In a finite-dimensional setting we investigate the solvability of a general vector variational inequality via the convergence of solutions of suitable approximating vector variational inequalities defined with more regular data. The theoretical results obtained in a very general framework are successfully applied to the study of a vector market equilibrium problem where instead of exact values of the cost mapping, feasible set and order cone, only approximation sequences of these data are available.

Bianchi, M., Konnov, I., Pini, R. (2021). Limit vector variational inequalities and market equilibrium problems. OPTIMIZATION LETTERS, 15(3 (April 2021)), 817-832 [10.1007/s11590-019-01500-2].

Limit vector variational inequalities and market equilibrium problems

Pini, R
2021

Abstract

In a finite-dimensional setting we investigate the solvability of a general vector variational inequality via the convergence of solutions of suitable approximating vector variational inequalities defined with more regular data. The theoretical results obtained in a very general framework are successfully applied to the study of a vector market equilibrium problem where instead of exact values of the cost mapping, feasible set and order cone, only approximation sequences of these data are available.
Articolo in rivista - Articolo scientifico
Approximation sequence; Coercivity conditions; Kuratowski convergence; Vector variational inequality;
English
8-nov-2019
2021
15
3 (April 2021)
817
832
partially_open
Bianchi, M., Konnov, I., Pini, R. (2021). Limit vector variational inequalities and market equilibrium problems. OPTIMIZATION LETTERS, 15(3 (April 2021)), 817-832 [10.1007/s11590-019-01500-2].
File in questo prodotto:
File Dimensione Formato  
Bianchi-2021-Optim Lett-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 260.61 kB
Formato Adobe PDF
260.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Bianchi-2021-Optim Lett-AAM.pdf

accesso aperto

Descrizione: Post-print
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Creative Commons
Dimensione 285.53 kB
Formato Adobe PDF
285.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/279898
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
Social impact