Above all biodegradable polymers, poly(lactide-co-glycolide acid) (PLGA) has received a considerable attention as excipientin pharmaceutical industry up to be approved by Food and Drug Administration (FDA) and European Medicine Agency (EMA). The main features of PLGA have been discussed in chapter I. The headline of this work is the application of PLGA polymer as nano-container for metal nanoparticles: inorganic-based NPs (PLGA@metalNPs) entrapped into PLGA nano-containers harness the fascinating properties of the metallic nanomaterials with the extreme biocompatibility of the polymer, to makeinorganic particlesvery attractive tools for future biomedical applications. The thesis focuses on two main tasks: to prepare PLGA@MnO nanocomposite for targeted imaging of Crohn’s disease, and to set up and generalize the gold NPs phase transfer procedure and the PLGA@metal NPs synthetic protocol. Chapter II concerns the development of a manganese-based contrast agent (CA) for MRI application in vivo to achieve a highly accurate diagnosis of the stadiation and follow-up of the disease. In this respect, nanomedicine offers a unique opportunity to design novel smart enhancers by combining the safety of PLGA polymer andthe paramagnetic behavior of manganese, to generate PLGA@MnO nanocomposites as promising T1-positivecontrast agent for MRI. PLGA@MnO NPsare safe for Hela and SVEC-4-10 cell lines and thus they are more attractive contrast agents compared to gadolinium and Teslascan, which are more toxic. In addition, the promising results obtained with biofunctionalized MnO NPs for the active targeting of Crohn’s disease have also suggested to conjugate PLGA@MnO NPs with anti-MAdCAM-1 to target mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) overexpressed in inflamed bowel sites to enhance further the spatial resolution of MR images in vivo. In view of the encapsulation of manganese-based particles, a general method to entrap inorganic nanoparticles in the PLGA matrix was investigated further through Chapter III. The method here discussed has been set up in collaboration with the Luis Liz-Marzan’s group at CICBiomaGune (Spain). The PLGA polymer has been exploited to trap metal NPs of different nature to make them safe for the human organismand at the same time to maintaintheir fascinating chemical-physical properties. PLGA NPs loading gold nanoparticles (spheres, rods and cages), iron oxide and quantum dots have been synthesized by single emulsion methodand characterized by Dynamic Light scattering and Transmission Electron Microscopy. Efficient encapsulation has been obtained by highly concentrated and stable metal NPs in organic solvent.To this purpose, two different approaches, the biphasic and the monophasic one, have been explored to transfer gold nanoparticles to organic solvent (iron and manganese-based NPs already meet these conditions). Both the procedures have been adapted to any size and shape of gold NPs. These general approaches are attractive strategies toward the fabrication of heterogeneous nanostructures based on inorganic platforms and functional cargo molecules (e.g. drugs, vaccines, nucleic acids, quantum dots, magnetic nanoparticles) located within the hydrophobic spacer. The hybrid particles join the advantages of the biodegradability and the high biocompatibility of PLGA polymer with the unique properties of inorganic nanoparticles, to obtain potential systems for numerous biomedical applications. PLGA loading plasmonic gold particles could be employed for phototermal therapy and diagnosis; iron oxide particles entrapped in the polymer NPs could act as hypertermic therapeutic agent or MRI contrast enhancers; manganese oxide nanoparticle-loaded PLGA NPs have been demonstrated to be a high performing CA. Future perspectives will be focused on the application of PLGA@inorganic NPs and their functionalizing particles with targeting moieties to enhance also their efficacy as theranostic agents.

Tra tutti i polimeri biodegradabili conosciuti, l’acido polilattico-co-glicolico (PLGA) ha ricevuto una considerevole attenzione per le sue proprietà di biocompatibilità e biodegradabilità ed è ampiamente utilizzato come eccipiente nell’industria farmaceutica in quanto approvato dalla Food and Drug Administration (FDA) e dalla European Medicine Agency (EMA). Il filo conduttore della tesi è l’utilizzo del polimero PLGA come nano-contenitore di particelle metalliche. Nanoparticelle inorganiche sono intrappolate nella matrice polimerica di PLGA (PLGA@metallo NPs) con il conseguente vantaggio di coniugare le affascinanti proprietà dei nanomateriali metallici con l'estrema biocompatibilità del polimero, al fine di rendere le particelle inorganiche attraenti nanocostrutti per una molteplicità di applicazioni biomedicali. Il capitolo II della tesi mira allo sviluppo di un agente di contrasto (AC) per la risonanza magnetica nucleare (MRI) per la diagnosi precoce e il monitoraggio del decorso della malattia. A questo fine, la nanotecnologia offre un'opportunità unica per la progettazione di nuovi AC: la non-immunogenicità del PLGA, combinata con il comportamento paramagnetico delle particelle di manganese (MnO NPs) è capace di generare un contrasto T1-positivo nelle immagini di risonanza magnetica. Il costrutto PLGA@MnO NP è non tossico per le linee cellulari Hela e SVEC-4-10, e costituisce perciò un’attraente alternativa ai più tossici gadolinio e Teslascan. Inoltre, risultati promettenti ottenuti con MnO NPs funzionalizzate per il targeting attivo del morbo di Crohn, aprono la strada alla possibilità di coniugare l’agente di targeting anti-MadCAM-1 alla particella da noi sviluppata per una diagnosi MRI più accurata della malattia. Applicando la metodica di incapsulamento di MnO NPs a particelle diverse per materiale, forma e dimensione, è stato messo a punto un protocollo universale di internalizzazione di particelle inorganiche in particelle di PLGA. Il metodo descritto è stato realizzato in collaborazione con il gruppo del professor Luis Liz-Marzan presso il CICBiomaGune, San Sebastian (Spagna). Il capitolo III è focalizzato sul caricamento di particelle di oro, ferro e Cd/Se nella matrice di PLGA. Per avere una miglior efficienza di incapsulamento è necessari avere particelle metalliche altamente concentrate e stabili in fase organiche. A tal fine sono stati sviluppati due approcci differenti per il trasferimento in solvente organico di particelle a base di oro: il metodo monobasico e bifasico. Entrambe le procedure sono traslabili a particelle di qualsiasi dimensione e forma. I protocolli sviluppati mostrano strategie interessanti per la fabbricazione di nanostrutture ibride che uniscono i vantaggi della biodegradabilità ed elevata biocompatibilità del PLGA con le proprietà uniche delle nanoparticelle inorganiche, per ottenere nanosistemi adatti per numerose applicazioni in campo medico. Ad esempio, particelle d'oro plasmoniche in PLGA NPs possono essere impiegate per la terapia fototermica e la diagnosi; particelle di ossido di ferro intrappolate nel polimero potrebbero operare come agenti per ipertermia o diagnosi MRI; particelle di ossido di manganese caricate in PLGA NP hanno di dimostrato ottime proprietà come AC. Prospettive future prevedono la funzionalizzazione dei nanocostrutti preparati per implementare la loro efficacia come agenti teranostici.

(2017). development of PLGA hybrid nanoparticles for biomedical application. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2017).

development of PLGA hybrid nanoparticles for biomedical application

COLLICO, VERONICA
2017

Abstract

Above all biodegradable polymers, poly(lactide-co-glycolide acid) (PLGA) has received a considerable attention as excipientin pharmaceutical industry up to be approved by Food and Drug Administration (FDA) and European Medicine Agency (EMA). The main features of PLGA have been discussed in chapter I. The headline of this work is the application of PLGA polymer as nano-container for metal nanoparticles: inorganic-based NPs (PLGA@metalNPs) entrapped into PLGA nano-containers harness the fascinating properties of the metallic nanomaterials with the extreme biocompatibility of the polymer, to makeinorganic particlesvery attractive tools for future biomedical applications. The thesis focuses on two main tasks: to prepare PLGA@MnO nanocomposite for targeted imaging of Crohn’s disease, and to set up and generalize the gold NPs phase transfer procedure and the PLGA@metal NPs synthetic protocol. Chapter II concerns the development of a manganese-based contrast agent (CA) for MRI application in vivo to achieve a highly accurate diagnosis of the stadiation and follow-up of the disease. In this respect, nanomedicine offers a unique opportunity to design novel smart enhancers by combining the safety of PLGA polymer andthe paramagnetic behavior of manganese, to generate PLGA@MnO nanocomposites as promising T1-positivecontrast agent for MRI. PLGA@MnO NPsare safe for Hela and SVEC-4-10 cell lines and thus they are more attractive contrast agents compared to gadolinium and Teslascan, which are more toxic. In addition, the promising results obtained with biofunctionalized MnO NPs for the active targeting of Crohn’s disease have also suggested to conjugate PLGA@MnO NPs with anti-MAdCAM-1 to target mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) overexpressed in inflamed bowel sites to enhance further the spatial resolution of MR images in vivo. In view of the encapsulation of manganese-based particles, a general method to entrap inorganic nanoparticles in the PLGA matrix was investigated further through Chapter III. The method here discussed has been set up in collaboration with the Luis Liz-Marzan’s group at CICBiomaGune (Spain). The PLGA polymer has been exploited to trap metal NPs of different nature to make them safe for the human organismand at the same time to maintaintheir fascinating chemical-physical properties. PLGA NPs loading gold nanoparticles (spheres, rods and cages), iron oxide and quantum dots have been synthesized by single emulsion methodand characterized by Dynamic Light scattering and Transmission Electron Microscopy. Efficient encapsulation has been obtained by highly concentrated and stable metal NPs in organic solvent.To this purpose, two different approaches, the biphasic and the monophasic one, have been explored to transfer gold nanoparticles to organic solvent (iron and manganese-based NPs already meet these conditions). Both the procedures have been adapted to any size and shape of gold NPs. These general approaches are attractive strategies toward the fabrication of heterogeneous nanostructures based on inorganic platforms and functional cargo molecules (e.g. drugs, vaccines, nucleic acids, quantum dots, magnetic nanoparticles) located within the hydrophobic spacer. The hybrid particles join the advantages of the biodegradability and the high biocompatibility of PLGA polymer with the unique properties of inorganic nanoparticles, to obtain potential systems for numerous biomedical applications. PLGA loading plasmonic gold particles could be employed for phototermal therapy and diagnosis; iron oxide particles entrapped in the polymer NPs could act as hypertermic therapeutic agent or MRI contrast enhancers; manganese oxide nanoparticle-loaded PLGA NPs have been demonstrated to be a high performing CA. Future perspectives will be focused on the application of PLGA@inorganic NPs and their functionalizing particles with targeting moieties to enhance also their efficacy as theranostic agents.
PROSPERI, DAVIDE
COLOMBO, MIRIAM
PLGA; hybrid; nanoparticles; biomedical; metal
PLGA; hybrid; nanoparticles; biomedical; metal
FIS/03 - FISICA DELLA MATERIA
English
16-mar-2017
SCIENZA E NANOTECNOLOGIA DEI MATERIALI - 79R
29
2015/2016
open
(2017). development of PLGA hybrid nanoparticles for biomedical application. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2017).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_787802.pdf

accesso aperto

Descrizione: tesi di dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 19.32 MB
Formato Adobe PDF
19.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/153253
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact