This work investigates an optimal control problem for a class of stochastic differential bilinear systems, affected by a persistent disturbance provided by a nonlinear stochastic exogenous system (nonlinear drift and multiplicative state noise). The optimal control problem aims at minimizing the average value of a standard quadratic-cost functional on a finite horizon. It has been supposed that neither the state of the system nor the state of the exosystem is directly measurable (incomplete information case). The approach is based on the Carleman embedding, which allows to approximate the nonlinear stochastic exosystem in the form of a bilinear system (linear drift and multiplicative noise) with respect to an extended state that includes the state Kronecker powers up to a chosen degree. This way the stochastic optimal control problem may be restated in a bilinear setting and the optimal solution is provided among all the affine transformations of the measurements. The present work is a nontrivial extension of previous work of the authors, where the Carleman approach was exploited in a framework where only additive noises had been conceived for the state and for the exosystem. Numerical simulations support theoretical results by showing the improvements in the regulator performances by increasing the order of the approximation.
Mavelli, G., Palombo, G., Palumbo, P. (2019). A stochastic optimal regulator for a class of nonlinear systems. MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 1-8 [10.1155/2019/9763193].
A stochastic optimal regulator for a class of nonlinear systems
Palumbo, P
Co-primo
2019
Abstract
This work investigates an optimal control problem for a class of stochastic differential bilinear systems, affected by a persistent disturbance provided by a nonlinear stochastic exogenous system (nonlinear drift and multiplicative state noise). The optimal control problem aims at minimizing the average value of a standard quadratic-cost functional on a finite horizon. It has been supposed that neither the state of the system nor the state of the exosystem is directly measurable (incomplete information case). The approach is based on the Carleman embedding, which allows to approximate the nonlinear stochastic exosystem in the form of a bilinear system (linear drift and multiplicative noise) with respect to an extended state that includes the state Kronecker powers up to a chosen degree. This way the stochastic optimal control problem may be restated in a bilinear setting and the optimal solution is provided among all the affine transformations of the measurements. The present work is a nontrivial extension of previous work of the authors, where the Carleman approach was exploited in a framework where only additive noises had been conceived for the state and for the exosystem. Numerical simulations support theoretical results by showing the improvements in the regulator performances by increasing the order of the approximation.File | Dimensione | Formato | |
---|---|---|---|
2019 MPE - A Stochastic Optimal Regulator for a Class of Nonlinear Systems.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.