We present a combined experimental and theoretical study of the surface vibrational modes of the topological insulator Bi2Se3 with particular emphasis on the low-energy region below 10 meV that has been difficult to resolve experimentally. By applying inelastic helium atom scattering (HAS), the entire phonon dispersion was determined and compared with density functional perturbation theory (DFPT) calculations. The intensity of the phonon modes is dominated by a strong Rayleigh mode, in contrast to previous experimental works. Moreover, also at variance with recent reports, no Kohn anomaly is observed. These observations are in excellent agreement with DFPT calculations. Besides these results, the experimental data reveal—via bound-state resonance enhancement—two additional dispersion curves in the gap below the Rayleigh mode. They are possibly associated with an excitation of a surface electron density superstructure that we observe in HAS diffraction patterns. The electron-phonon coupling parameter λ= 0.23, derived from our temperature-dependent Debye-Waller measurements, compares well with values determined by angular resolved photoemission or Landau level spectroscopy. Our work opens up a new perspective for terahertz (THz) measurements on two-dimensional (2D) materials as well as the investigation of subtle details (band bending, the presence of a 2D electron gas) with respect to the electron-phonon coupling.

Ruckhofer, A., Campi, D., Bremholm, M., Hofmann, P., Benedek, G., Bernasconi, M., et al. (2020). Terahertz surface modes and electron-phonon coupling on Bi2Se3(111). PHYSICAL REVIEW RESEARCH, 2(2) [10.1103/physrevresearch.2.023186].

Terahertz surface modes and electron-phonon coupling on Bi2Se3(111)

Davide Campi;Giorgio Benedek;Marco Bernasconi;
2020

Abstract

We present a combined experimental and theoretical study of the surface vibrational modes of the topological insulator Bi2Se3 with particular emphasis on the low-energy region below 10 meV that has been difficult to resolve experimentally. By applying inelastic helium atom scattering (HAS), the entire phonon dispersion was determined and compared with density functional perturbation theory (DFPT) calculations. The intensity of the phonon modes is dominated by a strong Rayleigh mode, in contrast to previous experimental works. Moreover, also at variance with recent reports, no Kohn anomaly is observed. These observations are in excellent agreement with DFPT calculations. Besides these results, the experimental data reveal—via bound-state resonance enhancement—two additional dispersion curves in the gap below the Rayleigh mode. They are possibly associated with an excitation of a surface electron density superstructure that we observe in HAS diffraction patterns. The electron-phonon coupling parameter λ= 0.23, derived from our temperature-dependent Debye-Waller measurements, compares well with values determined by angular resolved photoemission or Landau level spectroscopy. Our work opens up a new perspective for terahertz (THz) measurements on two-dimensional (2D) materials as well as the investigation of subtle details (band bending, the presence of a 2D electron gas) with respect to the electron-phonon coupling.
Articolo in rivista - Articolo scientifico
Density Functional Thoery, Surface phonons, Electron-phonon coupling, Topological insulators
English
19-mag-2020
2020
2
2
023186
open
Ruckhofer, A., Campi, D., Bremholm, M., Hofmann, P., Benedek, G., Bernasconi, M., et al. (2020). Terahertz surface modes and electron-phonon coupling on Bi2Se3(111). PHYSICAL REVIEW RESEARCH, 2(2) [10.1103/physrevresearch.2.023186].
File in questo prodotto:
File Dimensione Formato  
10281-297952_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 7.76 MB
Formato Adobe PDF
7.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/297952
Citazioni
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
Social impact