The aim of this note is to describe geometric conditions under which a Riemannian manifold enjoys the Feller property and to show how the validity of the Feller property in combination with stochastic completeness provides a new viewpoint to study qualitative properties of solutions of semilinear elliptic PDE's defined outside a compact set.

Pacelli Bessa, G., Pigola, S., Setti, A. (2013). Stochastic properties of Riemannian manifolds and applications to PDE's. In M.A. Picardello (a cura di), Trends in Harmonic Analysis (pp. 381-398). Milano : Springer Verlag Mailand [10.1007/978-88-470-2853-1_14].

Stochastic properties of Riemannian manifolds and applications to PDE's

Pigola, S;
2013

Abstract

The aim of this note is to describe geometric conditions under which a Riemannian manifold enjoys the Feller property and to show how the validity of the Feller property in combination with stochastic completeness provides a new viewpoint to study qualitative properties of solutions of semilinear elliptic PDE's defined outside a compact set.
Capitolo o saggio
Stochastic completeness, Feller property, Comparison results, Riemannian manifoilds
English
Trends in Harmonic Analysis
Picardello, MA
2013
9788847028524
3
Springer Verlag Mailand
381
398
Pacelli Bessa, G., Pigola, S., Setti, A. (2013). Stochastic properties of Riemannian manifolds and applications to PDE's. In M.A. Picardello (a cura di), Trends in Harmonic Analysis (pp. 381-398). Milano : Springer Verlag Mailand [10.1007/978-88-470-2853-1_14].
reserved
File in questo prodotto:
File Dimensione Formato  
INDAM3_PIC_Chapter14_Author.pdf

Solo gestori archivio

Dimensione 582.4 kB
Formato Adobe PDF
582.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/271348
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
Social impact