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This work investigates an optimal control problem for a class of stochastic differential bilinear systems, affected by a persistent
disturbance provided by a nonlinear stochastic exogenous system (nonlinear drift and multiplicative state noise). The optimal
control problem aims at minimizing the average value of a standard quadratic-cost functional on a finite horizon. It has been
supposed that neither the state of the system nor the state of the exosystem is directly measurable (incomplete information case).
The approach is based on the Carleman embedding, which allows to approximate the nonlinear stochastic exosystem in the form
of a bilinear system (linear drift and multiplicative noise) with respect to an extended state that includes the state Kronecker
powers up to a chosen degree. This way the stochastic optimal control problem may be restated in a bilinear setting and the
optimal solution is provided among all the affine transformations of the measurements. The present work is a nontrivial extension
of previous work of the authors, where the Carleman approach was exploited in a framework where only additive noises had been
conceived for the state and for the exosystem. Numerical simulations support theoretical results by showing the improvements in

the regulator performances by increasing the order of the approximation.

1. Introduction

Consider the following stochastic differential system de-
scribed by means of the Itd6 formalism:

dx (t) = Ax (¢)dt + Bu(t)dt + Lz (t)dt

b
+ ) (M + Nx ())dW? (), x(0)=x, (1)
i=1

dy(t) = Cx(t)dt + GAW’ (), y(0)=0 as.,

where x () € R" is the state of the system, u(t) € R? is the
control input, and y(t) € R? is the measured output.
WX (t) = [W7}.. .W;]T ceRt and WY(t) e R? are in-
dependent standard Wiener processes with respect to a
family of increasing o-algebras {F,,t >0}, referred to a
probability space (Q, %, P). The standard assumption rank
(GGT) = g is made. The initial state x, is an % ,-measurable
random vector, independent of W*(t) and WY (t).
z(t) € R™ is a persistent disturbance generated by the

following nonlinear stochastic exogenous differential system
(the exosystem):

h
dz(t) = ¢p(z(t)dt + ) (F; + Djz(t))dwj ), z(0) =z,
j=1

(2)

where ¢ : R +— R™ is a smooth nonlinear map. W7 (¢) is
the j-th element of W (t) € R" which represents a standard
Wiener process with respect to {#,,t >0}, independent of
the state and output noise processes W* () and W” (¢).
Linear and nonlinear exosystems have been widely
exploited to model uncertainties as well as sustained per-
turbations, especially within applicative engineering
frameworks such as missile systems, robotics, and wind
turbines (one can refer to [1] and references therein, where
an observer-based approach is exploited to estimate the
unknown exosystem). Explicit noises in the exosystem dy-
namics could further enhance the nonlinearities of the
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system, and they have been considered in the recent liter-
ature for an exosystem with linear drift [1].

The optimal control problem here investigated refers to
the following standard quadratic-cost index to be minimized
on a finite horizon [0, tf]:

() = %m{xT(tf)Sx(tf)
. (3)
A NEC O (t)Ru(t))dt]»,
0

where S, Q are symmetric positive-semidefinite matrices and
R a symmetric positive-definite matrix. E{-} stands for the
expectation value operator.

The problem under investigation is clearly framed in the
context of stochastic optimal control problems for nonlinear
systems. Even though neglecting the stochastic disturbances,
the nonlinear fashion of the optimal control problem does
not ensure analytical solutions from the application of the
maximum principle, because it requires the solution of the
Two-Point Boundary Value problem (see, e.g., [2-4] and
references therein). Dealing with stochastic systems, such
investigation has been usually carried out in the framework
of a complete knowledge of the state of the system (i.e., the
state is directly available with no need for outputs providing
possibly noisy/incomplete measurements of the state). Usual
difficulties involve the solution of the Hamilton-Jacobi-
Bellman (HJB) equations associated to the optimal control
problem: in [5], the stochastic HJB equation is iteratively
solved with successive approximations; in [6], the infinite-
time HJB equation is reformulated as an eigenvalue problem;
in [7], a transformation approach is proposed for solving the
HJB equation arising in quadratic-cost control for nonlinear
deterministic and stochastic systems. Finally, in a pair of
recent papers, a solution to the nonlinear HJB equation is
provided, by expressing it in the form of decoupled Forward
and Backward Stochastic Differential Equations (FBSDEs),
for an L?- and an L'-type optimal control setting (see [8, 9],
respectively). As stated above, the solutions proposed in
these references rely on a complete knowledge of the state of
the system; thus, they do not require any nonlinear state-
estimation algorithm to infer information from noisy
measurements. To the best of our knowledge, the only
reference that deals with stochastic optimal control prob-
lems in a nonlinear framework with incomplete knowledge
of the state is [10], though nonlinearities are restricted only
to the diffusion term where the noise affects the state dy-
namics in a multiplicative fashion; the state drift and the
output equation providing noisy measurements are both
linear.

To cope with the incomplete information case, a state-
estimation algorithm is required. The optimal state estimate
among all the Borel transformations of the measurements, in
this case, requires the knowledge of the whole conditional
probability density provided by the solution of the Kol-
mogorov equation, a nontrivial infinite-dimensional prob-
lem. Several methods can be found in the literature in order
to achieve it, dealing with techniques inherently based on the
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searching for PDE numerical solutions (see, e.g., the recent
approaches on finite elements methods [11, 12]) or with
Monte Carlo approaches such as, among the others, particle
methods [13] or multilevel Monte Carlo methods [14]. All
these approaches share a nontrivial computational cost.

A different philosophy consists in introducing an ap-
proximation of the original setting according to which the
optimization problem is restated in a form for which there
exist available solutions in the literature. In this case, a
tradeoff should be searched between the simplifications
provided by the approximation and its displacement from
the real case. For instance, the Extended Kalman Filter
relies on the linearization of a stochastic nonlinear system
and is among the most widely used algorithms for real-time
state estimate because of its simplicity [15]; nonetheless,
there are many applications where linearization is a very
coarse approximation of reality and filters simply do not
work.

In the spirit of the aforementioned philosophy, in this
note, we apply the Carleman approximation to the nonlinear
exosystem. The Carleman approach consists in the em-
bedding of the original nonlinear differential stochastic
system onto an infinite-dimensional system whose state
accounts for the Kronecker powers of any order of the
original state. With respect to such a state, the dynamics can
be written in a bilinear fashion (linear drift and multipli-
cative noise), and the v-degree Carleman approximation is
achieved by truncating the higher-than-v Kronecker powers.
The idea is further supported by the new results on poly-
nomial filtering, which take advantage of the polynomial
structure of the problem to achieve more accurate estima-
tions, as in [16, 17]. Bilinear systems have gained an in-
creasing interest since early seventies, when they have been
started to be investigated as an appealing class of nearly linear
systems, [18]; according to more recent literature, they can be
found in different fields of engineering and mathematical
sciences, including economics, electronic circuits, and the-
oretical biology (see [19] and references therein). Moreover,
there can be found suboptimal state-estimation algorithms,
suitably designed for stochastic bilinear systems [20, 21].
Within this framework, the Carleman embedding technique
has been successfully applied in the recent years both to a
discrete- and continuous-time framework to solve filtering
problems by first reformulating them in a bilinear fashion
and, then, by applying known suboptimal algorithms (see,
e.g. [22-25]).

In this note, once the Carleman bilinear approximation
of the exosystem is coupled to the state equations, the op-
timal solution of the reformulated problem is still not
implementable because of the nonavailability of a finite-
dimensional algorithm for the optimal control. Therefore,
we propose the optimal linear regulator, by extending the
results of [10], consisting of the optimal solution among all
of the RP-valued square-integrable affine transformations of
the observations. A similar approach can also be found in
[26] in a discrete-time framework, and in [27] in a con-
tinuous-time framework, where only additive noises had
been conceived for the state and for the exosystem. The
present note is actually a nontrivial extension of [27], since
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multiplicative noises are now considered both in the system
dynamics and in the exosystem one.

2. Carleman Approximation of the
Stochastic Exosystem

Consider the Taylor polynomial expansion around a given
point z € R™ for the exosystem, supposed to exist according
to standard analyticity hypotheses. By properly exploiting
the Kronecker formalism, defining the displacement
@ (t) = z(t) - z, it follows:

$(z(1) =Y A @e®)", (4)
i=0

Vile¢(z(1)

4@ === (5)

z(t)=Z

The square brackets denote the Kronecker power, and
the differential operator V!'® applied to a generic function
v =y(z): R"— R" is defined as follows:

vPey =y,

. , (6)
vitley=v,e(vey),

120)

with V, = [0/0z, ...0/0z,,] and V,® y the Jacobian of the
vector function y (see the Appendix for a quick survey on
the Kronecker algebra). Thus, by taking into account (2) and
(4), we have that

do (1) = dz(t) = i A @) dt

i=0

h
+ Y (F;+ Dz +Djp(1))dW: (1)
j=

—_

M8

A@pndr + Z(F (2) + Do (£))dW: (¢),

j=1

Iy
o

(7)

where F (2) = F;+ D;z. We will drop hereafter the explicit
dependence of Z 1n F (z) to shorten notation. The differential of
the Kronecker powers of the displacement in (7) is then required
to be computed in order to build up the Carleman embedding.
By standard It6 calculus [28], it follows, for any k> 1,

dp(t)™ =(v, 09 ()™) Y A, 2)p (0" dt
i=0

h
+ % (VP op1)™) Y (F,(2) + Do) dr

i

h
+(V,09(0M) Y (F; () + Djp(6))dW: (1),
=
(8)
By exploiting Lemma 1 in the Appendix, according to the
definition of matrices Ufn and Ofn in (A.4),

dp (M = Z A1)t

i=k—1
h

j=1

[(Fm ® L, )<p (1)<

l\.)lr—t

+(Ci@ L)) +(DP @ 1,0 )p (1)

(B, 01,5 )p (0

h
+ Z U:1
j=1
+(D;® L2 )pt)M ]dwj (1),
(9)

Rmxm

with I, denoting the identity matrix in and

Kk,i = U]:n (Aifkﬂ (2) ® Imk’l )’
o _ (10)
Cj :Fj®Dj+Dj®Fj.

By means of the definitions
F ik =Un(F;®L1),

B =Us(D;®I1),

— 1 I 2]
Fh’k:z];O (F ®1mk2>,

(11)

Cox == Zo (C;®I,),
]1

h
~ 1 k 2]
By =3 Y 0, (D el,.-),
=
equation (8) can be written in more compact form:

do ()M = < Y A @e 0 + Fy o)
i=k—1

+ éh)k(p(t)[kil] + Eh)k(/)(t)[k] >dt

h
+ Y (F i + B 10 (1) )W (0.
=1
(12)

Collecting the Kronecker powers ¢ (1)¥, k = 1,2,. . .ina
unique vector @ (t), one obtains the following infinite-di-
mensional bilinear differential equation:



do(t) = (A(Z)D (1) + ©(z))dt

4 13
+ ) (T (1) + T )dWS (1), ()
j=1

with ®(1) = [ (1) (@ ...] and

(A, () AL() A3(E) AL - ]
Y,(2) Q,(2) Ay(2) Ayu(2) -
AR =| F; Y53 Q3(3) Ayu(®) - ,

0 Fry Y,(3) (@

mixm

(14)

with

Y,(Z) = A,,(2) +Cpy,
0, (2) = Ay, (2) + B,
Y;(Z) = A3, (2) + Cps,
Q;(2) = A;5(2) + By,
Y, (Z) = A5 () +Cpu
0, (2) =A,,(Z) + By,

(15)

— —T . =T T
0(2)=[4,,(2 Fp, O Opt ---| > (16)

0 0 .

mxm?

[ ‘%j,l 0

F

mxm? mxm?
ji2 '%j,Z Omzxm3 Omzxm4

I'.=(0

j m?xm

0

Fis Bz 0 (17)

P SRR P

o
mtxm Om“xmZ 'fj,4 ‘%j,él

T
I‘j,O = [93?1 01><m2 lem3 lem4 . ] . (18)

The v-degree Carleman approximation consists in col-
lecting the first v components of vector @ (t) in the finite-
dimensional vector:

0,0 =[o)" 9 ... o) ], (19)

and, then, describing its dynamics according to the finite-
dimensional version of (13):

do, (t) =(A(@)D, (t) + O (2))dt

& o - (20)
+ ) (T;®, (1) + T )dWS (1),
j=1

in which A(Z), ©(2), fj, fj,o are the finite-dimensional
matrices achieved by accounting for the first v blocks of the
Carleman embedding matrices, i.e., accounting for the first
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m,=m+m*+---+m” rows and columns of (14)-(18).
Then, we need to substitute z(f) in (1) by means of its
Carleman approximation provided by @, (¢). By doing this,
the state dynamics no more refers to the original x(f);
therefore, it will be replaced by x” (t). For the same reason,
we replace y(t) with y” (¢).

Remark 1. Itis worth noting that the It6 correction term in (8)
introduces nontrivial blocks in A, the dynamic matrix of the
Carleman embedding, defined in (14)-(15), see also (11). These
blocks could play an active role in determining the stability
properties of the Carleman approximation. Clearly, such in-
vestigation gains much more importance for control problems
that involve the asymptotic behavior of the system, such as in
optimal control with infinite-horizon cost functionals.
Therefore, the state dynamics (1), endowed with the output
measurements, are now replaced by the following equations:

dx” (t) = Ax” (t)dt + Bu(t)dt + L(D, (t) + Z,)dt
b

+ Y (M; + Npx' (£)dW (1),
i=1

dy” (t) = Cx” (t)dt + GAW (1),
(21)

where
z = [L Onx(m2+-~-+m”) ]>
(22)
—~ ~ T
zZ, = [ZT le(m2+m+m”) ] .

Finally, with the aim of writing equation (22) in a more
compact form, we define the extended state vector

x”(t)

()= , (23)

@, (t)

according to which the finite-dimensional bilinear extended
system is achieved:

dy’ () = [, @)y’ () + B,u(t) + D, (2)]dt

b+h
+ 2 (%,0 (O + F,;)dW (o), (24)

=1

dy* (1) = B, (t) + GAW (1),

4.3 A L
y\2) = Ti= P
Opyn A (Z) (25)
B, = [Bomm]’
N. 0,
[ ] o ]’ j = 1) 2) )b)
%%j _ O(;nvxn (())mvxmv
[ .’f”’”], j=b+1,b+2,...,b+h,
Omyxn l_‘j—b
(26)
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=110 (27)
[f“ ] j=b+1,b+2,...,b+h,
Iipo
Iz

2.3 =" |,

2 [@(z)]

qgvz[c oquv],
W (t)*

W(t) = o
W (t)*

(28)

Considering (24), the cost functional (3) becomes

T, () = %[E{x”(tf)&x”(tf)

(29)
¥ J ‘(0T ay 0 +u" (t)Ru(t))dt},
0
with
S Onxm
CS)‘V = |: ’ :|)

Om Xn Om Xm

v v v (30)

3. Optimal Linear Regulator

By means of the Carleman approximation scheme, the
original nonlinear optimal control problem (1)-(3) is now
restated in the problem of minimizing (29), subject to the
bilinear system (24). As already stated in the Introduction,
the optimal solution is still not affordable according to a
finite-dimensional state-estimate algorithm; therefore, we
look for suboptimal solutions. To this end, we synthesize the
solution u (t) providing the minimum of index (29) among
all the R?-valued square-integrable affine transformations of
the random variables { y'(1), 0<T<t<t } Such a problem
has been properly formalized (quadratic functional cost and
bilinear differential system) in [10], where a solution is given.
It is worth noticing that the solution provided in [10] is not
straightforwardly applicable here because of a constant
deterministic drift and of an additive noise in the state
equation of the extended system. The extension of [10] to
such a case has been presented in [27]: indeed, although the
original nonlinear frameworks addressed in this note and in
[27] are different, the Carleman approximation provides the
same mathematical structure for both the embedded system.
This fact highlights the advantages of the Carleman

approximation, that allows to restate quite different filtering/
control problems into the unifying bilinear formulation.
Besides, in the spirit of [10], the results proposed can be
interpreted as a Separation Principle in a suboptimal sense,
since the optimal linear filter is designed independently of
the optimal regulator that benefits of the state estimate
according to the incomplete information case. In summary,
results in [27] are quite straightforwardly applicable and
resumed in the following theorem that somehow resembles
the Separation Principle.

Theorem 1 [27]. Suppose a solution exists for the following
backward generalized Riccati equations:

b+h

V)=, @VE) -V, (2) -Q - ) (7, V()
k=1
+V()B,R BV (1),
V(ts) =S,
§g(t) = -2V()D,(Z) - AL (2)g(t) + V() B,R B! g(t)
b+h
—2) H,V(OF,,
k=1
g(tg) =0,

(31)

with V (t) = VT (t)>0. Then, the solution to the optimal
control problem of minimizing the cost criterion (29), under
the differential constraints (24), with u(t) € gf (»”) is given
by
u’ () = L ()" () + a(t), (32)
with
L°(t) = -R "BV (1),

] (33)
alt) = - 5R‘lggfg(t),

where " (t) is the optimal (in the sense of the minimum error
variance) estimate of x”(t) among all the R™" -valued
square-integrable affine transformations of {ry”(r), 0<
T<t<tg}, which is the projection of x” onto L5 (y):

PO =10 O] 20 (), (34)

(formally the projection onto ;"™ (y”) is a random variable
such that the difference y” (t) —IL[y" (t) | gzﬁm” (y"M)] is or-
thogonal to FT(y"), ie., is uncorrelated with all random

variables in £ (y")).

Remark 2. It is worth noting that sums in equation (31)
include more terms than the corresponding ones exploited
in [27]. This is because, different from [27], here, the
multiplicative noise in the state dynamics makes nontrivial
matrices %, ; for j=1,...,b, see (26).



Concerning the optimal linear filter providing x” (¢) in
(32), the following theorem provides the equations. Its
proof is a straightforward consequence of Theorem 4.2 in
[10].

Theorem 2. Consider the stochastic system (24) with
u(t) =u’(t) = L"(t)XAV (t) + a(t), L°(t), a(t) as in (33), and
)Z”(t) as in (34). Then, )(A”(t) satisfies the equation:

dy’ (t) = (o, (Z) + B,L° (1)) (t) + Ba(t) + D, (Z))dt
+ K (1) (dy" () - €,x" (1)dr),
(35)
with x*(0) = E{y” (0)} and K (t) = P(t)‘gf (GG, where
P (t) is the error covariance matrix evolving according to the

equation:

b+h
P(t) = o, (2P (t) + P()l, (2) + ) (X,;¥, (O, ;)
j=1

b+h
+ (7, 0+ F,) (7, 0+ F,)

i1
- P()%.(GG") ' %,P (1),
(36)
with P(0) = Cov{y” (0)} and
u, (1) = E{y” (1)},

y (37)
¥, (t) = Coviy” ()},

obeying the following equations:

i, (8) = (o, (2) + B,L (), (t) + B,a(t) + D, (Z),
¥, (1) = (o, (2) + B,L° ()Y, (t)
+¥, (1) (o, () + B,L° (1))

b+h
+ Z(%’W-\I’v(t)%ij)
j=1

b+h
(i, () + F, ) (0, () + F,)
=1

(38)

Note that according to the optimal initialization of the
filtering algorithm associated to the proposed control law,
the second-order moments of the initial extended state x” (0)
have to be finite and available, which means finite and
available moments up to order 2 for x, and up to order 2v for
Zy.

Remark 3. The filter proposed in Theorem 2 provides the
optimal linear estimate of y” as a function of the observations
y”. However, the available measurements are given by the
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output y (instead of y”); therefore, the differential dy” in (33)
should be replaced by dy.

4. Numerical Simulations

Numerical simulations refer to a second-order system for (1)
with scalar input and scalar output:

[ 4.5 -2
A= ,
| 0.6 -1.5
1
B=| |,
2
102
L= ,
-1 3
2
M,=01| |,
2
o0 1 (39)
N, =01 ,
1 -2
c=[10],
M,=01] "
2 =Y =k
[ —0.5 1
N, =01 ,
[ 02 2
G=2

According to (2), two kinds of exosystems are
considered:

¢, (2) :[

-z, +2,2, ]

Z, =22, — 2,2, (40)

6,(2) = [ z, + 0.1z, 2, ]

Z

Disregarding the noise, ¢, provides a unique asymp-
totically stable equilibrium in the origin. The linear ap-
proximation around the origin exhibits the same qualitative
behavior of the nonlinear exosystem, since it is asymptot-
ically stable. As a matter of fact, the first-order Carleman
approximation is expected to work well, with higher-order
Carleman approximations playing a marginal role. On the
other hand, with regard to ¢,, we have a unique unstable
equilibrium point in the origin, and the qualitative behavior
exhibits a limit cycle in absence of noise. By applying the
Carleman linearization around the origin, we find that the
approximate linear exosystem is marginally stable. As a
matter of fact, for both the original nonlinear system and for
its linear approximation, disregarding the noises, we have
sustained oscillations converging to different limit cycles
(the one related to the linear approximation that strongly
depends of the initial conditions). This fact may result in an
unsatisfying linear approximation, and the addition of
noises may further worsen the performances.

The following matrices are involved in the exosystem (2):
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210 T T T T

200 R

170 R

FIGure 1: Values of J, for v = 1,2, 3,4 for the system with ¢, (2).

210 T T T T

200 B

190 R

180 R

170 + B

FIGURE 2: Values of ], for v = 1,2,3,4 for the system with ¢, (2).

F 1
F, =0.1 ,
=
_1 2
D, =0.1 ,
0 -2 "
F, =01 _1]
2=00 )
F-0.5 0
D, =0.1 .
2 4

Initial conditions are x, = [ 12 ]T, z, = [0.4 0 ]T forall
the simulations, whilst initial conditions for the filtering
algorithm are X, = [3 4], 2, = [3.4 3]". The cost func-
tional weight matrices are S=2-1,,,, Q=5-1,,,, and
R =2. The Carleman approximation of the exosystem is
achieved around the origin.

100 numerical simulations have been produced for both
the types of exosystems, by using the Euler-Maruyama
method [29], with step integration § = 107* in the time
interval [0, 5]. As expected, with regard to ¢,, results show
increasing improvements of the performance index J,, up to
degree v =4, although according to little improvements
with respect to the first-order case (J, =5.28 £ 0.02,
J, =496 +0.02, ], = 491 £ 0.02, J, = 4.90 + 0.02). Results
are shown in Figure 1. On the other hand, with regards to
¢,, results show that the second-order Carleman approx-
imation is enough to provide a significant improvement in

the cost functional (J; = 202.1 + 3.3, J, = 173.1 + 3.6) with
a reduction of the average value of the cost functional of
about 15%. Higher-order approximations exhibit a be-
havior analogous to the second-order case (the cost
functional seems to approach a plateau). Results are shown
in Figure 2.

5. Conclusions

A stochastic optimal control problem has been investigated
for bilinear stochastic differential systems, driven by a
persistent perturbation provided by an exogenous stochastic
nonlinear system with multiplicative noise. This work
represents a nontrivial extension of a previous work where
additive noise (instead of multiplicative noise as in the
present case) was considered affecting both state and exo-
system. The approach followed relies on the Carleman
embedding, successfully exploited in the stochastic frame-
work in the last decade both for filtering and control
purposes.

Appendix
A. Kronecker Algebra

The symbol ® denotes the Kronecker matrix product, and
the notation Al is used for the Kronecker power of matrix
A, thatis, A A® --- ® A, repeated i times. The trivial case is
Al =1, Any further details can be found in [20].

The Kronecker product is not commutative: given a pair
of integers (a,b), the symbol C,;, denotes a commutation
matrix, that is a matrix in {0, 1}****® such that given any two
matrices A € R™*% and B € R"**%,

B®A:Cf)rb(A®B)C (A.1)

Ca5Cp

C

where C, ., C. .

(h, 1) entries:

cul - L oifl=(h—1],)u +<[h%1] . 1);

0, otherwise.

are defined so that, denoted [C,,];,; their

(A2)

The following lemma allows to compute the first- and
second-order differentials of the Kronecker power of a given
vector and has been used to obtain (12) from (8). Its early
version is in [20]. Here, the version of [24] is reported, due to
the recursive feature of the matrix coefficients computation.

Lemma 1. For any z € R™, it results that

v,ez" =U" (1,021, h>1, (A3)
Ve @zl = O" (1. @22, h>1, '
where U" and O" are recursively computed as
Up =L+ Chr (Ui ®1,,), "
A4
OZ1 = UfnC;h’l,m ((Uﬁ;lczh’z,m) ® Im)CLZ,mh’2 ’



for h>1, with UL =1,,.
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