The interaction between numbers and action-related processes is currently one of the most investigated topics in numerical cognition. The present study contributes to this line of research by investigating, for the first time, the effects of number on an overlearned complex motor plan that does not require explicit lateralised movements or strict spatial constrains: spontaneous handwriting. In particular, we investigated whether the spatial mapping of numbers interferes with the motor planning involved in writing. To this aim, participants' spontaneous handwriting of single digits (Exp. 1) and letters (Exp. 2) was recorded with a digitising tablet. We show that the writing of numbers is characterised by a spatial dislocation of the digits as a function of their magnitude, i.e., small numbers were written leftwards relative to large numbers. In contrast, the writing of letters showed a null or marginal effect with respect to their dislocation on the writing area. These findings show that the automatic mapping of numbers into space interacts with action planning by modulating specific motor parameters in spontaneous handwriting
Perrone, G., de Hevia, M., Bricolo, E., Girelli, L. (2010). Numbers can move our hands: A spatial representation effect in digits handwriting. EXPERIMENTAL BRAIN RESEARCH, 205(4), 479-487 [10.1007/s00221-010-2383-3].
Numbers can move our hands: A spatial representation effect in digits handwriting
PERRONE, GELSOMINA ANTONIA;BRICOLO, EMANUELA;GIRELLI, LUISA
2010
Abstract
The interaction between numbers and action-related processes is currently one of the most investigated topics in numerical cognition. The present study contributes to this line of research by investigating, for the first time, the effects of number on an overlearned complex motor plan that does not require explicit lateralised movements or strict spatial constrains: spontaneous handwriting. In particular, we investigated whether the spatial mapping of numbers interferes with the motor planning involved in writing. To this aim, participants' spontaneous handwriting of single digits (Exp. 1) and letters (Exp. 2) was recorded with a digitising tablet. We show that the writing of numbers is characterised by a spatial dislocation of the digits as a function of their magnitude, i.e., small numbers were written leftwards relative to large numbers. In contrast, the writing of letters showed a null or marginal effect with respect to their dislocation on the writing area. These findings show that the automatic mapping of numbers into space interacts with action planning by modulating specific motor parameters in spontaneous handwritingI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.