We deal with the sharp asymptotic behaviour of eigenvalues of elliptic operators with varying mixed Dirichlet–Neumann boundary conditions. In case of simple eigenvalues, we compute explicitly the constant appearing in front of the expansion’s leading term. This allows inferring some remarkable consequences for Aharonov–Bohm eigenvalues when the singular part of the operator has two coalescing poles.

Abatangelo, L., Felli, V., Léna, C. (2020). Eigenvalue variation under moving mixed Dirichlet–Neumann boundary conditions and applications. ESAIM. COCV, 26, 1-47 [10.1051/cocv/2019022].

Eigenvalue variation under moving mixed Dirichlet–Neumann boundary conditions and applications

Abatangelo, L;Felli, V
;
2020

Abstract

We deal with the sharp asymptotic behaviour of eigenvalues of elliptic operators with varying mixed Dirichlet–Neumann boundary conditions. In case of simple eigenvalues, we compute explicitly the constant appearing in front of the expansion’s leading term. This allows inferring some remarkable consequences for Aharonov–Bohm eigenvalues when the singular part of the operator has two coalescing poles.
Articolo in rivista - Articolo scientifico
Aharonov-Bohm eigenvalues; Asymptotics of eigenvalues; Mixed boundary conditions;
English
2020
26
1
47
39
partially_open
Abatangelo, L., Felli, V., Léna, C. (2020). Eigenvalue variation under moving mixed Dirichlet–Neumann boundary conditions and applications. ESAIM. COCV, 26, 1-47 [10.1051/cocv/2019022].
File in questo prodotto:
File Dimensione Formato  
Abatangelo-2020-ESAIMcocv-AAM.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Creative Commons
Dimensione 524.09 kB
Formato Adobe PDF
524.09 kB Adobe PDF Visualizza/Apri
Abatangelo-2020-ESAIMcocv-VoR.pdf

Solo gestori archivio

Descrizione: Publisher’s Version
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/285110
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
Social impact