We study the behavior of certain eigenvalues for magnetic Aharonov-Bohm operators with half-integer circulation and Dirichlet boundary conditions in a planar domain. We analyze the leading term in the Taylor expansion of the eigenvalue function as the pole moves in the interior of the domain, proving that it is a harmonic homogeneous polynomial and determining its exact coefficients.

Abatangelo, L., Felli, V. (2016). On the leading term of the eigenvalue variation for Aharonov-Bohm operators with a moving pole. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 48(4), 2843-2868 [10.1137/15M1044898].

On the leading term of the eigenvalue variation for Aharonov-Bohm operators with a moving pole

ABATANGELO, LAURA;FELLI, VERONICA
2016

Abstract

We study the behavior of certain eigenvalues for magnetic Aharonov-Bohm operators with half-integer circulation and Dirichlet boundary conditions in a planar domain. We analyze the leading term in the Taylor expansion of the eigenvalue function as the pole moves in the interior of the domain, proving that it is a harmonic homogeneous polynomial and determining its exact coefficients.
Articolo in rivista - Articolo scientifico
Aharonov-bohm potential; Asymptotics of eigenvalues; Blow-up analysis; Magnetic schrödinger operators;
Aharonov-Bohm potential; Asymptotics of eigenvalues; Blow-up analysis; Magnetic Schrödinger operators
English
2016
48
4
2843
2868
partially_open
Abatangelo, L., Felli, V. (2016). On the leading term of the eigenvalue variation for Aharonov-Bohm operators with a moving pole. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 48(4), 2843-2868 [10.1137/15M1044898].
File in questo prodotto:
File Dimensione Formato  
revised_RemarksAB_SIMA.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 369.05 kB
Formato Adobe PDF
369.05 kB Adobe PDF Visualizza/Apri
SIMA.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 524.51 kB
Formato Adobe PDF
524.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/138875
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
Social impact