We solve a general vector variational inequality problem in a finitedimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We establish a new equivalence property, which enables us to replace each vector variational inequality with a scalar set-valued variational inequality. Then, we approximate the scalar set-valued variational inequality with a sequence of penalized problems, and we study the convergence of their solutions to solutions of the original one

Bianchi, M., Konnov, I., Pini, R. (2018). Limit vector variational inequality problems via scalarization. JOURNAL OF GLOBAL OPTIMIZATION, 72(3), 579-590 [10.1007/s10898-018-0657-7].

Limit vector variational inequality problems via scalarization

Pini, R.
2018

Abstract

We solve a general vector variational inequality problem in a finitedimensional setting, where only approximation sequences are known instead of exact values of the cost mapping and feasible set. We establish a new equivalence property, which enables us to replace each vector variational inequality with a scalar set-valued variational inequality. Then, we approximate the scalar set-valued variational inequality with a sequence of penalized problems, and we study the convergence of their solutions to solutions of the original one
Articolo in rivista - Articolo scientifico
Vector variational inequality; Kuratowski convergence; approximation sequence; coercivity conditions
English
2018
72
3
579
590
partially_open
Bianchi, M., Konnov, I., Pini, R. (2018). Limit vector variational inequality problems via scalarization. JOURNAL OF GLOBAL OPTIMIZATION, 72(3), 579-590 [10.1007/s10898-018-0657-7].
File in questo prodotto:
File Dimensione Formato  
JOGO(2018).pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 443.6 kB
Formato Adobe PDF
443.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
LMVVIS.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 263.03 kB
Formato Adobe PDF
263.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/251864
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact