Prostate imaging is a very critical issue in the clinical practice, especially for diagnosis, therapy, and staging of prostate cancer. Magnetic Resonance Imaging (MRI) can provide both morphologic and complementary functional information of tumor region. Manual detection and segmentation of prostate gland and carcinoma on multispectral MRI data is not easily practicable in the clinical routine because of the long times required by experienced radiologists to analyze several types of imaging data. In this paper, a fully automatic image segmentation method, exploiting an unsupervised Fuzzy C-Means (FCM) clustering technique for multispectral T1-weighted and T2-weighted MRI data processing, is proposed. This approach enables prostate segmentation and automatic gland volume calculation. Segmentation trials have been performed on a dataset composed of 7 patients affected by prostate cancer, using both area-based and distance-based metrics for its evaluation. The achieved experimental results are encouraging, showing good segmentation accuracy.
Rundo, L., Militello, C., Russo, G., D’Urso, D., Valastro, L., Garufi, A., et al. (2017). Fully automatic multispectral MR image segmentation of prostate gland based on the fuzzy C-means clustering algorithm. In A. Esposito, M. Faundez-Zanuy, F.C. Morabito (a cura di), Multidisciplinary Approaches to Neural Computing (pp. 23-37). Springer Science and Business Media Deutschland GmbH [10.1007/978-3-319-56904-8_3].
Fully automatic multispectral MR image segmentation of prostate gland based on the fuzzy C-means clustering algorithm
RUNDO, LEONARDO
Primo
;MAURI, GIANCARLO;GILARDI, MARIA CARLAUltimo
2017
Abstract
Prostate imaging is a very critical issue in the clinical practice, especially for diagnosis, therapy, and staging of prostate cancer. Magnetic Resonance Imaging (MRI) can provide both morphologic and complementary functional information of tumor region. Manual detection and segmentation of prostate gland and carcinoma on multispectral MRI data is not easily practicable in the clinical routine because of the long times required by experienced radiologists to analyze several types of imaging data. In this paper, a fully automatic image segmentation method, exploiting an unsupervised Fuzzy C-Means (FCM) clustering technique for multispectral T1-weighted and T2-weighted MRI data processing, is proposed. This approach enables prostate segmentation and automatic gland volume calculation. Segmentation trials have been performed on a dataset composed of 7 patients affected by prostate cancer, using both area-based and distance-based metrics for its evaluation. The achieved experimental results are encouraging, showing good segmentation accuracy.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.