Despite myriads of possible gene expression profiles, cells tend to be found in a confined number of expression patterns. The dynamics of Boolean models of gene regulatory networks has proven to be a likely candidate for the description of such self-organisation phenomena. Because cells do not live in isolation, but they constantly shape their functions to adapt to signals from other cells, this raises the question of whether the cooperation among cells entails an expansion or a reduction of their possible steady states. Multi random Boolean networks are introduced here as a model for interaction among cells that might be suitable for the investigation of some generic properties regarding the influence of communication on the diversity of cell behaviours. In spite of its simplicity, the model exhibits a non-obvious phenomenon according to which a moderate exchange of products among adjacent cells fosters the variety of their possible behaviours, which on the other hand are more similar to one another. On the contrary, a more invasive coupling would lead cells towards homogeneity
Damiani, C., Serra, R., Villani, M., Kauffman, S., Colacci, A. (2011). Cell-cell interaction and diversity of emergent behaviours. IET SYSTEMS BIOLOGY, 5(2), 137-144 [10.1049/iet-syb.2010.0039].
Cell-cell interaction and diversity of emergent behaviours
Damiani, C.
Primo
;
2011
Abstract
Despite myriads of possible gene expression profiles, cells tend to be found in a confined number of expression patterns. The dynamics of Boolean models of gene regulatory networks has proven to be a likely candidate for the description of such self-organisation phenomena. Because cells do not live in isolation, but they constantly shape their functions to adapt to signals from other cells, this raises the question of whether the cooperation among cells entails an expansion or a reduction of their possible steady states. Multi random Boolean networks are introduced here as a model for interaction among cells that might be suitable for the investigation of some generic properties regarding the influence of communication on the diversity of cell behaviours. In spite of its simplicity, the model exhibits a non-obvious phenomenon according to which a moderate exchange of products among adjacent cells fosters the variety of their possible behaviours, which on the other hand are more similar to one another. On the contrary, a more invasive coupling would lead cells towards homogeneityI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.