ON THE LEADING TERM OF THE EIGENVALUE VARIATION FOR
AHARONOV-BOHM OPERATORS WITH A MOVING POLE

LAURA ABATANGELO AND VERONICA FELLI

ABSTRACT. We study the behavior of certain eigenvalues for magnetic Aharonov-Bohm op-
erators with half-integer circulation and Dirichlet boundary conditions in a planar domain.
We analyze the leading term in the Taylor expansion of the eigenvalue function as the pole
moves in the interior of the domain, proving that it is a harmonic homogeneous polynomial
and determining its exact coefficients.

1. INTRODUCTION

This paper is concerned with the behavior of certain eigenvalues of magnetic Aharonov-
Bohm operators with half-integer circulation and Dirichlet boundary conditions in a planar
domain.

A remarkable mathematical motivation for the study of Aharonov-Bohm operators with
half-integer circulation can be found in the deep relation between nodal domains of eigen-
functions of such operators and spectral minimal partitions of the Dirichlet Laplacian, i.e.
partitions of the domain minimizing the largest of the first eigenvalues on the components.
From [10] it is known that the boundary of the optimal partition is the union of a finite num-
ber of regular arcs; moreover, if the number of half lines meeting at each intersection point is
even, then the partition components are nodal domains of an eigenfunction of the Dirichlet
Laplacian. On the other hand, partitions with points of odd multiplicity can be obtained as
nodal domains by minimizing a certain eigenvalue of an Aharonov-Bohm Hamiltonian with
respect to the number and the position of poles, as suggested in [2, B3, 4, [14] and confirmed
by the magnetic characterization of minimal partitions given in [8]. The properties of the
map associating eigenvalues of magnetic operators to the position of poles and its connection
between its critical points and nodal properties of eigenfunctions was further investigated in
[0, 12 13]. The present paper completes the analysis started in [I] and aims at giving the
sharp asymptotic expansion for the eigenvalue variation with respect to moving poles.

For every a = (a1, az) € R?, the Aharonov-Bohm vector potential with pole a and circula-
tion 1/2 is defined as

1 < —(x9 — ag) 1 — a1

Aa(1,22) = 5 (21 — a1)? + (22 — ap)?” (21 — a1)? + (22 — ap)?

), (z1,22) € R?\ {a}.
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Let Q C R? be a bounded, open and simply connected domain. For every a € €2, we consider
the eigenvalue problem

(Ea)

(iV + Ag)?u = Au, in ©,
u =0, on 01},

in the weak sense .
From classical spectral theory (see e.g. [6, Chapter 6]), the eigenvalue problem (E,) admits
a sequence of real diverging eigenvalues (repeated according to their finite multiplicity) A{ <
Ay < - < /\;‘ < .... We are concerned with the behavior of the function a +— )\? in a
neighborhood of a fixed point b € Q2; without loss of generality, we can consider b = 0 € €.
Let us assume that there exists ng > 1 such that

(1) )\go is simple,
and denote

Ao = A,
and, for any a € (),

Ao = Apy-

In [12, Theorem 1.3] it is proved that, for all j > 1 such that /\? is simple, the function a — A}
is analytic in a neighborhood of 0. In particular, under assumption , a — A, is continuous
and, if a — 0, then

(2) )\a — )\0.

Let ¢o € H370(Q, C)\{0} (see sectionfor the definition of the functional space Hé’O(Q, C)) be
a L*(£2, C)-normalized eigenfunction of problem (Ep) associated to the eigenvalue Ag = A9 ,
i.e. satisfying

(iV + Ao)*po = Moo, in €,
(3) o =0, on 09,

Jo lpo(@)? dz = 1.
From [7, Theorem 1.3] (see also [14, Theorem 1.5] and [I, Proposition 2.1]) it is known that

(4) ¢o has at 0 a zero of order g for some odd k € N,
and that there exist 81, 2 € C such that (51, 32) # (0,0) and

(5) r_k/zsoo(r(cost, sint)) — s (51 cos (gt) + B2 sin <§t)) in CI’T([Oa 2n], C)

as r — 0 for any 7 € (0,1). We recall that, by [9] (see also [5, Lemma 2.3]), the function
eiiéwg(r(cost,sin t)) is a (complex) multiple of a real-valued function; therefore implies

that the function ~(t) = 1 cos (gt) + B9 sin (%t) is real-valued up to a complex multiplicative

constant and then either 8; = v(0) = 0 or % = i% is real. Then ¢ has exactly k& nodal

lines meeting at 0 and dividing the whole angle into k£ equal parts; these nodal lines are
tangent to the k half-lines {(t,tan(ao +j2%)t) > 0}, j=0,1,...,k—1, where

2 B2 :
2 t(— ), if 0,
ao:{karcco ( ﬁl) if By #

(6) 0, if 81 = 0.
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At a deeper study, the rate of convergence of A\, to Ag is strictly related to the number of
nodal lines of ¢ ending at 0. First results in this direction are proved in [5], in which the
authors provide some estimates for the rate of convergence . A significant improvement of
these studies is obtained in [I], where sharp asymptotic behavior of eigenvalues is provided
as the pole is approaching an internal zero of an eigenfunction ¢q of the limiting problem
along the half-line tangent to any nodal line of ¢q; more precisely, under assumption and
being k as in , in [I, Theorem 1.2] it is proved that the limit

Ao — A
(7) lim 22 T % is finite and strictly positive as a — 0 tangentially to a nodal line.
=0t |al
The above positive limit can be expressed in terms of the value m;. defined as follows. Let sg
be the positive half-axis so=[0,+00) x {0}. For every odd natural number k, the function

k
(8) U (rcost, rsint) = r*?sin (2 t), r>0, teo,2n],
is the unique (up to a multiplicative constant) function which is harmonic on R? \ sg, homo-
geneous of degree k/2 and vanishing on sg. Let s := {(z1,22) € R? : 29 = 0 and z; > 1},
R?2 = {(x1,72) € R?: 25 > 0)}, and denote as D%’Q(Ri) the completion of C°(R% \ s) under
the norm ([g2 |Vul? dz)'/?. By standard minimization methods, the functional
+

1
Ji :DY(RE) = R, Ji(u) = 2/

|Vu(z)|? de —/ u(:vl,O)%(xl,O) dzq,
R 02

3_ aRi\s

achieves its minimum over the whole space D§’2(Ri) at some function wy € Di’Q(Ri), ie.
there exists wy, € D;’Q(Ri) such that

(9) mg = min Jk(u) = Jk(wk).
ueDy?(R2)

‘We notice that

B 1 o 1 [Togy
(10) my, = Jy(wg) = 2/]R2 |Vwg(z)|" dr = 3 ), om

+

(xlv 0) ’lUk(.T]_, 0) d.fCl < 05

where, for all 1 > 0, 85;?

the limit in @ is equal to
(11) Co = —4(|B1]* + | Baf?) my,

with (81, B2) # (0,0) being as in (5)).

From [I, Theorem 1.2] we can easily deduce that, under assumption (1)) and being k as in
, the Taylor polynomials of the function a — A\g — A\, with center 0 and degree strictly
smaller than &k vanish.

k_
+ w = kg2 ! In [1] it is proved that

(21,0) = lim; o

Lemma 1.1. Let Q C R? be a bounded, open and simply connected domain such that 0 € €
and let ng > 1 be such that the ng-th eigenvalue \g = )\QLO of (iV + Ag)? on Q is simple with
associated eigenfunctions having in 0 a zero of order k/2 with k € N odd. For a € §Q let
Aa = X% be the ng-th eigenvalue of (iV + Aq)? on Q. Then

(12) Mo — da = P(a) +o(|al®), as|a] = 07,
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FIGURE 1. a = |a|(cos a,sin ) approaches 0 along the direction determined
by the angle a.

for some homogeneous polynomial P Z 0 of degree k
k
(13) P(a) = P(ay,a2) = chalffja%.
§=0

The main result of the present paper is the determination of the exact value of all coefficients
of the polynomial P (and hence the sharp asymptotic behavior of A, — \g as a — 0 along any
direction, see Figure [1)).

Theorem 1.2. Under the same assumptions of Lemma([1.1, let oo € [0,27). Then

0 — Aa |
O‘aﬁ — Co cos (k(a — ap)) as a — 0 with a = |a|(cos a, sin a),

where g is defined in @ and Cy in .
Remark 1.3. By Theorem it follows that the polynomial of Lemma is given by
P(lal(cos o, sina)) = Colal|® cos(k(a — ap)).

Hence '
P(ay,as) = CoNRe (e*’kao(m +1 ag)k),
thus yielding AP = 0, i.e. the polynomial P in — is harmonic.

The proof of Theorem [1.2]is based on a combination of estimates from above and below of
the Rayleigh quotient associated to the eigenvalue problem with a fine blow-up analysis for
scaled eigenfunctions

pa(lalz)

(14) W,

which gives a sharp characterization of upper and lower bounds for eigenvalues. Differently
from the blow-up analysis performed in [I] for poles moving tangentially to nodal lines, in the
general case of poles moving along any direction we cannot explicitly construct the limit profile
of the family of scaled functions . Such a difficulty is overcome by studying the dependence
of the limit profile on the position of the pole and the symmetry/periodicity properties of its
Fourier coefficient with respect to a basis of eigenvectors of an associated angular problem:
such symmetry and periodicity turn into some symmetry and periodicity invariances of the
polynomial P. A complete classification of homogeneous k-degree polynomials with such
periodicity /symmetry invariances then allows us to determine explicitly the polynomial P.
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The paper is organized as follows. Section [2]is devoted to recalling some known facts and
introducing some notation. In section [3|we prove sharp asymptotics for \g— A, in dependence
on the angle «. In section [ we describe some symmetry properties of the sharp asymptotics,
which allow us to prove Theorem in section

2. PRELIMINARIES

In this section we present some preliminaries as needed in the forthcoming argument. For
every a € , we introduce the functional space H1%(Q, C) as the completion of

{u € H(Q,C) N C>®(9,C) : u vanishes in a neighborhood of a}

with respect to the norm

1/2
[ull e o,0) = (HVUH%Q(Q,(@) + [[ull20.c) + Hﬁ”i%n,@)) ,

which, in view of the Hardy type inequality proved in [11] (see also [7, Lemma 3.1 and Remark
3.2]), is equivalent to the norm

' 1/2
(||(N + Aa)ul 202 + HUH%?(Q,C)) :

We denote as Hé’a(Q, C) the space obtained as the completion of C°(Q2\ {a}, C) with respect
to the norm || - [| g1.a(q,c)-

For every a € (), we say that A € R is an eigenvalue of problem in a weak sense if
there exists u € Hé “(Q,C) \ {0} (called an eigenfunction) such that

(15) /(ZVU + Aqu) - (iVu + Agv) de = )\/ uwvdx forall v e Hé’a(Q,(C).
Q Q

2.1. Change of coordinates. Up to a change of coordinates (a rotation), it is not restrictive
to assume in that

(16) 51 - 07

see [I, Remark 2.2]. Under condition (16)), we have that g = 0 and one nodal line of ¢y is
tangent the xq-axis.

2.2. Polar eigenfunctions. The limit function in is an eigenfunction of the operator
, 1
£ = =" +ig' + 20

acting on 2m-periodic functions. The eigenvalues of £ are {% jeN, jis odd}; moreover
each eigenvalue % has multiplicity 2 and the functions

L . it

f/; Ccos (%t), 1/}%(15) = f/—;r sin <%t>

form an L?((0,27), C)-orthonormal basis of the eigenspace associated to the eigenvalue %.

(17) P(t) =
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2.3. Angles and approximating eigenfunctions. As in [5], for every a € [0,27) and
b= (b1,bs) = |b|(cosa,sina) € R?\ {0}, we define
(18) Oy : R2\ {0} = [, a +27) and 6} :R?\ {0} = [o, a + 27)
such that

Oy(b+r(cost,sint)) =t and 65(r(cost,sint)) =t, forall 7 >0 andt € [o,a + 27).
E.g. if by > 0 and by > 0 the functions 6 and 63 are given by

arctan %:Zf, if z1 > b1, To > 2—?1‘1,
g, if &1 = by, a2 > bo,
(19) Op(x1,22) = { ™+ arctan %:Z?, if 21 < by,

%ﬂ, ifxlzbl, x2<b2,
k27r + arctan 27:23’ if o1 > b1, 29 < Z—f:vl,
arctan %, if z1 >0, zo > g—fxl,

5 ifzy =0, z9 >0,

0% (x1,x2) = < 7 + arctan 2, itz <O,
3, if 21 =0, 22 <0,
27 + arctan %, ifx1 >0, 22 < Z—f:z:l.

We notice that 6, and 6} are regular except on the half-lines
(20) Sp = {tb: tZl}, 38 = {tb: tZO},

respectively, whereas the difference 63 — 6, is regular except for the segment {tb: t € [0,1]}
from 0 to b.
We also define
6o : R%\ {0} — [0,27)

as
arctan %, ifx1 >0, 29 >0,
g, ifxy =0, z9 >0,
(21) Oo(x1,x2) = { ™+ arctan %, if z1 <0,
S, if 21 =0, z2 <0,
27 + arctan g—f, if 1 >0, 9 <0,

so that fg(cost,sint) = 0)(cost,sint) =t for all ¢ € [0,27) and 6 is regular except for the
half-axis {(x1,0) : z1 > 0}. We notice that

0, iftea,2m),

22 02 — 6, t,rsint) =
(22) (% 0)(r cost,rsint) {271', ift € [0, ).

Let us now consider a suitable family of eigenfunctions relative to the approximating eigen-
value \,. For all a € Q, let ¢, € H&’G(Q,(C) \ {0} be an eigenfunction of problem (£,
associated to the eigenvalue )\, i.e. solving

{(iv + Au)?0a = Mapa, in Q,

23
(23) e =0, on 0f),
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such that

2

(24) / loa(x)|?dr =1 and / 5 (05 —0a) () ©a(x)o(z) dz is a positive real number,
Q Q

where ¢ is as in (3]). From (] . . . , and standard elliptic estimates, it follows that
Ya — po In Hl(Q (C) and in C2_(Q\ {0},C) and

(25) (iV 4+ Ag)pa — (iV + Ag)po  in L*(Q,C).

2.4. Limit profile in dependence on «. A key role in the proof of our main result is
played by a suitable magnetic-harmonic function in R?, which will turn out to be the limit of
blowed-up sequences of eigenfunctions with poles approaching 0 along the half-line starting
from 0 with slope tan a.

For every p € R?, we denote by D};’Q(RZ, C) the completion of C>°(R™V\ {0}, C) with respect
to the magnetic Dirichlet norm

1/2
HuHD;,Q(RQ’(C) = </R2 |(iV + Ap)u ’ dm) .

We recall from [I1] that functions in D;’Q(Rz, C) satisfy the Hardy type inequality

L[ Ju@))?
V + Aul*d d
‘(z Al der 2 4/11@2 o —p2 "
furthermore (see also [T, Lemma 3.1 and Remark 3.2]) the inequality

1 2
/ GV + Ay)ul2 de > / (@I,
D, (p) 4 Jp, ) |z —pl

holds for all » > 0 and v € HYP(D,(p),C), where D,(p) denotes the disk of center p and
radius 7.

If a = |a|](cos a, sina) — 0 with « € [0,27), i.e. if @ — 0 along the line of slope «, all the
functions of the blowed-up family are singular at the same point p = (cos «, sin ). We
will prove in section [3| that the family converges to the limit profile ¥, described in the
following proposition.

Pr0p051t10n 2.1. Let a € [0,27) and p = (cosa,sina). There exists a unique function
U, € H-P(R2,C) such that

loc
(26) (iV + A,)*T, =0 inR? in a weak H'P-sense,
and
(27) / ’(ZV + A,) (¥, — e%(ep_eg)eéeoz/;k)F dr < 400, for anyr >1,
R2\D,

where D, = D,(0).

Proof. Let n be a smooth cut-off function such that 7 = 0 in D; and n = 1 in R? \ Dy for
some R > 1. We observe that

F = (An)e%(%—@g)eéeowk —2iVn - (ZV + Ap) (62(9 6290¢k>

—(iV + 4,)? (ned O Beihy, ) € (DFA(RY,0))".
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Hence, via Lax-Milgram’s Theorem there exists a unique solution g € D;’2(R2,(C) to the
problem
(iV+Ap)’g=F, in (Dy*(R*C))"

The function ¥, = g + ne%(ep—08)€%90¢k satisfies and .

To prove uniqueness, it is enough to observe that, if two functions \Il:,l,, \11120 € Hﬁ)’f (R2,C)

satisfy and (27), then their difference W} — W2 belongs to the space Dll,’z(]RQ,(C) (see
[, Proposition 4.3]); since (iV + Ap)?(¥) — ¥2) = 0 in (D (R2,C))*, we conclude that
necessarily \1111, — \1112, =0. g

Remark 2.2. We observe that from [7, Theorem 1.5] it follows easily that

v, — e%(ep_eg)eéeowk = O(\x]_l/Q), as |x| — 4o0.

3. SHARP ASYMPTOTICS FOR Ag — Ay IN DEPENDENCE ON «

In this section we prove some estimates of the eigenvalue variation \g — A, by evaluating
the Rayleigh quotient at suitable test functions obtained by manipulation of eigenfunctions.
Although this procedure follows the scheme of [I], it presents some additional difficulties
requiring nontrivial adaptions, mainly due to the fact that the limit profile of Proposition 2.1
cannot be explicitly constructed as in [1]. We describe below this procedure, referring to [IJ
for details of arguments already developed there and instead highlighting the differences with
[1] and the difficulties in the adaption to the general case of poles moving along a generic
direction.

Forall 1 < j <mng and a € Q, let ] € H&’G(Q,(C) \ {0} be an eigenfunction of problem
associated to the eigenvalue A7, i.e. solving

(28) {(N + Aa)?0% = Aot in ),
©§ =0, on 01},
such that
(29) /Q \gp?(:c)|2dx =1 and /ng?(a:)gp‘;(m)daz =0if j # L.
For j = ng, we choose
(30) Pro = Pas

with ¢, as in f.

3.1. Estimate from below of \j — \,. Letting p = (cos a, sin «), we define the function wg
as the unique solution to the minimization problem

/ GV + Ay)wp(@)|? d
Dg

= min {/ |(iV + Ap)u(z)|*dx : uw € HYP(Dg,C), u = e%(ep’eg)e%%d;k on 8DR} ,
Dpg
which then solves

(51) {(z’v + Ay 2wg =0, in Dp,

i ¥4 1
WR = ei(ep_eo)eieowk, on 0Dg.
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Arguing as in [I, Subsection 6.2], we can prove the following lemma.

Lemma 3.1. For a € [0,27) and a = |a|(cosa,sina) € Q, let Ay € R and ¢, € Hé’a(Q,(C)
solve (23)-(24) and Ao € R and ¢ € HS’O(Q,C) solve (3). If and hold and is

satisfied, then, for all R > R and a = |a|(cos a, sin ) € Q,

)\0|a_’k/\a > gr(a)
where
‘iEOQR(G) = i| o] *ir,
with
(32) FR = /aD (e*%f’pe%@é’*@o)(z’v + Apwr - v — (V) - y) Y, ds
R

being p = (cos a, sin ) and Yy as in .

Proof. The proof follows exactly as in [I, Lemma 6.6], so we omit it. O

For any R > 1 let us introduce the following Fourier-type coefficient

%

2w .
(33)  wg(r) ::/ e_iep(TCOSt’rsmt)wR(rcost,rsint)e%Bg(TCOSt’TSIHt)@Z)’g(t) dt, rell,R],
0

with @ZJ’Q" defined in . Due to jumps of the phases appearing in on s, (see ), the
derivation of the equation satisfied by the Fourier-type coefficient vy is more delicate than in

[1]; hence we give the details in Lemma 3.2 below.

Lemma 3.2. For any R > 1 the function vr defined in satisfies

(34) (r*20p(r)) = % in (1, R),

for some cp € C.

Proof. To prove it is enough to show that
R 1 k2
/ < — U — —UR + 42UR> rn(r)dr =0, forall n € C°(1, R).
1 r T

By (31), it is easy to see that the function u(z) := eféep(x)wR(x) is harmonic in Dpg \ sp,

where s, is defined in (20). Let us consider an arbitrary function n(r) € C2°(1, R) and the
function

| _ L gn(k

g(t) — Leé(%’—@g)(cost,sint) Sin(Et) _ { ﬁSIH(zt) t e [0704)

VT 2 # sin(4t)  t € [a,2m).
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Testing equation —Au = 0 with v(rcost,rsint) = n(r)g(t) in Dg \ s,, integrating by parts
and observing that both v and Vu jump across s,, we obtain that

R
O—/
1
1

</02 rOpu(rcost,rsint)n’ (r)g(t) + T](:)g'(t)atu(r cos t,rsint)) dt> dr
== / Rn(r

)
+/1R77()< O%@U(rcost rsint)g ()dt) dr
:_/IR (nryia(r) + ra(ryes ())dr—l—/an(T)( 027r8tu(rcost rsint)g ()dt)d

2
< / (&u(r cost,rsint) 4+ rdZ.u(rcost,rsin t))g(t) dt) dr
0
r
,

r

A further integration by parts yields

2m 2m
Opu(r cost,rsint)g’'(t)d / u(rcost,rsint)g”(t) dt
0 0
+ g~ (2m)u(r cos(2m ), rsin(2r7)) — ¢ (a)u(r cos(a™), rsin(at))
+ g~ (a)u(rcos(a™),rsin(a™)) —gﬂr(O) (rcos(0+),rsin(0+))
2w k2 k?
= / u(rcost,rsint)g”(t) dt = u(rcost,rsint)g(t) dt = —vg(r)
0 4 Jo 4
in view of the fact that ¢/, (0) = ¢’ (27), ¢/, (@) = —¢' (), and
lim wu(rcos(t), rsin(t)) = — lUm wu(rcos(t), rsin(t)).
t—at t—a~
The conclusion then follows. O

For a € [0,27) and p = (cosa,sina), let us define the following Fourier-type coefficient of
the limit profile ¥,

z

2m . . N
(35) &p(r) :—/ e*%%(mosmsmt)\llp(rcost rsint)e 30 (TCOSt’Tsmt)"L/Jg(t) dt, r>1.
0
Lemma 3.3. Let kg be as in . Then
im g = iR (YT~ (1),
where &,(r) is defined in (3F).

Proof. The proof follows from integration of arguing as in the proof of [I, Lemma 6.7]. O
Combining the results of Lemmas [3.1] and [3.3] we have that
(36) N = Aa = lal* kB2 2VF (§(1) = V7 +0(1))

as a = |alp — 0.
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3.2. Blow-up analysis and Rayleigh quotient for )\y. Differently from the lower bound
for Ag — Aq, the upper bound of the eigenvalue variation presents significant new difficulties
with respect to the case of poles moving along nodal lines of g treated in [I, Subsection 6.1].
Indeed, when the direction along which a — 0 is not a nodal line of ¢ the value (§,(1) — /)
can have any sign (and vanish along some directions); this does not allow deriving the exact
asymptotic behavior of the normalization term in the blow-up analysis from estimates of the
Rayleigh quotient from above and below as done in [I]. On the other hand, from [I] we can
derive Lemma [1.1| and hence obtain a control on the size of the eigenvalue variation along
any direction.
The proof of Lemma [1.1]is based on the following result (see also [5, Lemma 6.6]).

Lemma 3.4. Let Q(z1,x2) = Z?:o cjx{:ng_j be a homogeneous polynomial in two variables

x1, T2 of degree at most h € N. If there exist 6 € [0,27) and an odd natural number k such
that k > h and

(37) Q(cos (§+j2f),sin (9_+j2f)> =0, forallj=0,1,....k—1,
then @ = 0.

Proof. Up to a rotation, it is not restrictive to assume that § = 0. If z; # 0, we can write Q
as

h
Q(x1,x9) = 1‘}1‘@(%), where Q(t) = chth_j.
=0

Since k is odd, we have that cos (j%”) #0forall j=0,1,...,k— 1. Then, from assumption
it follows that Q(tan (]%’T)) =0forall j=0,1,...,k— 1. Since k is odd, we also have
that tan (32%) # tan (62%) for all j,1 € {0,1,...,k — 1} with j # £. Hence Q has k distinct

zeros. Since () is a polynomial of degree at most h and h < k, from the Fundamental Theorem
of Algebra we conclude @) =0, i.e. ¢;j =0 forall j =0,1,...,k — 1. Hence Q = 0. O

Proof of Lemma([1.1 Since the function a = (a1,a2) — Ao — A is C* in a neighborhood of
0 (see [5, Theorem 1.3]), it admits a Taylor expansion up to order k of the form

k
Ao — g = ZPj(al,ag) +o(lal®), as|a| =0,
j=1
where, for every j = 1,...,k, Pj(a1,az) is either identically zero or a homogeneous polynomial
in the two variables aj, ay of degree j. From [I, Theorem 1.2] (see also (7)) we have that, for
every £ < k,

Pg(COS (ao +j2f),sin (ao +j2f)) =0, forallj=0,1,...,k—1,

where aq is as in @ (i.e. ap+ j%’r, with 7 = 0,1,...,k — 1, identify the directions of the &
half-lines tangent to the nodal lines of the eigenfunctions associated to A\g). The conclusion

follows directly from Lemma ]
From the expansion f in Lemma it follows that
(38) [Aa = Aol = O(lal")

as |a| — 0 along any direction. Exploiting we can perform a sharp blow-up analysis prior
to the estimate from above of the eigenvalue variation A\g — A,.
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Let o € [0,27) and p = (cosa,sina). Arguing as in [I] we can prove that, for every
0 € (0,1/4), there exist r5, K5 > 0 such that, for all R > K,

(39) the family of functions {@, : a = |a|p, |a| < %3} is bounded in H'?(Dg,C)

where

L va(lalz)
40 =
( ) Soa(x) \/m
and

1
Kjal 9Dy a|
Furthermore, from [1, Estimates (113) and (114)] we have that

H,s:

)

|pal” ds.

(41) Hys > Csla*+®, if |a < -2,
k] KE

for some Cs > 0 independent of a, and

(42) H,s5=0(la)'"%) asla| — 0.
We observe that ¢, weakly solves
(43) (iV + Ap)*a = |a*Aaa, 0 Q= {z € R®: |z € O},
and
1 512
(44) — |Pal” ds = 1.
Ks Jopy,
Let R > 2. For |a| sufficiently small we define the functions v; g, as follows:
et inQ\ D
(45) Vj,R,a = ,Ug;f}a’ ?n \ Rlal> .7 = 17 ..., N,
U Rar 1 DRjals
where

vﬁ%a = 65(9870‘1)@? in Q\ Dpyq)s
with ¢f as in ([28)-(30) and 6,,6 as in (notice that ¢3(66—%) is smooth in O \ DRlq|), SO

that it solves

J i Ra

peTt  — 65(987911)(‘0? on 8(9 \ DR|a\)7

{(N + Ao)2vst = A0S in Q\ Dpyg,
J:R.a

whereas v is the unique solution to the problem

JR.a
(iV + Ao)*vi% , = 0, in Dgjq),
U;%a = qf,’%(et(JL(Q‘l)(,o?7 on dDp|q|-
It is easy to verify that dim (span{vi g, -.,Ung,Ra}) = N0

For all R > 2 and a = |a|p € Q with |a| small, we define

Uint alx
(46) Zf(.’[:) — TZO,R,G,(‘ | )

V Ha,é
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Arguing as in [I, Lemma 6.2] we can prove that, as a consequence of and the Dirichlet
principle,

(47) the family of functions {Zf a = |alp, la| < 3 } is bounded in H"(Dg,C).

We also define
_ wo(|alr)
(48) Wa(z) = 7‘a|k/2 .

As in [1], under assumption and letting k as in (4)), from [7, Theorem 1.3 and Lemma
6.1] we have that

62 ip,
(49) W, — —=e2"%y, as|a|] -0
VT

in H'9(Dpg,C) for every R > 1, with £ as in .
Theorem 3.5. For every R > 2,

ano,Ra SOOHHl 0 QC) — O(\/ a5) as a = \a]p — 0.

Proof. Let R > 2. We first notice that v,, rq — @0 in Hé’O(Q,(C) as |a] — 0. Indeed

/‘ZV-FAO Ung,R,a — <p0‘ dx—/]e2 zV—l—A) (iV—i—Ao)goo]Zda:

+
Dgr

2
_/ VHoge BT + Ay g — a2V + Ag) W)
Dpg
in view of , , , and .

From [I, Lemma 7.1] the function
F:Cx Hy"(Q,C) — R xR x (Hyp(Q,C))*
A 9) = (101210 0.0) — Y0 Im( fo eBTd), GV + o) — Ap)

is Fréchet-differentiable at (Ao, po) and its Fréchet-differential dF'(\g, ¢p) is invertible. In the
above definition, (HS’IE(Q,(C))* is the real dual space of HS’%(Q,C) = H&’O(Q,(C), which is
here meant as a vector space over R endowed with the norm

1/2
el 10 ) = (/ | + Aoyu| dx) .

|Aa — Aol + ||Uno,Ra - ‘P0HH1 2(Q,0)

2
dzx

VHes (0 + 40)Z8 = |20V + A0) W, )

dx = o(1)

Therefore

< H(dF()\O; 900)) 1||£ (RxRx (H HY O(Q C))* CXH&’O(Q,C)) ”F()\a, UWNR’U‘)HRXRX(HS,’D%(Q))*(l + 0(1))
as |a| — 0". To prove the theorem it is then enough to estimate the norm of
F()\av 'Uno,R,a) = (am /Baa wa)

= <||Un0,R,aH§I(%70(Q7C) — Ap, IJm (fﬂ vnO,Rﬂ%dI) ) (ZV + A0)2Un0,R,a - Aavnoﬁﬂ)
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in R xR x (HS’H%(Q))*. The estimates of 3, and w, can be performed as in [I, Proof of
Theorem 7.2] obtaining that

Ba = 0( Ha,é) and Hw“”(Hé”ﬁ(Q,(C))* = O(\/ Ha,J)y

as a = |a|lp — 0. As far as «, is concerned, differently from [I], the estimate of [1, Proposition
6.10] which, in the case a = 0, implied that [Aq — Ag| = O(Hggs), is not available after
preliminary estimates of the Rayleigh quotient for generic values of « since (§,(1) — /7) can
have any sign. This difficulty can be overcome by observing that and imply that

IAa — Aol = O(Ja|2 =%, /H,) and then
[Aa = Aol = o(v/Ha,s),
as a = |a|p — 0. Then, from and (A7), we obtain that

g = (/ |(iV + Ao)vf{é’fR’a]Z dx — / |(iV + Aa)gaa|2 d.fC) + (Aa — o)
DRa| Dga

—Has ([ 167+ A0z ds = [ 167+ 45 d) + 0= o)
Dr Dr

- 0( V Ha,é)v

as a = |a|p — 0, thus concluding the proof. O

Via Theorem and a change of variables, it follows that, letting o € [0,27), p =
(cosa,sina), and R > 1,

(50) /( .

Theorem 3.6. For a € [0,27), p = (cosa,sina) and a = |alp € Q, let @, € Hé’a(Q,(C) solve

and g € H&’O(Q,C) be a solution to (3) satisfying , , and . Let ¢, and
K5 be as in and U, be as in Proposition|2.1. Then

k/2 1 K
(51) lim % L
la| =0+ \/Hg s ’62 faD |\1Jp| ds

and

2
(iV + A,) (@a( ) — 30 —GP)MWQ) dz = O(1), asa=lalp— 0.

\/ Ha,§

5 Ks
MEY faDK W) Pd

in H'P(Dg, C) for every R > 1, almost everywhere and in CZ(R?\ {p},C).

(52) b as a = |alp — 0,

Proof. Step 1. We first prove that for every sequence a, = |ay|p with |an| — 0, there exist
P e Hlo’f(R2 C), ® # 0, and a subsequence a,, such that Pan, = ® in H'?(Dg,C) for every
R > 1, almost everywhere and in CZ_(R?\ {p},C) and & weakly solves

(53) (iV + Ay)*® =0, inR2%

To prove it, we observe that from ( . ) it follows that, for every sequence a,, = |ay|p with
lan| — 0, by a diagonal process there exists ® € H, Lp P(R?,C), and a subsequence a,, such
that Pan, — ) weakly in H'P(Dpg,C) for every R > 1 and almost everywhere. ® # 0
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since K%;faDK |<i>]2ds = 1 thanks to and the compactness of the trace embedding
§
Hl’p(DKa,(C) — L2(8DK5,(C).
Passing to the limit in , we have that ® weakly solves , whereas, arguing as in the
proof of [I, Theorem 8.1], we can prove that the convergence of the subsequence Pa,, to D is

actually strong in H'"P(Dg, C) for every R > 1. The convergence in CZ_(R?\ {p}, C) follows
easily from classical elliptic estimates.

Step 2. We claim that, for every sequence a,, = |a,|p with |a,| — 0, there exists a subse-
quence a,, such that

k)2
lim [ |

{—~+o00 Hané o

is finite and strictly positive.

To prove the claim, we argue by contradiction, assuming that

N . . . k/2
(1) either there exists a sequence a,, = |a,|p with |a,| — 0 such that lim,, % =
an,0
. . . . lan|/2
(ii) or there exists a sequence a,, = |a,|p with |a,| — 0 such that lim, 4 = = to00.
an,,0

If (i) holds, then, by step 1, along a subsequence, Pan, = ® in H'?(Dg,C) for every R > 1,

for some ® # 0 weakly solving . Then from , passing to the limit in we would
obtain that

/ |(iV + Ap)®(z)|*dx < +o0,
R*\Dp

contradicting the fact that ® # 0 is a non trivial weak solution to (53) (and so cannot have
finite energy otherwise by testing the equation we would get that ® = 0, see [I, Proof of
Proposition 4.3]). Hence case (i) cannot occur.

If (ii) holds, then from we would have, for all R > 2

|al? /
Hq s Dap\DRr

and hence, in view of and , passing to the limit along the sequence we would obtain

that
|an|k (/
Hq, s Dar\Dr

k
— i C (s [ [wnPde o) =), wsn s o
an,5 DQR\DR

— ) 2
(iV + Ap)(ﬁ%(az) — e%wr"o)vva) dz=0(1), asa=lalp— 0,

2

(1V+Ap) (eé<0p*03)526%90¢k> dxr + O(l))

k)2
which is not possible if limg_, | o \‘;}Lflﬁ = +o0 as in case (ii), since fD2R\DR |V |2dz > 0.
ang,

Hence also case (ii) cannot occur and the claim of step 2 is proved.

Step 3. From steps 1 and 2, it follows that, for every sequence a, = (|ay|,0) = |an|p
with |a,| — 0, there exist ¢ € (0,40), ® € Hl’p(Rz,C) weakly solving , ® £ 0, and

X loc
|ang| /2

\/Hane,(;

a subsequence a,, such that lim, = c and @q,, — ® in H'P(Dpg,C) for every
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R > 1 and in C2_(R?)\ {p},C). Passing to the limit along a,, in and recalling ([49)), we
obtain that, for every R > 2,

/RQ\DR

Hence from Proposition we conclude that necessarily

2
dr < +oo.

(19 + 4) (B(x) — et Doy, )

(54) D = cfo¥,.

Since K%; faDK5 |‘i>\2 ds =1, from and the fact that ¢ is a positive real number, it follows
_ 1 K, 1/2

that ¢ = Bl (W) . Hence we have that

~ 62 Ks : 1,p : 2 2
Pan, = |B2| \/7%%\1110 in H?(Dg,C) for every R > 1 and in Cj.(R°\ {p}, C),

and
\ane|k/2 1 K5
1/H |52 faD ‘\I’p| ds’

Since the above limits depend nelther on the sequence {ay}, nor on the subsequence {ay, }¢,
we conclude that the above convergences hold as |a| — 0T, thus proving and . t

Remark 3.7. Combining and we deduce that

a|r

in H'?(Dg,C) for every R > 1 and in C2_(R?\ {p},C). Furthermore, arguing as in [I]
Lemma 8.3], from Theorem we can deduce that, letting Z[* as is ,

B2 Ks

1821\ Jop,, 1¥plds
in H'9(Dpg,C) for every R > 2, where zp is the unique solution to

(iV + Ag)?zp = 0, in Dp,
ZR = e%(eg_ep)\llp, on 0Dg.

zE zr asa=|alp — 0,

Thanks to the convergences of blow-up sequences established in Theorem [3.6] and Remark
we can now follow closely the arguments of [I, Subsection 6.1, Lemma 9.1] thus obtaining
the following upper bound for the difference Ag — Aq.

Lemma 3.8. For a € [0,27) and a = |a|(cosa,sina) € Q, let )\ € R and ¢, € H1 “(Q,0)

solve and Ao € R and g € Hé’O(Q,C) solve . If () and {) hold and (16) s

satisfied, then, for a = |a|(cos a,sina) and p = (cos a, sin a),

C < Bl kvm(E(1) — V),

lim sup
la]—0 | |

with &y(r) defined in (35).

Collecting and Lemma we can state the following result.
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Proposition 3.9. For a € [0,27) and a = |a|(cosa,sina) € Q, let p, € Hé’a(Q,C) and

Ao € R solve and g € R and ¢y € H&’O(Q,(C) solve . If and hold and

is satisfied, then, for a = |al(cos a,sin @),
Ao — Ag
im
jal=0  |af*

= |Bo]? kv f (@),

where
(55) Fo00,2m) 2 R, f(a) = (§(1) - vA), p=(cosa,sina),
with & (r) defined in (35).

4. PROPERTIES OF f(«)

To prove our main result, we are going to investigate two suitable symmetry properties of
the function f(«). Let us define two transformations R, Rz acting on a general point

x = (z1,x2) = (rcost,rsint), r >0, te€[0,2n),

as
z1 cos 2% —sin 2%

(56) Rl(l‘) = Rl(xl,l'Q) = Mk " , Mk = o o

2 sin 9F  cos ¢
i.e.

Ri(rcost,rsint) = (r cos(t + 2%),rsin(t + 2%)>,

and
(57) RQ(:L’) = RQ(.’E17 332) = (:1:17 _x2)7
i.e.

Ra(rcost,rsint) = (rcos(2m — t), rsin(2w — t)),
The transformation R is a rotation of 2% and R is a reflexion through the xi-axis.
We would like to study how the coefficient &,(1) (see (35))) changes when the above trasfor-
mations act on p. In particular, we are going to prove that such a quantity &,(1) is invariant
under the transformations Rq, Ro.

In order to obtain such an invariance, we first study the relation between the limit profiles
U, (R;(z)) and \I'Rj_l(p)(x), j=12.

Lemma 4.1. For p = (cosa,sina), a € [0,27), let ¥, be the limit profile introduced in
Pmposition and let R1, Ra be the transformations introduced in and . Then

(58) Vi1 = —e 'k (U, 0 Ry)

and

(59) U, = —€R20) (T, 0 Ry).

Proof. In order to prove , we observe that, by direct calculations,
(60) (Ap o Rl)(x) = Anl—l(p) (x)Ml;l’

(61) e300R) (g 0 Ry) = —elfertuy,

(62) e3C0RV@ Ty (Ry () = —e'Fe3% @V ()M,
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Furthermore
9 1 (x)+2—7r7 lfCME 2i727r7
0, (Ra(x)) = {9721 () . ) 'f[ 7 2m) .
Riip(@) + % —2m ifae [0.5),
and
-1
iRy - A0 @+ e [F.2m),
1 = Tt
6 o Pa)+ 2 —2n iface [0,20),
so that
—1
(63) Oriigy — 0o =BpoRa—BfoRy.

Let us denote \T/p(y) = V,(Ri(y)). By direct calculations we have that, since ¥, weakly
solves the equation (iV + A4,)?¥, = 0, the function ¥, solves (iV + (A, o R1)M)*¥, = 0
and hence, in view of ,

(64) iV + AR;1(p))2\I'p =0, inR?in a weak HYRT () _gense.

Passing to the limit in and taking into account and Theorem |3.6, we obtain that,
for all R > 1,

(65) /R o

2
dzx

(iV + Ap) <‘ij - e%(Op—OSJrOo)wk)

B /RQ\DR

By the change of variable x = Ri(y) in the above integral, using , , and we
obtain that

(66) /R o

2

(iV + Ap) T, — e2@=06+00)7yy | do < +oo.

2

(iV + Ap) U, (z) — e2E—0+0)@) 7y, ()| da

, R (p) 2
~ i 20— —6,1 +0
= /R2\D (1V + A'Rfl(p))\llp(y) —|—6E7r62( Ry )0 O)(y)ivwk(y) dy
R
i R1 (P 2
i~ 10— -6, 1 +6
- /]R2\D iV + Ag-1,)) (= e ¥, ) (y) — ot Unpor 7 0)(y)ivwk(y) dy < +00.
R
From , and Proposition we conclude that
—efﬁﬂ-\pp = \I}Rfl(p)
thus proving (58)).
To prove (h9)), we first observe that direct calculations yield
_ 1 0
(67) (AR, (p) © R2) M V=4, where M = <0 _1>,

(68) Yro Ry =,  Vipr(Ra(z)) = Vibp(z) M.



EIGENVALUE VARIATION FOR AHARONOV-BOHM MOVING POLE 19

Moreover
0,(Ro(z)) = A — Ory (),  if O,(Ra(z)) € (a, a4 2), if o € (0,27),
21 — O,y (), if Op(Ra(z)) = a,
0,(Ro(z)) = — O,y (T) = 21 — Op(), ?f Op(Ra(z)) € (0,2m), ifa=0
9R2<p>( ) =0, if 0 (R2(z)) =0,
and
Ra(p) e oP
0p(Ra(x)) = {47T 9732(;))(x)7 %f 92(722(:1:)) € lomat 27T)’ if a € (0,2m),
21 — 0y 2 (), if65(Ra(x)) = a,
2 — Og(z), if Op(z) € (0,271'), ,
b (R =0o(R = fa=0,
0(R2(2)) = 0o(R2()) {_90@) 0, if Bo(z) = if o
so that
(69) 002" — Oy = OpoRa — 08 0 Ra,  in B2\ {tp: t € [0,1]},
and
(70) 20 R2W) — _e=300() in R2\ {(21,0) : 21 > O}

Let us denote @p(y) = — "R W, (Ry(y)). In view of (67), it is easy to verify that \Tlp
solves

(71) iV + AR2(p))2\flp =0, inR?ina weak H"R2(P)_gense.

By the change of variable £ = Ra(y) in the integral , using , , , and and
. Ra(p)
observing that, by , 6_1(90 2 _90) =1 in R?\ Dg, we obtain that

(72) /
R2\Dp
= Lo
Lo,
= Lo,
Lo,
Lo,

From , and Proposition we conclude that

~

Uy =V,

thus proving . O

2
dx

(iv+Ap)\I'p( T) — %(0,,70 o) Zv¢k( )

2
i (p)
(iV + (A, 0 Ra) M) (— W, 0 Ra)(y) — e~ (Oman =002 +00) 07, (1)

2
i (p)
(’LV - AR2(P))(_\I’p o R2)(y> - 6_5(9712(1,)—9(7)22 P +90) (y)szk(y>' dy

. 2
e (97?2(17)79(7)%2(m+90) iV — ARQ(p))(—\I/p oRa) — e% (9732(?)79?2(p>+90)iv¢k d

2
. i Ra2(p)
e’ R2 () (iV = ARy () ) (=¥p o Ra) — €2 (9R2<P)_90 2 +90) iV d

2
~ i 2(p)
(ZV + AR2 (p))\Ilp e2 (9732(17) 9 +60) V| d
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We are now in position to prove invariance properties of the function p — &,(1) under the

transformations and .

Lemma 4.2. Let Rq,Ro be the transformations introduced in —, a € [0,27), and

p = (cosa,sina). Then

(73) (1) = &(1)
and
(74) 5732(?)(1) = fp(l)a

where &y is defined in .
Proof. We first notice that, from ,

2 x
(75) s (s + %) = —¢'tyb(s), forall s € R,
and
(76) 1/1’2“(27r —s) = —e_iswlg(s), for all s € R.

By the change of variable t = s + 2?” in the integral defining &,(1), from , and

we obtain that

2m ) .
Ep(l):/0 6_5(6”_65)(‘30”’51”)\pr(cost,sint)¢’§(t) dt

2 ) .
— —e % / e—%(@;,—eg)(’Rl(cos S’SIHS))\I’p(Rl (cos s, sin s))
0

-1
27 i Ry (p) .
B / e 2 (aRl_l(p)feo )(cos s,sin s)
0

=&
thus proving .

(s)ds

\I/R;1(p) (cos s, sin s)1h(s) ds

By the change of variable t = 2w — s in the integral defining &,(1), from , , ,

and we obtain that

27 ) .
fp(l):/0 e_%(ep_eg)(COSt’&nﬂ\Ilp(cost,sint)¢§(t) dt

27 )
_ _/ 6—%(01,—05)(732(&3 s,sin s))\ij(rR/2 (COS s, sin S))eiﬂo(coss,sin S)¢§;(S) ds

0

2 i ( Ro(p)
o —i(g 2P _g (cos s,sins) —if Cos s,sin s : 6o (cos s,sin s), 1.k
—/0 e 5 (00 Rar) e 0R, ) ( )\I!RQ(p)(cos s, sin s)e™?0 Jipk (s) ds

2w .
_ / 6_% ('9R2(p) —9?2(17)) (cos s,sin s) e i (0(7)%2(1)) —90) (cos s,sin s)
0

2w . Ro(p) .
= /0 6_%(0732(17)_90 27) (cos ssin 5)\11732(13) (cos s, sin s)1h(s) ds

= 5722 (p)(l)v
thus proving .

UR,(p)(cos s, sins)y

5(s) ds
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Let f be the 2m-periodic extension of the function introduced in , ie.
(77) f(@) = &eosasinay (1) — vV, foralla €R,
with &, defined in .
Corollary 4.3. Let f be defined in . Then
fl@)=fla+3) and f(a)=f(27—a)
for all @ € R.

Proof. 1t is a straightforward consequence of Lemma [£.2] O

5. PROOF OF THE MAIN RESULT

From Lemma and Proposition it follows that, under assumption , the homoge-
neous polynomial P of degree k appearing in the expansion is given by

(78) P(rcosa,rsina) = r¥|Bo2kv/mf(a), >0, a R,
with f as in . Furthermore, from Corollary and , we have that the 2w-periodic

function

(79) g:R—=R, g(a):=P(cosa,sina) = zk: ¢j(cos a)f = (sin o)
j=0

satisfies the periodicity /symmetry conditions

(80) gla) =g(a+2%) and g(a)=g(2r—a), forallacR.

From [I, Theorem 1.2] we also know that

(81) co = g(0) = —4|B*my > 0,

with my being as in @f.

Lemma 5.1. Under the assumptions of Lemma and , let P be as in - and g
be defined in . Then

k

. Co in 1 - . )
g(a) = leﬂ S (2 (0= 1) jl;[ls (2k(2j 1) a>, for alla e R

Proof. From and , we have that

2T ) k—1
(82) g(]?> >0 for allj—O,l,...,T.
Moreover, from and the oddness of k, we have that
(83) gla+7m) = —g(a), forall a€eR,

and hence from we deduce that
T ~27T T - 27
(84) g(k +]k> = g(w + (E - +j?))
k—1

:g<7r+2f(j+%)) =g(m) =—g(0) <0 forallj:(),l,...,T.
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From and we infer that g has at least k distinct zeros 61,09, ...,0; in (0,7) such

that
T

(=17 <6 <J%, forall j =1,...,k.

In view of this fact, we aim at factorizing the function g. For every a € R\ {¢7: £ € Z} we
have that

(85) g(@) = (sina)*P(cot o)

where
k
P(t) = et
=0

From the 1-variable polynomial P has degree k. Furthermore, by , cot b, ...,cot by
are k distinct real zeroes of P. Therefore from the Fundamental Theorem of Algebra it follows
that P(t) = ¢ H?Zl(t — cot §;), and hence, in view of (85,

k k
gla) = co(sin a)® H(cot a—coth;) =co H(cos a — cot 0 sin )
j=1 j=1
k 1 k
= cp H (sin; cos v — cos B sina) = ¢ H
j=1 J=1

F sin 0; - sin 0;

for all « € R\ {¢m: £ € Z}. Then, by continuity, we conclude that

sin(f; — ),

k
1 .
(86) g(a) = chH1 s sin(f; — @), for all @ € R.

We notice that implies that the values 61,0s,...,0; are the unique zeros of ¢g in the
interval (0, 7). In particular, for every j € {1,...,k},

(87) 0; is the unique zero of g in the interval ((] - 1)2,]’2).
From and we have that
, T
g<91 + (- 1)%>
~ ) g(6y), if 7 is odd,
g0 +7m+(G—-1DF) =—g(01+ (G —1+k)F) =—g(61), if jis even,

=0,
and hence, in view of and since 6 + (j — 1)F € ((j — 1)%,47F), we have that
(88) 9j:01+(j—1)%, forall j=1,... k.

From it follows that g( — 61 + 2%) = g(—61) = g(2m — 1) = g(61) = 0; therefore, since

—01 + 2% € (%, 27”), from (87) and we can conclude that —6; + 2% =0y =061+ 7 and
hence ) = 5. Then from (88)) we deduce that

s

%= 3%

(2j—1), forallj=1,... k,
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thus reaching the conclusion in view of . O
Lemma 5.2. Let k € N\ {0}. Then

k
sin 1(2]’ —1) —a) = 2% cos(ka)
[T (5 -)

for all o € R.
Proof. Since the complex numbers ¢i% 7 with 7 =1,2,...,k are k-th distinct roots of unity
and k is odd, we have that
k

(89) 1—2F = (—1)ktt H (ei%j - z) , forall z€C.

7=1
Since

v b1 ei(i@jfl)fa) . efi(ﬁ(ijl)fa)
(52~ 1) - ) = 3
1 1

_ iz (2j+1) (ez’%"j - ei(2a+%)) _ 2o g (25 +14k) (ei%"j - ei(2a+%))
21 2
from we deduce that

k k
1 . ok . . Lo . . T
I |1 sin (%(2] — 1) _ Oé) — 7€—zkae—zz Zj:136_15(1+k) | | (el%j o ez(2a+§))
]:

)

ok
Jj=1

1 _. 4 .
_ 276—216046—7,#(1—%]6) (1 - ez(2ka+ﬂ')> (_1)k+1
_ L ika (1 n e2km) _ 1 (e—ika n ekm) — 21k cos(ka)
9k ok
thus proving the lemma. O

Proof of Theorem[1.3. From Lemmas and it follows that, under the assumptions of
Lemma and , the polynomial P in — is given by

P(rcos a, rsina) = —4| 8o |*myrF cos(ka),
thus proving the conclusion in the case in which assumption is satisfied. The general case
51 # 0 can be easily reduced to the case 81 = 0 by a change of the Cartesian coordinate system
(x1,72) in R? which rotates the axes in such a way that the positive z1-axis is tangent to one

of the k nodal lines of ¢y ending at 0. If 51 # 0 and ag is defined in ([6]), the nodal lines of g
at 0 have tangent half-lines forming with the z;-axis angles of a9 + 7j, j = 0,1,...,k — 1.

If go(z) = po(R(x)) and @4(x) = @q(R(x)) with
R, s) — (c?s g —smao> (:m) 7
silny  COS €2
it is easy to verify that ¢g, @, solve the problems
(iV 4+ A0)*@o = M@0, (iV + Ar-1())*Ba = AaPa;

in the domain R~1(92). Moreover

rF250(r(cost, sint)) — Bre’z cos (gt) + Bae's sin <§t> in C17([0, 27],C)
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as 7 — 07, where

w[R

<ﬂ:1>—ei cos(%ao) —sin(%ao) <ﬂ1>
Ba) sin(gao) cos(%ao) B2) "

From (6]) it follows that $1 = 0 and hence |Bs|? = |B1|? + |52/ Since we have already proved
the theorem in the case 51 = 0, we know that

AO_Aa

alF — —4|Ba|*my cos(kar), as a — 0 with R (a) = |a|(cos a, sin a),
a

which yields

Ao — A
W — —4(|B1]* + |Ba|*)my, cos(k(0 — ap)), as a — 0 with a = |a|(cos 8, sin6),
a
thus concluding the proof. O
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