samples taken from the original accelerometer signal at a
given frequency rate. The length of each segment is a parameter of the classifier and
must be compatible with the temporal duration of the activities. In other words, the
segment should contain at least one occurrence of any activities included in the dataset
list. Otherwise, signals that contain incomplete portions of activity may be erroneously
classified. Usually, the slowest activity is walking and it is common practice to consider
2.5 seconds as the minimum temporal interval to observe two human steps. It means that,
a 2.5 seconds segment, at a sampling frequency of 50 Hz, contains 125 samples.

Once the length of each segment has been fixed, there are two possible ways for
segmenting data:

• Subsequent (overlapped) segments. Each signal is divided into subsequent windows
of a given size and each of them can be overlapped with the previous and the next
one. The overlapping percentage is a parameter of the algorithm. In this study we
considered windows of 5 seconds. We computed the analysis with no overlapping
and with 50% of overlapping and compare the results [88].

• Segments centered on the peak of the signal. Each signal is divided into subsequent
windows but only if the intensity of the recorded signal is higher than a given
threshold. Usually the threshold is 2g , where g is the gravitational constant. When
a value v exceeds the threshold, a segment is taken around the temporal position of
the peak value v .

Data segmentation allows to augment data and consequently to reduce the overfitting
of machine learning algorithms that is most of the time caused by a low amount of training
data. In Figure 3.1 we show the data segmentation (action number 2) with a dataset with
subsequent segments (the blue dataset) and another dataset that exploits peak centered
segments (the green dataset).
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3.2.1.3 Data split

A human activity dataset is composed of inertial signals recorded through a smartphone
worn by human subjects that during experimental sessions performed a certain number of
activities. Ideally, there is a list of activities to be performed by all the subjects. One of
the recurring problems with the literature datasets is that not all the subjects performed
all the activities that are in the dataset list.

The k-fold cross validation separates the dataset into k groups which, alternately,
compose the training and the test sets disregarding if the segments of a given subject is
either in the training and in the test split (shown in Figure 3.1 as action number 3).This
behavior is not suitable for investigating personalization models, because we have to be
sure that data from the user under test are or not within the training set. To this end, the
subject-out-validation strategy is a more suitable way to split training and test data. This
strategy considers training data made of segments from all the subjects but the subject
under test.

To better explore personalization methods, we also need to ensure that the training
and test splits are composed by the same list of activities and more important that all the
users of dataset performed the same list of activities. This is not always true, because, as
discussed above, it may happen that not all the subjects performed all the activities of
the list. To this scope, we removed those subjects from the dataset that did not perform
all the activities included in the dataset list or alternatively, if this leads to a huge lost of
subjects, we removed from the dataset those activities not performed by all subjects.

In this study we explored personalization methods on the top of three different data
splits: subject-dependent, subject-independent and hybrid (see Figure 2.13). The subject-
dependent split considers the training and test sets made of only signals from the subject
under test. The subject-independent split considers a test set made of only signals from
the subject i , and a training set made of signals from all the subjects but i . The hybrid
split is a subject-independent split with the injection of a small amount of signals of the
subject i within the training set. In order to realize the hybrid approach we need that
some data from the subject under test is part of the training data. At the same time,
to make the hybrid approach comparable with the others, we need the test set is always
the same whatever is the data-split adopted. To ensure that, the data from each subject
is divided using the k-fold cross validation strategy with the constraint that each fold
contains the same number of activities. Given a subject under test, one of the k folds is
taken as test set for all the three data-splits: subject-dependent, subject-independent and
hybrid. The remaining folds are used as training data of the subject-dependent data split,
and also in combination with the data from other subjects in the hybrid data split. The
training data of the subject-independent is made of all the k − 1 folds of each subjects
that are not included in the corresponding test sets.
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3.2.1.4 Feature extraction

In literature it is shown that using a set of features instead of raw data improves the clas-
sification accuracy [40]. Furthermore, features extraction reduces the data dimensionality
while extracting the most important peculiarity of the signal. Each accelerometer signal
of the datasets is composed of three accelerometer components along the x, y, and z axis.
An entire segment is as follows:

(accx1 , accx2 accx3 ... accxn︸ ︷︷ ︸
x−dimension acceleration

· · · accy1 accy2 accy3 ... accyn︸ ︷︷ ︸
y−dimension acceleration

· · · accz1 accz2 accz3 ... acczn︸ ︷︷ ︸
z−dimension acceleration

)

(3.1)

where n = s · f , and f is the sampling rate.
We considered a vector of hand-crafted time and frequency domain features calculated

on each segment and for each accelerometer direction. Table 2.2 presents the features we
considered [65, 84, 133, 40, 20]. The resulting feature vector is obtained by concatenating
the feature extracted from the component x, y, and z of the accelerometer signal. This
is presented in Figure 3.1 in action number 4 as the last step of the data preparation
protocol.

3.2.2 Subject similarity

In this study we define a new personalization model including and generalizing the differ-
ent models presented in the-state-of-the-art. The general idea is that people with different
physical aspects, life style, or habits may walk, run, etc., in a different way and that ac-
celerometer signals related to the same activity, disregarding the physical similarities
between subjects, may have common characteristics [72].

To take into account such a diversity, we introduce the concept of similarity between
subjects and than we exploit the similarity to weight the training data in order to give
more importance to data that are more similar to data of the user under test.

Each subject i can be described with a feature vector gi = {g1, ... , gK}. Similarity
between two subjects i and j is defined as follows:

sim(i , j) = e−γd(i ,j) (3.2)

where γ is a scale parameter and d(i , j) is the Euclidean distance between the feature
vector of two subjects:

d(i , j) =

√√√√ K∑
k=1

(gk,i − gk,j)2 (3.3)
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The resulting similarity value ranges from 0 to 1: 0 means that the two subjects are
dissimilar, and 1 means that the two subjects are equal. The idea is to take advantage of
the similarity between subjects as follows. Given a subject i under test, all the training
data are weighted by using the similarity between the user i and the rest of the users. We
can define three types of similarity: physical-based (simphysical), sensor-based (simsensor),
and physical combined with sensor-based similarity (simphysical+sensor).

Figure 3.2 shows the training data which are weighted according to the similarity.
Each sample are so considered with different importance in the classification with respect
to the similarity between the subject in the training and in the test set.

3.2.2.1 Similarity based on physical characteristics

For each subject we define a feature vector that is made of three real values gphysical =
(age,weight, height) = (gp

1 , gp
2 , gp

3 ). Each component of the triplet ranges from 0 to 1
because all the ages, weights, and heights of the subjects have been normalized to fit
the range of real number [0 − 1]. The choice of these characteristics is inspired by the
literature and it is subject to the availability of the metadata of the public datasets. We
decided to not consider lifestyle of the subjects as further subject characteristic because
this information is usually not available in public datasets.

Figure 3.2 shows some examples of physical similarity between subjects from the
dataset Motion Sense. The examples have been obtained with different values of γ ranging
from a low to a high value. Each figure is the visual representation of the similarity ma-
trix between all the subjects of the dataset. Clearly the diagonal of the matrix is always
1 (each subject is similar to him/herself). The parameter γ plays a crucial role in the
definition of personalization models. γ determines the shape of the exponential function:
higher values of γ correspond to more separation between subjects. With γ = 0 all the
subjects has similarity 1.

3.2.2.2 Similarity based on signal distance

For each subject we define a feature vector that is made of 18 real values described in
Table 2.2: gsensor = (g s

1 , ... , g s
18). Each subject i has Ni segments. We calculate the simi-

larity between 2 subjects i and j by summing up the similarity between each segment of
the subjects:
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Figure 3.2: Physical Similarity Matrix for different values of γ = 0.01, 1, 10, 40 (clock-
wise order).

simsensor (i , j) =

Ni∑
m=1

Nj∑
n=1

sim(xin, xjm)

=

Ni∑
m=1

Nj∑
n=1

e−γd(xin,xjm) (3.4)

3.2.2.3 Similarity based on physical characteristics and signal distance

For each subject we define a similarity with respect to the other subjects that is made of
the weighted sum of physical and sensor similarity:

simphysical+sensor (i , j) = α · simsensor (i , j) + β · simphysical(i , j) (3.5)
(3.6)

where α and β are such that α + β = 1.

3.2.3 Personalization models

In order to evaluate the influence of the similarity-based personalization strategies, we
have performed 2 groups of experiments:
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• Experiments without similarity-based personalization: This group of experiments
ignores the similarity between subjects that is equal to consider for all the types of
similarities γ = 0. For this first group we considered the following dataset splits:

– Subject-dependent model: the training set and the test set are composed only
by the data of the test subject. For each subject under test, the procedure is
reapeated k times according to the k-cross-validation.

– Subject-independent model: we train the classifier using the data of all subjects
but the test. For each subject under test, the procedure is reapeated k times
according to the k-cross-validation.

– Hybrid model: we train the classifier using the data of all subjects and a portion
of the data of the test which are the (k − 1) splits not used for the test. For
each subject under test, the procedure is reapeated k times.

• Experiments with similarity-based personalization: This group of experiments con-
siders the similarity between users by integrating the sample data with the similarity
weights and so the classification is influenced by the similarity between users. For
the second group of experiments, we considered the following dataset splits:

– Subject-independent-weighted model: we train the classifier using the data of
all subjects but the test as in the first group of experiments. The segments of
the training data are weighted with the similarity between the subjects in the
training and the subject of the test. For each subject under test, the procedure
is reapeated k times according to the k-cross-validation.

– Hybrid weighted model: we train the classifier using the data of all subjects and
a portion of the data of the test (which are the k−1 splits not used for the test).
The segments of the training data are weighted with the similarity between the
subjects in the training and the subject of the test. For each subject under
test, the procedure is reapeated k times according to the k-cross-validation.

For this group of experiments, it is not possible to employ the subject-dependent
split because by definition it does not contain samples from other users and then it
is not possible to compute the similarity between different subjects.

3.2.4 Classifier

To evaluate the goodness of the personalization strategies we considered the Adaboost
classifier which permits to weight training data before starting the training process [21].
We have also experimented Support Vector Machines and k-Nearest Neighbor. However
for these classifiers the adoption of the similarity-based weighting procedure did not lead
to remarkable accuracy modifications whatever was the value of γ.

55



CHAPTER 3. PERSONALIZATION IN HAR AND MACHINE LEARNING

Figure 3.3: Accuracy as the values of γ increases.

The classification was reapeated several times: for each model and for each value of γ.
The choice of appropriate values of γ is not trivial. The value of γ is arbitrary in (0,+∞),
zero and infinity excluded.

Whatever is the classifier, the performance are measured using accuracy. Given E
the set of all the activities types, a ∈ E , NPa the number of times a occurs in the
dataset, and TPa the number of times the activity a is recognized, accuracy is define as
in Equation (3.7):

Acc =
1

|E |

|E |∑
a=1

Acca =
1

|E |

|E |∑
a=1

TPa

NPa
. (3.7)

Acc is the arithmetic average of the accuracy Acca of each activity, defined in Section
2.2.

A grid searching procedure permitted us to select the best value according with accu-
racy results. In Figure 3.3 we observe the accuracy behavior as γ increases. We notice
that if the value of γ grows, also the value of the accuracy grows until the value 40,
and then starts to decrease. This behavior is exactly what we expected because when
γ → +∞ the number of training data decreases and so the accuracy. If γ = 0 we also
have a decreasing of accuracy because it correspond to a unpersonalized model.

3.3 Experiment setup
We experimented three public datasets containing accelerometer signals of Activities of
Daily Living (ADLs) and Falls recorded by the sensors embedded in smartphones.

UniMiB-SHAR The dataset contains tri-axial acceleration data organized in 3s win-
dows around the peak. Signals of 17 different activities (ADLs and Falls) are collected and
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Sex Age Weight Height
Dataset Male Female (years) (kg) (cm)

UniMiB-SHAR 6 22 18-60 50-82 160-190
27± 11 64.4± 9, 7 169± 7

MobiAct 43 14 20-47 50-120 158-193
25.19± 4.45 76.8± 14.16 175.73± 7.77

Motion Sense 13 9 18-46 48-102 161-190
28.8± 5.46 72.12± 16.21 174.2± 8.9

Table 3.1: Datasets statistics concerning subjects physical characteristics.

performed by 30 subjects. For each of them sex, age, weight, and height are known [88].
The original sampling rate is 50Hz. We have chosen segments of 3 seconds for this dataset.

The subjects placed the smartphone used for the acquisition (a Samsung Galaxy Nexus
I9250) half of the times in the left trouser’s pocket and the remaining times in the right
one. They repeat each activity several times. After having applied the data split procedure
described in section 3.2.1.3, the number of subjects is 27 and the number of the activity
is 13.

MobiAct.This dataset includes tri-axial acceleration data of 15 ADLs and Falls
recorded with a Samsung Galaxy S3 and performed by 67 participants. The windows
size we considered is of 5s with a sample rate of 87Hz. Additional information on the
subjects are sex, age, weight, and height. The smartphone is located with random orien-
tation in a loose pocket chosen by the subject [135]. The original sampling rate is 87Hz.
We have chosen segments of 5 seconds for this dataset.

After having applied the data split procedure described in section 3.2.1.3, we removed
10 subjects and 2 activities because of missing values.

Motion Sense.This dataset contains time-series data generated by the accelerometer
sensors of an iPhone 6s worn by 24 participants. Each of the subjects performed 6
activities (only ADLs). The smartphone were kept in the participant’s front pocket.
After having applied the data split procedure described in section 3.2.1.3, we removed 2
subjects [86]. The original sampling rate is 50Hz. We have chosen segments of 5 seconds
for this dataset.

3.3.1 Descriptive and Exploratory Analysis

Table 2.2 shows the statistics of the considered datasets. The datasets present almost
the same distribution of subject characteristics. The box-plots in Figure 3.4 show more
information about dispersion, position, and outliers of the subjects characteristics. There
are many outliers for the variable Age which means that there are some person with age
out of 1.5 interquartile difference. Despite of this fact, the variability is not low. For
height and weight we observe more variability and few outliers.

An other descriptive statistics we performed is the frequency distribution of the ac-
tivities. In Figure 3.5 we present activities distribution respect to the three datasets. As
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(a)

(b)

(c)

Figure 3.4: Boxplots over Age, Weight and Height: (a) UniMiB-SHAR; (b) MobiAct; (c)
Motion Sense.

we can see in the graphs, UniMiB-SHAR and MobiAct contain more activities than Mo-
tion Sense and more important some activities, such as walking, standing, running and
jogging, are more frequent than other activities such as stairs up, falling right, etc.

To further motivate our work we performed a multidimensional scaling analysis of
the physical characteristics of subjects of each dataset [36]. This analysis may permit
to highlight similarity between subjects that share similar physical characteristics. We
applied the analysis to a matrix Dphysical of size N×N where N is the number of subjects of
a given database. The matrix Dphysical is calculated by calculating the similarity between
all the N subjects of the given database using equation (2) mentioned in section 3.2.2.

Figure 3.6 shows the results of such an analysis mapped into 2 dimensions. Each row
of the figure is related to a given dataset. Each point of the graph represents one subject
of the dataset and each color shows a given cluster of subjects.

For each dataset, in the figures on the left, red stands for young subjects and blue
for older subjects, while in the figures on the right, green stands for normal Body Max
Index (BMI) subjects and red stands for subjects with an abnormal BMI. The result of
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(a)

(b)

(c)

Figure 3.5: Activity sample Distribution: (a) UniMiB-SHAR; (b) MobiAct; (c) Motion
Sense.

this analysis substantially confirms that a kind of implicit separability, on the basis of
physical characteristics, between subjects exists.

The results of the multiscale analysis highlighted that age and physical characteristics
are discriminator factors under subjects. In all the cases, age discriminates subjects, while
BMI discriminates in two cases over three.

Until now we just explored datasets in terms of physical aspects. Here we want to
investigate if signals present some discriminator tendency. For this reason we exploited
the Principal Component Analysis (PCA) [66] over the features presented in Table 2.2.
The first and second principal component have been computed for all datasets and are
shown in Figure 3.7. The points on the graphs represent the subjects and the blue color
stands for subjects with a 21 < BMI < 28 and the red color stands for subjects with BMI
values outside the interval considered above. PCA analysis shows evidently that subjects
are separable on the basis of the features extracted from the segments of the original
accelerometer signals.
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(a)

(b)

(c)

Figure 3.6: Multidimensional Scaling over physical characteristics. (a) UniMiB-SHAR;
(b) MobiAct; (c) Motion Sense.

(a) (b) (c)

Figure 3.7: PCA using 18 features. (a) UniMiB-SHAR; (b) MobiAct; (c) Motion Sense.

3.4 Results

As discussed in section 3.2.3 we have performed 2 groups of experiments: 1) experiments
without similarity-based personalization and 2) experiments with similarity-based person-
alization.

For sake of comparison we have experimented two different classification strategies
for each group of experiments: AdaBoost combined with hand crafted (AdaBoost-HC),
see Table 2.2, AdaBoost combined with deep features (AdaBoost-CNN). We have used
the Matlab version of AdaBoost (MathWorks). To further evaluate the goodness of deep
features, we experimented the use of Support Vector Machines (SVM) combined with
deep features (SVM-CNN) in the case of the first group of experiments. We have used
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Layer name Shape

conv1 {1×3} × n
conv2_n {1×3× fmaps} × n
conv3_n {1×3× 2fmaps} × n
conv4_n {1×3× 4fmaps} × n
avg_pool_x 1×32
fully conn. (1× 4fmaps)× 15
softmax 1×15

Table 3.2: Residual Network Architecture

the Matlab version of SVM (MathWorks).
Deep features have been achieved by using the Residual Network developed in [40].

Table 3.2 details the network architecture proposed for this study. The input size of the
network is 1 × 128 × 3, that corresponds to 3 segments along the three axes x, y, and z.
The network architecture is made of an initial convolutional block, 3 residual stages, each
containing a variable number n of residual blocks, average pooling layer, fully connected
layer, and softmax layer. A convolutional block is made of three layers: convolutional,
batch normalization, and ReLu. A residual block is made of 2 subsequent convolutional
blocks and an addition operator that sums the input of the residual block with the output
of the residual block itself. Each convolutional layer is 1 × 3 × fmaps , where fmaps is the
number of feature maps of the filter. The best values for n and fmaps have been found by
following a grid search approach: n ranged between 3 and 21, while fmaps ranged between
10 and 200.

The network has been trained on the UCI-HAR [7] dataset and then used as feature
extractor. In particular, we have taken the last pooling layer before the last fully connected
layer thus obtaining a 1024-dimensional feature vector.

3.4.1 Experiments without similarity

For the first group of experiments, we have randomly initialized the weights of the al-
gorithm while for the second group, we have weighted all the data belonging to a given
subject with the corresponding weights given by the similarity between the given subject
and the test subject.

Table 3.3 reports the results achieved by using the AdaBoost classifier for both the
groups of experiments. The second group of experiments is highlighted using a light
gray color while the remaining are numbers related to the first group of experiments. On
average, looking at the fourth column of the first group of experiments, it is quite clear that
the hybrid strategy works better than the subject-independent one, the improvement is of
about 3% (see also Table 3.4). This behavior was some how expected, because the hybrid
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strategy considers the training set containing a small amount of data that belongs to the
subjects under test. The presence of data of subject under test permits the AdaBoost to
better specialize on the subject under test.

UniMiB-SHAR MobiAct Motion Sense AVG

subject-dependent 84.79 45.57 43.55 57.97

UniMiB-SHAR MobiAct Motion Sense AVG
∆ max % ∼ 24 ∆ max % ∼ 7 ∆ max % ∼ 4 ∆ max 14%

subject-independent 56.80 81.29 72.48 70.19
hybrid 61.66 83.73 73.82 73.07
subject-independent - Physical Similarity 57.39 81.62 72.45 70.49
subject-independent - Sensor Similarity 57.00 82.45 74.03 71.16
subject-independent - Physical Sensor Similarity 56.93 82.64 73.85 71.14
hybrid - Physical Similarity 85.44 89.43 77.76 84.21
hybrid - Sensor Similarity 84.71 90.76 78.06 85.51
hybrid - Physical Sensor Similarity 84.87 90.90 77.86 84.53

Table 3.3: % Accuracy of the first and second group (light gray) of experiments achieved
using AdaBoost-HC.

AdaBoost-HC AdaBoost-CNN SVM-CNN AVG
∆ max % ∼ 14 ∆ max % ∼ 30 − ∆ max % ∼ 24

subject-dependent 57.97 62.32 86.01 68.76
subject-independent 70.19 60.61 60.60 63.80
hybrid 73.07 72.36 70.23 71.89
subject-independent - Similarity 70.93 61.67 - 66.30
hybrid - Similarity 84.75 90.03 - 87.39

Table 3.4: % Accuracy of the first and second group (light gray) of experiments using
AdaBoost-HC, AdaBoost-CNN and SVM-CNN.

Moreover, apart from UniMiB-SHAR, the subject-dependent strategy achieves an av-
erage accuracy of about 35% lower than both subject-independent and hybrid strategies.
In the case of UniMiB-SHAR, this is not true because the dataset is made of segments
taken around peaks of the accelerometer signal while the other datasets are made of seg-
ments taken subsequently with a zero or 50% of overlap. In case of walking, there is an
high probability that in a segment of 3 seconds there are many peaks (higher than 2g).
Let us suppose that the number of peaks is 5, it means that for a segment of 3 seconds we
take 5 segments, that are quite similar, for classification. The resulting dataset contains
a large amount of redundant segments. A subject-dependent strategy takes advantage of
this redundancy and specializes very well the classifier especially when the training set is
made of only data from the subject under test. In the case of MobiAct and Motion Sense
datasets, this is not true because we take a segment of 5 seconds that shares 50% of its
length with the previous and subsequent segments.
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The comparison between AdaBoost-HC, AdaBoost-CNN, and SVM-CNN is showed in
Table 3.4. Results are averaged across datasets. Numbers show that overall, the use of
hand-crafted features outperform the use of CNN features. However, the best performance
is achieved by the Adaboost-CNN combination with hybrid model and similarity. This
behavior is also confirmed by the results of the SVM-CNN approach that, apart from the
subject-dependent case, are quite similar to the results achieved by the AdaBoost-CNN
approach.

3.4.2 Experiments with similarity

The three similarity-based personalizations are then computed on the basis of physical
characteristics, signal characteristics, and physical combined with signal characteristics.
These personalizations have been applied to both subject-independent and hybrid strate-
gies. The corresponding results for AdaBoost-HC are highlighted in Table 3.3 with a light
gray color. On average, looking at the fourth column of the group 2 of experiments, it is
quite clear that the similarity-based personalizations lead to a considerable improvement
only in the case of the hybrid strategy. In the case of UniMiB-SHAR, the maximum
improvement that we achieved is of about 0.5% and 24% for subject-independent and
hybrid strategy respectively. In the case of MobiAct, the maximum improvement is of
about 1.5% and 7% for subject-independent and hybrid strategy respectively. In the case
of Motion Sense, it is of about 1.5% and 4% for subject-independent and hybrid strategy
respectively. In Table 3.4 results achieved by the AdaBoost-CNN approach confirm that
the use of similarity increase the performance with a highest improvement of about 30%.
Across datasets, on average, similarity-based personalizations lead to an improvement
of performance of about 0.9% and 14.7% for subject-independent and hybrid strategy
respectively (see also Table. 3.5).

The fact that similarity-based personalizations combined with the hybrid strategy
work better than personalizations combined with the subject-independent strategy is not
surprising. Similarities between subjects are used to weight the data of the training set. In
practice data belonging to more similar subjects are more important than data belonging
to less similar subjects.

Among similarity-based personalizations, differences are few. It is clear from numbers
that physical, signal, and physical + signal -based similarities lead to almost the same
improvement of accuracy.

3.5 Conclusions

Recently, a significant amount of literature concerning machine learning techniques has
focused on human automatic activity recognition (HAR) by using accelerometer recorded
by smartphones. Real-world HAR systems may achieve not satisfying recognition accuracy
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no-similarity similarity ∆%

subject-dependent 60.15 - -
subject-independent 65.40 66.30 0.9
hybrid 72.72 87.39 14.7

Table 3.5: % Average of accuracy achieved on the subject-dependent split and on subject-
independent and hybrid combined with similarity-based personalization methods.

in real world applications because HAR techniques may struggle to generalize to new users
and/or new environments. Several factors may affect the accuracy of activity recognition
methods: i) position of the device; ii) differences between different brands of sensors; iii)
human characteristics. While factors related to the position and the characteristics of
the devices have been largely investigated, few works have explored the effects of human
characteristics on recognition accuracy.

In this Section we presented several personalization methods on three public datasets
in order to make the results reproducible and thus allowing future research on this topic.
The personalization methods experimented are based on the concept of similarity between
users. This means that users may have similar physical characteristics or have similar
accelerometer signals and that, such a similarity can be employed to weight training data
in a way that data belonging to more similar subjects to the subject under test count
more than data of less similar subjects.

We have combined personalization methods with suitable splits of the data: subject-
independent and hybrid. The first split considers training set made of data from all the
subjects but the subject under test, while the second split considers a training set made
of data from all the subjects but the user under test and a small amount of data of the
user under test. Experiments, on average, prove that personalization methods improve
accuracy of the classifier only if combined with a hybrid split. In this case the increment
of accuracy, on average, is of about 11%.

Results in this section confirm that personalization methods can be effective especially
if a small amount of subject-dependent data are included in the training set. The way
we carried out the experimentation makes it possible to reproduce the results and more
important it paves the way for future investigations on this topic.
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Chapter 4

Personalization in HAR: How Far Can
We Go With Deep Learning?

4.1 Motivation
During the last decade, a plenty of traditional machine learning as well as deep learning
methods have been proposed in literature [70, 95, 144, 107, 138]. In the recent literature,
deep learning methods are predominant [138]. Deep learning methods require a special
hardware setup (Graphical Processing Units - GPUs) to speed up computation and a
great amount of data to avoid overfitting during the training process. However, it is very
rare to find consumer hardware equipped with GPUs, thus in most cases, deep learning
methods run on cloud platform, such as, Google Cloud1, Amazon AWS2, and Microsoft
Azure3. Large scale inertial datasets with millions of signals recorded by hundreds of
human subjects are still not available, but several smaller datasets made of thousands of
signals and dozens of human subjects are publicly available [117]. A recent platform to
support long-term data collection of inertial signals have been proposed [39, 52] with the
scope to make available to the scientific community a large dataset enriched with context
information (e.g., characteristics of the subject, device position etc.). Moreover, since the
public available datasets for HAR benchmarking are not consistent, both syntactically
(e.g., different sampling frequency) and semantically (e.g., labels with different meanings),
Ferrari et al. have proposed a platform for data integration [39] as well as methods for
data homogenization [41].

1https://cloud.google.com
2https://aws.amazon.com/
3https://azure.microsoft.com
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Since to date, large scale inertial datasets are not available, it is therefore not obvious
in this domain, which method between deep and traditional machine learning methods is
the most appropriate, especially in those case where the hardware is low cost.

This Chapter aims at comparing deep learning techniques with traditional ones, also
considering personalization. In particular, in Section 4.2, traditional deep learning and
traditional machine learning are compared; in Section 4.3, deep learning and personalized
machine learning are compared. Finally, in Section 4.4, personalized deep learning and
personalized machine learning are evaluated.

4.2 Does Deep Learning outperform Traditional Ma-
chine Learning techniques?

The aim of this Section is to investigate the robustness of traditional classifiers combined
with hand-crafted features compared with an end-to-end deep learning solution based on
a Residual Network that is one of the most performing network in the state of the art [19].
In particular, deep learning benchmark methods are evaluated using the acceleration, the
gyroscope and both. Experiments on four public datasets are presented and discussed.
In Section 4.2.1 we select state-of-the-art machine learning and deep learning models for
evaluation. We briefly describe different features extraction procedure as data input for
machine learning approaches. In Section 4.2.2 experimental setup is presented. In Section
4.2.3 results for single and multi-modality are discussed. Section 4.2.4 the conclusions.

4.2.1 Proposed Methods

In this Section, benchmark machine learning and deep learning methods are compared
with different data input. In particular, raw data, and hand crafted features have been
calculated from acceleration and gyroscope data.

4.2.1.1 Hand-crafted features

For the experimentation of hand-crafted features, the k Nearest Neighbour (k-NN) and
Support Vector Machines (SVM) classifiers have been used. The features used are:

• Raw data (denoted as raw): x,y, and z accelerometer segments (without any kind
of processing) are concatenated and used as feature vectors [89];

• Magnitude of the segments (denoted as magn) [88];

• 20 features extracted from the magnitude of the segments (denoted as hc magn) [20].
Table 2.2 reports details about the 21 features.
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• 20 features extracted from each of the three segments along the three axes x, y, and
z (denoted as hc raw). The total number of features is 63.

In the case of SVM, the multi-class classifier has been implemented as multiple binary clas-
sifiers. Optimum parameters of both classifiers have been found through cross-validation.

4.2.1.2 End-to-end deep learning solution

The Residual Network (ResNet) adopted for this study is based on the traditional archi-
tecture proposed by He et al. [59], which demonstrated to be very effective on the ILSVRC
2015 (ImageNet Large Scale Visual Recognition Challenge) validation set with a top 1-
recognition accuracy of about 80%. Residual architectures are based on the idea that each
layer of the network learns residual functions with reference to the layer inputs instead
of learning unreferenced functions. He et al. [59] demonstrate that such architectures is
easier to optimize and it gains accuracy also when the depth increase considerably.

Table 3.2 details the network architecture proposed for this study. The input size of
the network is 1×128×3, that corresponds to 3 segments along the three axes x, y, and z.
The network architecture is made of an initial convolutional block, 3 residual stages, each
containing a variable number n of residual blocks, average pooling layer, fully connected
layer, and softmax layer. A convolutional block is made of three layers: convolutional,
batch normalization, and ReLu. A residual block is made of 2 subsequent convolutional
blocks and an addition operator that sums the input of the residual block with the output
of the residual block itself. Each convolutional layer is 1 × 3 × fmaps , where fmaps is the
number of feature maps of the filter. For each dataset, the best values for n and fmaps

have been found by following a grid search approach: n ranged between 3 and 21, while
fmaps ranged between 10 and 200.

Figure 2.11 shows the best network for UCI-HAR, obtained with n = 1 and fmaps = 90.
For all the datasets, the networks have been optimized through the Stochastic Gradient
Descent with Momentum (SGDM), using a piecewise learning update strategy with an
initial value of 0.1 and a drop factor of 0.1. The batch size was 128, the total number of
epochs was 80 and the early stopping has been used to avoid overfitting.

4.2.2 Experiment setup

Four public datasets from Table 2.1 have been used for the analysis:

• UCI HAR [7], which includes tri-axial acceleration and gyroscope data of 6 ADLs
(Activities of Daily Living) recorded with a Samsung Galaxy S II and performed by
30 volunteers.

• MobiAct [135], which includes tri-axial acceleration, gyroscope, and orientation data
of 11 ADLs and 4 Falls recorded with a Samsung Galaxy S3 and performed by 67
volunteers.
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Dataset # train # validation # test # classes

UCI HAR 7209 2060 1030 6
MobiAct 34070 9734 4867 15
Motion Sense 14945 4270 2135 6
UniMiB-SHAR 8240 2354 1177 17

Table 4.1: Number of segments divided into training, validation and test dataset and the
number of the classes for each dataset.

• Motion Sense [86], which includes tri-axial acceleration and gyroscope data of 6
ADLs recorded with an iPhone 6s and performed by 30 volunteers.

• UniMiB-SHAR [88], which includes tri-axial acceleration data of 17 ADLs recorded
with an Samsung Galaxy Nexus I9250 and performed by 24 volunteers.

Considering the acceleration only, each signal of the datasets is composed of three
accelerometer components along the x, y, and z axis. Each signal component has been
resampled at 50Hz and divided in segments of 2.56 seconds with an overlap between
subsequent segments of 50% [107]. The resampling at 50Hz was necessary because the
MobiAct dataset has been acquired at a frequency of about 87Hz. The resulting segment
for each axis contains 128 samples. The resampling and segmentation procedures were not
applied to UniMiB-SHAR because such a dataset already contains overlapped segments
of 151 samples. In fact, the dataset contains segments of 3 seconds sampled at 50Hz
taken around a peak (higher than 1.5g , with g being the gravitational acceleration) of
the accelerometer signal. To be consistent with the other datasets, these segments were
centrally windowed in order to obtain 128-dimensional segments.
Each dataset has been split in 70% training, 20% validation, and 10% test. Table 4.1
shows the total number of 128×3-dimensional segments available for the training (column
# train), validation (column # validation), and test (column # test) sets. The last
column # classes indicates the number of ADLs present in the dataset.

UCI HAR, MobiAct and Motion Sense have been analyzed taking into account the
accelerometer and the gyroscope sensors, while UniMiB-SHAR has been exploited only
for the accelerometer sensor because of the lack of gyroscope data.

4.2.3 Results

4.2.3.1 Results for Single Modality

Tables 4.2 and 4.3 show results achieved by all the methods considered in terms of macro
average accuracy (i.e., the average of each class accuracy). The accuracy of each class
is computed as ratio between the number of segments correctly classified and the total
number of segments of that class. ResNet achieves better performance than traditional
methods in all datasets apart from MobiAct. Most important, the standard deviation of
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SVM ResNet

Dataset raw magn hc raw hc magn

UCI-HAR 79.51 (± 17.40) 53.10 (± 25.48) 79.47 (± 20.59) 48.45 (± 22.12) 90.73 (± 10.92)
MobiAct 77.93 (± 22.71) 63.63 (± 24.13) 76.73 (± 26.11) 59.95 (± 23.94) 92.98 (± 8.65)
Motion Sense 90.04 (± 14.36) 78.22 (± 29.59) 96.39 (± 3.79) 83.45 (± 21.13) 99.47 (± 0.87)
UniMiB-SHAR 58.26 (± 16.85) 52.27 (± 18.10) 58.08 (± 16.70) 50.81 (± 15.49) 88.59 (± 8.52)

Table 4.2: Experimental Results - mean class accuracy (standard deviation class accu-
racy) with different input data: raw, magnitude (magn), hand-crafted calculated on raw
data (hc-raw) and hand-crafted on magnitude (hc-magn). Comparison between SVM vs
ResNet.

k-NN ResNet

Dataset raw magn hc raw hc magn

UCI-HAR 73.71 (± 26.78) 46.92 (± 29.89) 69.35 (± 17.04) 37.75 (± 13.39) 90.73 (± 10.92)
MobiAct 87.69 (± 9.07) 77.81 (± 13.60) 91.86 (± 6.72) 80.50 (± 10.74) 92.98 (± 8.65)
Motion Sense 79.19 (± 31.83) 73.51 (± 25.16) 95.82 (± 5.61) 81.34 (± 20.30) 99.47 (± 0.87)
UniMiB-SHAR 61.97 (± 11.83) 55.13 (± 14.29) 65.74 (± 12.99) 52.22 (± 11.70) 88.59 (± 8.52)

Table 4.3: Experimental Results - mean class accuracy(standard deviation class accu-
racy)with different input data: raw, magnitude (magn), hand-crafted calculated on raw
data (hc-raw) and hand-crafted on magnitude (hc-magn). Comparison between k-NN vs
ResNet.

the ResNet method is close to zero. Accuracy of k-NN and SVM is quite similar, while
among hand-crafted features the most performing is the hc raw.

Overall, ResNet is the best performing with an average accuracy across datasets of
92.94%, the second best across classifiers and datasets are the hc raw features with an
average accuracy of 79.18%. The third best are the raw features with an average accuracy
of 76.04%. The worst are the magnitude and magnitude raw features with an average
accuracy of 62.57% and 61.81% respectively.

In summary, the average gap between hand-crafted features combined with traditional
classifiers and deep learning is about 15%. This experimentation actually confirms that
deep learning outperforms traditional machine learning approaches.

4.2.3.2 Results for Multimodality

Tables 4.4 and 4.5 show results achieved by all the methods considered in terms of macro
average accuracy (i.e., the average of each class accuracy). The accuracy of each class is
computed as ratio between the number of segments correctly classified and the total num-
ber of segments of the given class. ResNet achieves better performance than traditional
methods in all datasets apart from MobiAct. This is probably due to the larger number
of classes with respect to the other two datasets. Most important, the standard deviation
of the ResNet method is close to zero. Accuracy of k-NN and SVM is quite similar, while,
among hand-crafted features, the most performing is the hc raw.
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KNN ResNet

Dataset raw magn hc raw hc magn

ACC
UCI-HAR 73.71 (± 26.78) 46.92 (± 29.89) 69.35 (± 17.04) 37.75 (± 13.39) 90.73 (± 10.92)
MobiAct 87.69 (± 9.07) 77.81 (± 13.60) 91.86 (± 6.72) 80.50 (± 10.74) 92.98 (± 8.65)
Motion Sense 79.19 (± 31.83) 73.51 (± 25.16) 95.82 (± 5.61) 81.34 (± 20.30) 99.47 (± 0.87)

GYRO
UCI-HAR 70.74 (± 24.73) 38.37 (± 25.11) 60.19 (± 20.14) 33.50 (± 6.97) 89.36 (± 9.90)
MobiAct 78.54 (± 16.13) 73.66 (± 19.38) 83.19 (± 20.43) 74.62 (± 20.44) 96.09 (± 3.16)
Motion Sense 85.16 (± 12.03) 70.75 (± 22.24) 88.74 (± 10.31) 71.69 (± 13.62) 98.07 (± 1.56)

ACC+GYRO
UCI-HAR 82.36 (± 19.99) 55.35 (± 29.60) 77.10 (± 16.73) 39.74 (± 11.79) 96.46 (± 4.06)
MobiAct 86.25 (± 8.89) 80.22 (± 14.85) 94.20 (± 5.84) 81.46 (± 11.59) 92.94 (± 9.39)
Motion Sense 74.08 (± 29.86) 73.89 (± 24.70) 97.17 (± 2.33) 84.36 (± 9.45) 99.08 (± 0.65)

Table 4.4: Experimental Results - average accuracy (standard deviation) with different
input data: raw, magnitude (magn), hand-crafted calculated on raw data (hc-raw) and
hand-crafted on magnitude (hc-magn). Comparison between k-NN vs ResNet. For each
row, the bold font represents the best.

Figure 4.1(a) shows the comparison between ResNet and both k-NN and SVM across
dataset and independently of the inertial signal used. Overall, ResNet is the best per-
forming with an average accuracy across datasets of about 93%. Among the traditional
classifiers, the best results are achieved by hc raw features followed by the raw ones. The
worst results are obtained by using magnitudes (both hc magnitude and magnitude raw).

Figure 4.1(b) shows the comparison across datasets, between methods based on senso-
rial multimodality (i.e., accelerometer and gyroscope - ACC+GYRO) and single modality
(i.e., accelerometer or gyroscope - ACC or GYRO). Overall, multimodal recognition works
better than the single modal with an improvement of about 10%. Accelerometer is more
performing than the gyroscope. This result is confirmed by the fact that most of the
experiments undertaken in the literature are based on accelerometric signals only.

In summary, the average gap between hand-crafted features combined with traditional
classifiers and deep learning is about 10% thus confirming that, on these datasets, deep
learning approaches outperforms traditional ones.

4.2.4 Conclusions

Experiments on four public datasets demonstrated that overall deep learning solutions
overcome the state of the art, thus suggesting that, even when the large scale datasets
are not available, these techniques on average perform better than traditional machine
learning approaches. The joint use of accelerometer and gyroscope allows to increase
performance of about 10% with respect to the use of accelerometer or gyroscope alone.
However, hand-crafted features may be preferable in those cases where the hardware is
low cost and thus does not permit deep learning solutions to run in a short time.
Based on these results, which show the benefit in using deep learning for HAR, we want
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SVM ResNet

Dataset raw magn hc raw hc magn

ACC
UCI-HAR 79.51 (± 17.40) 53.10 (± 25.48) 79.47 (± 20.59) 48.45 (± 22.12) 90.73 (± 10.92)
MobiAct 77.93 (± 22.71) 63.63 (± 24.13) 76.73 (± 26.11) 59.95 (± 23.94) 92.98 (± 8.65)
Motion Sense 90.04 (± 14.36) 78.22 (± 29.59) 96.39 (± 3.79) 83.45 (± 21.13) 99.47 (± 0.87)

GYRO
UCI-HAR 72.93 (± 23.82) 44.52 (± 27.21) 75.45 (± 14.76) 41.10 (± 17.91) 89.36 (± 9.90)
MobiAct 64.19 (± 31.37) 57.80 (± 27.49) 68.86 (± 27.70) 52.21 (± 29.22) 96.09 (± 3.16)
Motion Sense 86.92 (± 7.51) 73.93 (± 21.86) 88.32 (± 9.86) 76.46 (± 13.17) 98.07 (± 1.56)

ACC+GYRO
UCI-HAR 86.83 (± 15.53) 59.49 (± 28.25) 88.14 (± 10.66) 49.20 (± 20.45) 96.46 (± 4.06)
MobiAct 79.13 (± 18.25) 70.15 (± 22.94) 85.54 (± 16.31) 62.77 (± 23.99) 92.94 (± 9.39)
Motion Sense 85.87 (± 8.05) 80.93 (± 11.55) 95.90 (± 3.07) 85.01 (± 9.29) 99.08 (± 0.65)

Table 4.5: Experimental Results - average accuracy (standard deviation) with different
input data: raw, magnitude (magn), hand-crafted calculated on raw data (hc-raw) and
hand-crafted on magnitude (hc-magn). Comparison between SVM vs ResNet. For each
row, the bold font represents the best.

to investigate further the property of robustness of these techniques. The goal of the next
Section 4.3 is to investigate whether end-to-end deep learning methods also outperform
personalized machine learning techniques.

4.3 Does Deep Learning outperform Personalized Ma-
chine Learning?

Experiments in Chapter 3 and in Section 4.2 show that personalized machine learning and
deep learning outperform traditional machine learning methods. Indeed, personalized ma-
chine learning improves overall performance when similarity between users are involved
into the classification procedure, while deep learning is very robust although large scale
datasets are not available and outperform over SVM and k-NN algorithms even with dif-
ferent input features.

In this Section we focus on the comparison between deep learning and personalized
machine learning methods based on the public datasets, UniMiB-SHAR, MobiAct and
Motion Sense. The comparison aims at investigating the robustness of the deep learning
techniques in terms of intra and inter variability across subject, explained in 2.3.

We exploit transfer learning method for deep learning in order to evaluate deep learning
performances in a low time consuming configuration. In Section 4.3.1 we briefly present
the personalized machine learning models, for more details see Chapter 3, and the end-
to-end deep learning models based on Convolutional Neural Network.
In Section 4.3.2 we present details about the datasets and the configuration of the final
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(a) (b)

Figure 4.1: Experiments. (a) comparison across datasets between hand-crafted and
ResNet. (b) comparison across datasets and methods between multimodality and sin-
gle modality.

input data. In Section 4.3.3 the result and the comparison between the above mentioned
techniques. Finally, section 4.3.4 provides final remarks.

4.3.1 Proposed Methods

4.3.1.1 Personalized machine learning models

Traditional machine learning techniques struggle to recognize new unseen user because
of the population diversity, largely discussed in Chapter 3. To take into account such a
diversity, we introduce the concept of similarity between subjects. Three types of simi-
larity have been defined: physical-based (simphysical), sensor-based (simsensor ), and physical
combined with sensor-based similarity (simphysical+sensor). The similarity have been used to
create a weighted classifier able to give more importance to data belonging to most similar
subjects. As shown in Chapter 3, machine learning models with similarity outperform
machine learning models without similarity.
Data have been pre-processed and split into subject - dependent,subject - independent
and hybrid. The classification has been lead with Adaboost ensemble classifier.

4.3.1.2 End-to-end Deep learning models

Table 4.6 details the network proposed for transfer learning. The input size is 1×150×3.
The network is composed by a convolutional layers with filter size equal to 3, an activation
layer with the ReLu activation function, one max pooling layer with size equal to 3, the
dropout layer with a dropout probability equal to 0.9, a fully connected layer, and the
softmax layer.
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For transfer learning we use a pre-trained network on the UCI-HAR dataset. Experiments
have been evaluated on data splits subject - dependent, subject - independent and hybrid.
None of the subject similarities mentioned above have been taken in consideration.

Layer name Shape
convolutional {1× 3}
activation ReLU
max pooling 1× 3
dropout 0.9
fully connected 148× fmaps

softmax 1× num classes

Table 4.6: Convolutional Neural Network Architecture

4.3.2 Experiment setup

We experimented three public datasets containing accelerometer signals of Activities of
Daily Living (ADLs) and Falls recorded the smartphones presented in section 3.3. That is,
UniMiB-SHAR, MobiAct and Motion Sense datasets have been pre-processed as explained
in section 3.2.1.3.

4.3.3 Results

In this section, we discuss and compare the results of personalized machine learning (PML)
and deep learning models (DL) evaluated on subject - independent, subject - dependent,
and hybrid data split.

Tables 4.7 and 4.8 show results achieved by the proposed models. Results regarding
the three datasets are shown in column. Results subdivided with different data splits are
organized in different rows. In particular, Table 4.7 reports deep learning (DL) models
and personalized machine learning accuracy in the subject-independent and hybrid case.
Results under DL are calculated as an overall average over subjects and k-fold cross-
validation. Personalized machine learning (PML) accuracy is calculated averaging results
from Table 3.3 over the similarity, i.e. physical, sensors, and physical+sensors.

The hybrid model presents, in general, an accuracy of about 14% and 6% higher
for, respectively, PML and DL. In MobiAct and Motion Sense datasets best accuracy
is achieved by deep learning strategies for both subject independent and hybrid models.
Concerning the UniMiB-SHAR dataset, the PML with hybrid achieves the best accuracy.
The former result makes personalized machine learning method in average preferable with
hybrid strategy, with an average accuracy of the 84.42%. In subject-independent data
split, DL achieved an accuracy of about 6% higher then PML.
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UniMiB-SHAR MobiAct Motion Sense average
PML - DL PML - DL PML - DL PML - DL

subject-independent - similarity 57.11 - 58.88 82.24 - 88.92 73.44 - 81.03 70.93 - 76.28
hybrid - similarity 85.00 - 69.71 90.36 - 92.62 77.89 - 85.75 84.42 - 82.69
average 71.05 - 64.3 86.3 - 90.77 75.67 - 83.39

Table 4.7: Experimental Results - accuracy of personalized machine learning (PML) vs
accuracy of traditional deep learning (DL) on subject - independent and hybrid data
splits. For each row, the bold font represents the best results.

UniMiB-SHAR MobiAct Motion Sense average
PML - DL PML - DL PML - DL PML - DL

subject dependent 84.79 - 78.77 45.57 - 82.90 43.55 - 82.46 57.97 - 81.38

Table 4.8: Experimental Results - accuracy of personalized machine learning (PML) vs
accuracy of traditional deep learning (DL) on subject - dependent data splits. For each
row, the bold font represents the best.

The same behavior is presented in Table 4.8. UniMiB-SHAR achieve highest perfor-
mance by using PML, while for MobiAct and Motion Sense DL remains preferable with
a difference of about 40% to PML. In average, DL outperforms PML methods.

4.3.4 Conclusions

Promising results highlighted in Section 4.3.3 and obtained in Chapter 3 led us to compare
personalized machine learning with deep learning methods. Indeed, both personalized ma-
chine learning and deep learning methods have shown higher performance compared to
traditional machine learning methods. In particular, deep learning has shown to be a
valid strategy to overcome the domain expert dependency of machine leaning methods on
the features extraction procedure. Nevertheless, deep learning techniques are expensive in
terms of time consuming which makes machine learning techniques be preferred in many
contexts.

In this Chapter we compared personalized machine learning and deep learning tech-
niques. In particular, we use transfer learning for deep learning strategy to the aim at
reducing time’s consume.

Results show that deep learning accuracy outperforms personalized machine learning
accuracy in most of the cases also using transfer learning strategy and without any fine
tuning procedure. In contrast, results on UniMiB-SHAR dataset show better accuracy
using hybrid personalized machine learning approach.

Given the achieved results, it is still difficult to state that there exists a best classifier
for HAR, which motivates us to further try to modify, improve and compare machine
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learning deep learning techniques. In the next section 4.4, we investigate if the similarity
between users can improve results of deep learning techniques. In these terms, we explore
the possibility to personalize deep learning algorithms in order to achieve overall better
accuracy.

4.4 Does Personalized Deep Learning outperform Per-
sonalized and Traditional Machine Learning?

The results achieved with the experiments described in Section 4.2 and in Section 4.3, we
confirm that deep learning is a powerful technique for HAR. In particular, deep learning
techniques based on raw data outperform traditional machine learning techniques with
different features input. Robustness in these terms permit to remove the dependency of
the algorithm on the expert knowledge, which normally affects machine learning tech-
niques and leads to a lack of generalization. Furthermore, higher accuracy makes deep
learning techniques valid candidate to face intra and inter subject variabilities.

In Section 4.3 we showed that deep learning outperformed personalized machine learn-
ing in most of the cases as a consequence of their high robustness in terms of subjects
variability. Nevertheless, it remains some cases where personalized machine learning tech-
niques outperform deep learning, which motivates us to further investigate how to improve
deep learning models.

The general idea is to create personalized deep learning models. In the literature, per-
sonalization in deep learning models is achieved using transfer learning and incremental
learning. Both techniques rely on updates of an existing network with the data of the
new user. User’s similarity, such as physical attributes or sensor’s data proximity are not
considered.

We have defined a novel deep learning model based on Convolutional Neural Networks
combined with the information on user’s physical, and sensors similarities. The results
have been compared with the personalized machine learning models presented in Chapter
3.

4.4.1 Proposed Methods

In this section, we describe the personalized deep learning models based on Convolutional
Neural Network and on the similarity between the subjects.

The concept of subjects similarity is analogous to the one explained in Chapter 3. We
considered three types of similarity: physical, sensor, and physical combined with sensor.
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The similarity is defined as a function of the distance between vectors of two subjects.
Thus, the physical similarity simphysical is a function of the distance vector composed
on subject’s physical characteristics, namely the high, the weight, the age. The sensor
similarity simsensor is a function of the distance between two signals vectors of two different
subjects, and physical combined with sensor-based similarity simphysical+sensor based on the
distance between both physical and sensors vector.

As remind, the similarity computed on all subjects generates a matrix, called similar-
ity matrix sim. Each element sim(i , j) represents the similarity between subjects i and j .
Each value is between 0 and 1: 0 means that the two subjects are dissimilar, and 1 means
that the two subjects are equal.

In the personalized machine learning methods we used these values as weights to feed
the classifier together with the data.

In personalized deep learning models, the matrix is used in a different way, as described
in the following.. Starting from a minimum value m we select the most m similar subjects,
with respect to the test subject. The network is trained with the samples related to these
m subjects. We selected as starting value for m the value 10, trained the network, and
added 5 subjects until the maximum number of subjects in the dataset is achieved. This
configuration is repeated for subject - independent and hybrid data splits.

In general, we believe that considering the most similar subjects leads to better per-
formance of the algorithm. The classification should indeed not influenced from dissimilar
subjects or outliers.

4.4.2 Experiment setup

To compare personalized deep learning results with personalized machine learning meth-
ods we propose again the same experimental setup proposed in Chapter 3. Three public
datasets containing accelerometer signals of Activities of Daily Living (ADLs) and Falls
recorded the smartphones have been considered. That is, UniMiB-SHAR, MobiAct and
Motion Sense datasets have been pre-processed as explained in section 3.2.1.3. The details
are omitted in this section because already described in Section 4.2.2.

4.4.3 Results

Table 4.9 shows the results of personalized deep learning methods (PDL) compared with
personalized machine learning (PML) methods for each dataset. The number m represent
the number of the most similar subjects compared to the test subject. The similarity
matrix have been computed for all similarities, i.e. physical, sensor, and physical combined
with sensor attributes. Table 4.9 show the accuracy achieved by the algorithm tested on
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different datasets, data splits and similarities. PDL with different choices of m and PML
results are organized in columns. For the sake of clarity, MobiAct dataset’s results referred
to m = 30, 35, 40, 45, 50, 55 have been grouped together and the maximum and minimum
accuracy are shown (PDL >=30).

Dataset Models PDL PML
m-th nearest subjects 10 15 20 25 >=30 57

min - max
MobiAct subject - independent- physical 75.88 78.96 81.54 82.59 83.02 - 86.08 81.62

subject - independent- sensor 71.75 74.36 76.25 77.68 77.42 - 80.14 83.45
subject - independent- physical - sensor 71.88 74.11 75.97 77.38 78.45 - 79.68 82.64
hybrid - physical 75.75 76.51 77.67 78.77 79.43 - 81.04 89.43
hybrid - sensor 78.15 78.77 79.45 80.39 80.90 - 81.40 90.76
hybrid - physical - sensor 85.23 86.32 86.96 87.40 87.58 - 88.17 90.90

average 82.75 86.46
m-th nearest subjects 10 15 20 25

-

27

UniMiB-SHAR subject - independent- physical 25.49 27.61 31.48 35.42 57.39
subject - independent- sensor 40.71 42.14 42.65 42.83 57.00
subject - independent- physical - sensor 41.02 42.21 42.50 42.66 56.93
hybrid - physical 42.87 43.69 45.33 45.82 85.44
hybrid - sensor 47.26 45.99 46.77 46.49 84.71
hybrid - physical - sensor 46.17 46.77 46.77 45.39 84.87

average 43.46 71.05
m-th nearest subjects 10 15 20

- -

22

Motion Sense subject - independent- physical 74.30 77.40 78.02 72.45
subject - independent- sensor 75.91 77.83 78.80 74.03
subject - independent- physical - sensor 75.77 77.76 79.00 73.85
hybrid - physical 77.59 79.44 80.17 77.76
hybrid - sensor 78.51 80.08 80.38 78.06
hybrid - physical - sensor 78.79 80.25 80.41 77.86

average 79.46 75.66

Table 4.9: Experimental Results - accuracy of personalized deep learning (PDL) compared
with personalized machine learning (PML).

PDL and PML’s accuracy is calculated as the average over the subjects. In the case of
PML, the number m is the total number of the subjects in the dataset, see Section 4.4.2
for details about datasets size.

In the following we discuss and compare the results in Table 4.9. For the sake of
clarity, we first compare of the PDL performances between the datasets and second we
discuss and compare the performances across PDL with PML.

• PDL performance between the datasets: in general, the MobiAct dataset achieves
better performance using PDL models in comparison with the other datasets. The
datasets size remains, in general, a crucial factor to determine the performance of
the algorithm. The larger the training dataset, the better the performance. In
particular, MobiAct training dataset size is of 12400 samples. UniMiB-SHAR has
up to 6800 samples for training and Motion Sense up to 8000.
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However, we observe that for a given m MobiAct has in general less training samples
in comparison with UniMiB-SHAR and Motion Sense. In particular, the number of
samples and the related accuracy are as follows

– m = 10, MobiAct has 2146 training samples with an accuracy of 85.23%,
UnIMiB-SHAR has 2705 training samples with an accuracy of 46.17%, and
Motion Sense has 3472 with an accuracy of 78.79%.

– m = 15, MobiAct has 3263 training samples with an accuracy of 86.32%,
UnIMiB-SHAR has 3837 training samples with an accuracy of 46.77%, and
Motion Sense has 5280 with an accuracy of 80.25%.

– m = 20, MobiAct has 4345 training samples with an accuracy of 86.96%,
UnIMiB-SHAR has 5020 training samples with an accuracy of 46.77%, and
Motion Sense has 6952 with an accuracy of 80.41%.

In general, even though MobiAct presents less training samples, it outperforms
Motion Sense. UniMiB-SHAR has, in general, a different behaviour in comparison
with the other datasets, since the training data size has not a relevant influence in
the models performance. For instance, from m = 10 to m = 20 the accuracy does
not show a significant improvement.

The dependency between the algorithm performance and the dataset size can be
more appreciated in Figure 4.3, where the training size for a given m against the
accuracy of the PDL models are depicted. In details, on the x-axes the number
of the m nearest subject is displayed, while the left y-axes represents the accuracy
± standard deviation. In the same graph, in orange, the barplot represents the
frequency distribution of the total number of the samples belonging to the training
dataset, with respect to the number of subjects m and the right y-axes represents
the total number of samples depending on m. The Figure refers to most to the
hybrid model.

These results show that the personalization is effective for the algorithm perfor-
mances and can improve the algorithm accuracy, even though with less samples.
We can state that taking into account the subject similarities plays a relevant role
for the PDL performances.
In Figure 4.2 we depicted the similarity matrices of MobiAct, UniMiB-SHAR and
Motion Sense split into physical, sensors and the combination between physical and
sensor (γ = 1). We can notice that UniMiB-SHAR presents very low differences be-
tween subjects. In other words, subjects in UniMiB-SAHR are very similar to each
other. In opposite, subjects in MobiAct and Motion Sense present higher variability.
It results that the more the differences between users, the more the personalization
is affective even with small samples size.
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• performances across PDL with PML: In MobiAct and UniMiB-SHAR datasets, PML
models overcome PDL strategy in most of the cases.
In MobiAct dataset only with impersonal model and physical similarity the PDL
model outperforms PML. The best performance in MobiAct dataset is achieved us-
ing hybrid model with the combination of physical and sensor attributes with an
accuracy equal to 90.90%. In average PML achieve 86.46% of accuracy, about 4%
more than PDL accuracy.
In UniMiB-SHAR dataset, PML models achieve better performance than PDL in
all of the cases. The best accuracy of 84.47% corresponds to hybrid model with the
combination of physical and sensor attributes. In this case, the margin with respect
to the corresponding PDL is of 38.10%. In average PML accuracy achieves 71.05%,
while PDL only 43.46%, with a margin of 27.59%.
In Motion Sense dataset shows a completely different behaviour. PDL models per-
formances always outperform PML accuracy. The best models is the hybrid model
with the combination of physical and sensor attributes, which reaches the 80.41%
of accuracy. The corresponding PML models achieve 77.86% by a margin of 2.55%.
In average, PDL models achieve an accuracy of 79.46% by a margin of 3.8% to PML.

In general, the differences between PDL and PML in MobiAct and Motion Sense
are not relevant, while, on the opposite, in the case of UniMiB-SHAR, PML models
provide a relevant improvement to the classification performance, with a margin of
about 27% from PDL models. Given the similarity matrices in Figure 4.2, it is likely
that PML models can better handle with datasets with small differences between
subjects. In contrast, PDL models are more effective when subjects difference are
higher independently on the sample size.

4.4.4 Conclusions

The goal of this section was to evaluate the performance of personalized machine learning
and personalized deep learning models.

Results show that the choice between personalized machine learning and personalized
deep learning techniques is not obvious. On one hand, we showed that PML drastically
improves the accuracy in the UniMiB-SHAR dataset, where the variability between sub-
ject in terms of similarity is low. PML remains the better solution for MobiAct and
UniMiB-SHAR datasets. On the other hand, PDL improves the algorithm performances
independently on the sample size, as in the case of MobiAct and Motion Sense. It is likely
that the personalization of those techniques is more effective when the subjects variability
is high.
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Figure 4.2: Similarity matrices for physical, sensor and their combinations of UniMiB-
SHAR, MobiAct and Motion Sense datasets.
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Figure 4.3: hybrid PDL models performances with different training number m of test’s
nearest subjects (blue line) ± standard deviation and sample frequency distribution (or-
ange bars)
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Chapter 5

Conclusions

In this work we compared machine learning and deep learning models based on traditional
and personalized approaches. All approaches have been evaluated on the different data
splits, namely, subject - independent, and hybrid in combination with the similarity-based
personalization, as explained in Chapter 3. In particular, traditional and personalized
deep learning methods are based on Convolutional Neural Networks. Traditional and
Personalized Machine learning approaches are based on AdaBoost classifier.

Table 5.1 presents an overview of all results achieved in this work. It summarizes the
accuracy achieved from personalized deep learning (PDL), personalized machine learning
(PML), traditional deep learning (DL), and traditional machine learning (ML) splits into
MobiAct, UniMiB-SHAR and Motion Sense datasets. Results are subdivided into data
splits, subject - independent and hybrid, and into personalized or traditional. In the last
row the overall accuracy average is shown.

DL models outperform the other strategies in the most of the cases. PML overcomes
DL only in the case of UniMiB-SHAR dataset with hybrid models. Nevertheless, in
UniMiB-SHAR, DL strategies improve the overall accuracy in comparison with ML and
PDL methods.

On total average, PDL models achieve an accuracy equal to 68.56%, PML of 77.73%,
DL of 79.49%, and ML of 71.63%. DL models improve the performance of at least about
2%. DL models show, in general, better results on MobiAct dataset with an accuracy
equal to 92.62% with hybrid model. In the case of subject - independent the 88.92% is
achieved. That is an expected behaviour because MobiAct is the largest dataset, which
generally improves the classification capability.

On UniMiB-SHAR, the best accuracy is achieved from the PML with hybrid model
(84.87%). Nevertheless, in the subject-independent model, DL still achieves the highest
accuracy of 58.88%. Accuracy achieved with Motion Sense presents in average the 83.39%,
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by a margin from 4 and 10% with respect to the other techniques.

Dataset Models PDL PML DL ML
MobiAct subject - independent - traditional - - 88.92 81.29

subject - independent- physical 86.08 81.62
subject - independent - sensor 80.14 83.45
subject - independent - physical - sensor 79.68 82.64
hybrid - traditional - - 92.62 83.73
hybrid - physical 81.04 89.43
hybrid - sensor 81.40 90.76
hybrid - physical - sensor 88.17 90.90

average 82.75 86.46 90.77 82.51
UniMiB-SHAR subject - independent - traditional - - 58.88 56.80

subject - independent- physical 35.42 57.39
subject - independent - sensor 42.83 57.00
subject - independent - physical - sensor 42.66 56.93
hybrid - traditional - - 69.72 61.66
hybrid - physical 45.82 85.44
hybrid - sensor 47.26 84.71
hybrid - physical - sensor 46.77 84.87

average 43.46 71.05 64.30 59.23
Motion Sense subject - independent - traditional - - 81.03 72.48

subject - independent - physical 78.02 72.45
subject - independent - sensor 78.8 74.03
subject - independent - physical - sensor 79.00 73.85
hybrid - traditional - - 85.75 73.82
hybrid - physical 80.17 77.76
hybrid - sensor 80.38 78.06
hybrid - physical - sensor 80.41 77.86

average 79.46 75.66 83.39 73.15
total average 68.56 77.73 79.49 71.63

Table 5.1: Experimental Results - accuracy of personalized deep learning (PDL), person-
alized machine learning (PML).

These results show that DL models are the most preferable in terms of robustness in
comparison with PML, PDL, and ML techniques. Indeed, DL based performance out-
performs the other method’s performances even with different data split and different
training datasets. The variability inter and intra subject is overcome by DL. This result
allows us to consider DL the method, which achieves the highest generalization capability.
The comparison between DL and PDL methods lead us to state that the training dataset
size highly influences the algorithm’s performance and normally large dataset are prefer-
able. Indeed, the difference between PDL and DL methods is the training dataset’s size.

In conclusion, we state that DL algorithms are able to generalize user’s differences and
show very robust properties in terms of subject’s variabilities. Even though the results
are based on small scale datasets, DL remain very performant and powerful HAR methods.

Summary of Contributions
This work focused on the improvement of machine learning and deep learning techniques
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in terms of generalization capability to face to new unseen user. In the following, the
research questions and the related results are summarized.

• Novel classification models based on the personalization of machine learning tech-
niques have been proposed. In particular, the personalization consists in integrating
the traditional machine learning algorithms with the metadata of the subjects, such
as weighs, height and age, and characteristics relative to the sensor’s signals. The
reliant research question is "Does Personalized Machine Learning outperform Tradi-
tional Machine Learning techniques?" Results demonstrate that the personalization
is a valid solution to overcome generalization issues and lead to more performant
results, compared to those in the state-of-the-art. In average, the best accuracy
have been achieved by the hybrid model with sensor’s signals similarity [44].

• Among machine learning and deep learning techniques, it is not clear which methods
is more appropriate, mostly in small size-based training datasets. The research ques-
tion "Does Deep Learning outperform Traditional Machine Learning techniques?"
aims at investigating which of those traditional techniques is more suitable in the
HAR context. In particular, different feature extraction procedures have been ana-
lyzed and compared. Results show that deep learning methods outperform all ma-
chine learning configurations and present relevant robustness regarding the choice
of the input features. Traditional deep learning techniques remain preferable even
trained on small datasets [43, 42].

• Promising results about generalization capability of traditional deep learning tech-
niques lead to the comparison between traditional machine learning and personalized
machine learning, namely "Does Deep Learning outperform Personalized Machine
Learning? Results show that in average deep learning outperform personalized ma-
chine learning techniques. These results highlight the capability of deep learning
techniques in generalized over different user’s characteristics. A last crucial compar-
ison have been done between personalized deep learning and personalized machine
learning as follows [45].

• Promising results in using deep learning methods, stimulated us to experiment novel
personalized deep learning models to be compared with the personalized machine
learning models above mentioned. Thus, based on the similarity matrix, specific
samples have been selected to be part of the training dataset in the deep learning
training phase. The related research question is "Does Personalized Deep Learning
outperform Personalized and Traditional Machine Learning?". Results show that in
some cases the personalized machine learning models outperforms the personalized
deep learning ones. The performance of both methods are highly dependent on the
subject’s similarities within the dataset [45].

85



CHAPTER 5. CONCLUSIONS

All algorithms have been trained and tested on public dataset for guaranteeing the repro-
ducibility of the results.
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