We deal with the sharp asymptotic behaviour of eigenvalues of elliptic operators with varying mixed Dirichlet–Neumann boundary conditions. In case of simple eigenvalues, we compute explicitly the constant appearing in front of the expansion’s leading term. This allows inferring some remarkable consequences for Aharonov–Bohm eigenvalues when the singular part of the operator has two coalescing poles.
Abatangelo, L., Felli, V., Léna, C. (2020). Eigenvalue variation under moving mixed Dirichlet–Neumann boundary conditions and applications. ESAIM. COCV, 26, 1-47 [10.1051/cocv/2019022].
Eigenvalue variation under moving mixed Dirichlet–Neumann boundary conditions and applications
Abatangelo, L;Felli, V
;
2020
Abstract
We deal with the sharp asymptotic behaviour of eigenvalues of elliptic operators with varying mixed Dirichlet–Neumann boundary conditions. In case of simple eigenvalues, we compute explicitly the constant appearing in front of the expansion’s leading term. This allows inferring some remarkable consequences for Aharonov–Bohm eigenvalues when the singular part of the operator has two coalescing poles.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Abatangelo-2020-ESAIMcocv-AAM.pdf
accesso aperto
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Creative Commons
Dimensione
524.09 kB
Formato
Adobe PDF
|
524.09 kB | Adobe PDF | Visualizza/Apri |
Abatangelo-2020-ESAIMcocv-VoR.pdf
Solo gestori archivio
Descrizione: Publisher’s Version
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.