In a finite-dimensional setting we investigate the solvability of a general vector variational inequality via the convergence of solutions of suitable approximating vector variational inequalities defined with more regular data. The theoretical results obtained in a very general framework are successfully applied to the study of a vector market equilibrium problem where instead of exact values of the cost mapping, feasible set and order cone, only approximation sequences of these data are available.
Bianchi, M., Konnov, I., Pini, R. (2021). Limit vector variational inequalities and market equilibrium problems. OPTIMIZATION LETTERS, 15(3 (April 2021)), 817-832 [10.1007/s11590-019-01500-2].
Limit vector variational inequalities and market equilibrium problems
Pini, R
2021
Abstract
In a finite-dimensional setting we investigate the solvability of a general vector variational inequality via the convergence of solutions of suitable approximating vector variational inequalities defined with more regular data. The theoretical results obtained in a very general framework are successfully applied to the study of a vector market equilibrium problem where instead of exact values of the cost mapping, feasible set and order cone, only approximation sequences of these data are available.File | Dimensione | Formato | |
---|---|---|---|
Bianchi-2021-Optim Lett-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
260.61 kB
Formato
Adobe PDF
|
260.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Bianchi-2021-Optim Lett-AAM.pdf
accesso aperto
Descrizione: Post-print
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Creative Commons
Dimensione
285.53 kB
Formato
Adobe PDF
|
285.53 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.