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Abstract. We study the behavior of certain eigenvalues for magnetic Aharonov-Bohm op-
erators with half-integer circulation and Dirichlet boundary conditions in a planar domain.
We analyze the leading term in the Taylor expansion of the eigenvalue function as the pole
moves in the interior of the domain, proving that it is a harmonic homogeneous polynomial
and determining its exact coefficients.

1. Introduction

This paper is concerned with the behavior of certain eigenvalues of magnetic Aharonov-
Bohm operators with half-integer circulation and Dirichlet boundary conditions in a planar
domain.

A remarkable mathematical motivation for the study of Aharonov-Bohm operators with
half-integer circulation can be found in the deep relation between nodal domains of eigen-
functions of such operators and spectral minimal partitions of the Dirichlet Laplacian, i.e.
partitions of the domain minimizing the largest of the first eigenvalues on the components.
From [10] it is known that the boundary of the optimal partition is the union of a finite num-
ber of regular arcs; moreover, if the number of half lines meeting at each intersection point is
even, then the partition components are nodal domains of an eigenfunction of the Dirichlet
Laplacian. On the other hand, partitions with points of odd multiplicity can be obtained as
nodal domains by minimizing a certain eigenvalue of an Aharonov-Bohm Hamiltonian with
respect to the number and the position of poles, as suggested in [2, 3, 4, 14] and confirmed
by the magnetic characterization of minimal partitions given in [8]. The properties of the
map associating eigenvalues of magnetic operators to the position of poles and its connection
between its critical points and nodal properties of eigenfunctions was further investigated in
[5, 12, 13]. The present paper completes the analysis started in [1] and aims at giving the
sharp asymptotic expansion for the eigenvalue variation with respect to moving poles.

For every a = (a1, a2) ∈ R2, the Aharonov-Bohm vector potential with pole a and circula-
tion 1/2 is defined as

Aa(x1, x2) =
1

2

(
−(x2 − a2)

(x1 − a1)2 + (x2 − a2)2
,

x1 − a1

(x1 − a1)2 + (x2 − a2)2

)
, (x1, x2) ∈ R2 \ {a}.
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Let Ω ⊂ R2 be a bounded, open and simply connected domain. For every a ∈ Ω, we consider
the eigenvalue problem

(Ea)

{
(i∇+Aa)

2u = λu, in Ω,

u = 0, on ∂Ω,

in the weak sense (15).
From classical spectral theory (see e.g. [6, Chapter 6]), the eigenvalue problem (Ea) admits

a sequence of real diverging eigenvalues (repeated according to their finite multiplicity) λa1 ≤
λa2 ≤ · · · ≤ λaj ≤ . . . . We are concerned with the behavior of the function a 7→ λaj in a
neighborhood of a fixed point b ∈ Ω; without loss of generality, we can consider b = 0 ∈ Ω.

Let us assume that there exists n0 ≥ 1 such that

(1) λ0
n0

is simple,

and denote
λ0 = λ0

n0

and, for any a ∈ Ω,
λa = λan0

.

In [12, Theorem 1.3] it is proved that, for all j ≥ 1 such that λ0
j is simple, the function a 7→ λaj

is analytic in a neighborhood of 0. In particular, under assumption (1), a 7→ λa is continuous
and, if a→ 0, then

(2) λa → λ0.

Let ϕ0 ∈ H1,0
0 (Ω,C)\{0} (see section 2 for the definition of the functional space H1,0

0 (Ω,C)) be
a L2(Ω,C)-normalized eigenfunction of problem (E0) associated to the eigenvalue λ0 = λ0

n0
,

i.e. satisfying

(3)


(i∇+A0)2ϕ0 = λ0ϕ0, in Ω,

ϕ0 = 0, on ∂Ω,∫
Ω |ϕ0(x)|2 dx = 1.

From [7, Theorem 1.3] (see also [14, Theorem 1.5] and [1, Proposition 2.1]) it is known that

(4) ϕ0 has at 0 a zero of order
k

2
for some odd k ∈ N,

and that there exist β1, β2 ∈ C such that (β1, β2) 6= (0, 0) and

(5) r−k/2ϕ0(r(cos t, sin t))→ ei
t
2

(
β1 cos

(k
2
t
)

+ β2 sin
(k

2
t
))

in C1,τ ([0, 2π],C)

as r → 0+ for any τ ∈ (0, 1). We recall that, by [9] (see also [5, Lemma 2.3]), the function

e−i
t
2ϕ0(r(cos t, sin t)) is a (complex) multiple of a real-valued function; therefore (5) implies

that the function γ(t) = β1 cos
(
k
2 t
)

+β2 sin
(
k
2 t
)

is real-valued up to a complex multiplicative

constant and then either β1 = γ(0) = 0 or β2
β1

= ±γ(π)
γ(0) is real. Then ϕ0 has exactly k nodal

lines meeting at 0 and dividing the whole angle into k equal parts; these nodal lines are
tangent to the k half-lines

{(
t, tan(α0 + j 2π

k )t
)

: t > 0
}

, j = 0, 1, . . . , k − 1, where

(6) α0 =

{
2
k arccot

(
− β2

β1

)
, if β1 6= 0,

0, if β1 = 0.
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At a deeper study, the rate of convergence of λa to λ0 is strictly related to the number of
nodal lines of ϕ0 ending at 0. First results in this direction are proved in [5], in which the
authors provide some estimates for the rate of convergence (2). A significant improvement of
these studies is obtained in [1], where sharp asymptotic behavior of eigenvalues is provided
as the pole is approaching an internal zero of an eigenfunction ϕ0 of the limiting problem (3)
along the half-line tangent to any nodal line of ϕ0; more precisely, under assumption (1) and
being k as in (4), in [1, Theorem 1.2] it is proved that the limit

(7) lim
|a|→0+

λ0 − λa
|a|k

is finite and strictly positive as a→ 0 tangentially to a nodal line.

The above positive limit can be expressed in terms of the value mk defined as follows. Let s0

be the positive half-axis s0 =[0,+∞)×{0}. For every odd natural number k, the function

(8) ψk(r cos t, r sin t) = rk/2 sin

(
k

2
t

)
, r ≥ 0, t ∈ [0, 2π],

is the unique (up to a multiplicative constant) function which is harmonic on R2 \ s0, homo-
geneous of degree k/2 and vanishing on s0. Let s := {(x1, x2) ∈ R2 : x2 = 0 and x1 ≥ 1},
R2

+ = {(x1, x2) ∈ R2 : x2 > 0)}, and denote as D1,2
s (R2

+) the completion of C∞c (R2
+ \ s) under

the norm (
∫
R2
+
|∇u|2 dx)1/2. By standard minimization methods, the functional

Jk : D1,2
s (R2

+)→ R, Jk(u) =
1

2

∫
R2
+

|∇u(x)|2 dx−
∫
∂R2

+\s
u(x1, 0)

∂ψk
∂x2

(x1, 0) dx1,

achieves its minimum over the whole space D1,2
s (R2

+) at some function wk ∈ D1,2
s (R2

+), i.e.

there exists wk ∈ D1,2
s (R2

+) such that

(9) mk = min
u∈D1,2

s (R2
+)
Jk(u) = Jk(wk).

We notice that

(10) mk = Jk(wk) = −1

2

∫
R2
+

|∇wk(x)|2 dx = −1

2

∫ 1

0

∂+ψk
∂x2

(x1, 0)wk(x1, 0) dx1 < 0,

where, for all x1 > 0, ∂+ψk
∂x2

(x1, 0) = limt→0+
ψk(x1,t)−ψk(x1,0)

t = k
2x

k
2
−1

1 . In [1] it is proved that

the limit in (7) is equal to

(11) C0 = −4(|β1|2 + |β2|2)mk

with (β1, β2) 6= (0, 0) being as in (5).
From [1, Theorem 1.2] we can easily deduce that, under assumption (1) and being k as in

(4), the Taylor polynomials of the function a 7→ λ0 − λa with center 0 and degree strictly
smaller than k vanish.

Lemma 1.1. Let Ω ⊂ R2 be a bounded, open and simply connected domain such that 0 ∈ Ω
and let n0 ≥ 1 be such that the n0-th eigenvalue λ0 = λ0

n0
of (i∇+ A0)2 on Ω is simple with

associated eigenfunctions having in 0 a zero of order k/2 with k ∈ N odd. For a ∈ Ω let
λa = λan0

be the n0-th eigenvalue of (i∇+Aa)
2 on Ω. Then

(12) λ0 − λa = P (a) + o(|a|k), as |a| → 0+,
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0 α

a
r

Figure 1. a = |a|(cosα, sinα) approaches 0 along the direction determined
by the angle α.

for some homogeneous polynomial P 6≡ 0 of degree k

(13) P (a) = P (a1, a2) =

k∑
j=0

cja
k−j
1 aj2.

The main result of the present paper is the determination of the exact value of all coefficients
of the polynomial P (and hence the sharp asymptotic behavior of λa−λ0 as a→ 0 along any
direction, see Figure 1).

Theorem 1.2. Under the same assumptions of Lemma 1.1, let α ∈ [0, 2π). Then

λ0 − λa
|a|k

→ C0 cos
(
k(α− α0)

)
as a→ 0 with a = |a|(cosα, sinα),

where α0 is defined in (6) and C0 in (11).

Remark 1.3. By Theorem 1.2 it follows that the polynomial (13) of Lemma 1.1 is given by

P (|a|(cosα, sinα)) = C0|a|k cos(k(α− α0)).

Hence
P (a1, a2) = C0 Re

(
e−ikα0(a1 + i a2)k

)
,

thus yielding ∆P = 0, i.e. the polynomial P in (12)-(13) is harmonic.

The proof of Theorem 1.2 is based on a combination of estimates from above and below of
the Rayleigh quotient associated to the eigenvalue problem with a fine blow-up analysis for
scaled eigenfunctions

(14)
ϕa(|a|x)

|a|k/2
,

which gives a sharp characterization of upper and lower bounds for eigenvalues. Differently
from the blow-up analysis performed in [1] for poles moving tangentially to nodal lines, in the
general case of poles moving along any direction we cannot explicitly construct the limit profile
of the family of scaled functions (14). Such a difficulty is overcome by studying the dependence
of the limit profile on the position of the pole and the symmetry/periodicity properties of its
Fourier coefficient with respect to a basis of eigenvectors of an associated angular problem:
such symmetry and periodicity turn into some symmetry and periodicity invariances of the
polynomial P . A complete classification of homogeneous k-degree polynomials with such
periodicity/symmetry invariances then allows us to determine explicitly the polynomial P .
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The paper is organized as follows. Section 2 is devoted to recalling some known facts and
introducing some notation. In section 3 we prove sharp asymptotics for λ0−λa in dependence
on the angle α. In section 4 we describe some symmetry properties of the sharp asymptotics,
which allow us to prove Theorem 1.2 in section 5.

2. Preliminaries

In this section we present some preliminaries as needed in the forthcoming argument. For
every a ∈ Ω, we introduce the functional space H1,a(Ω,C) as the completion of

{u ∈ H1(Ω,C) ∩ C∞(Ω,C) : u vanishes in a neighborhood of a}

with respect to the norm

‖u‖H1,a(Ω,C) =
(
‖∇u‖2L2(Ω,C2) + ‖u‖2L2(Ω,C) +

∥∥ u
|x−a|

∥∥2

L2(Ω,C)

)1/2
,

which, in view of the Hardy type inequality proved in [11] (see also [7, Lemma 3.1 and Remark
3.2]), is equivalent to the norm(

‖(i∇+Aa)u‖2L2(Ω,C2) + ‖u‖2L2(Ω,C)

)1/2
.

We denote as H1,a
0 (Ω,C) the space obtained as the completion of C∞c (Ω\{a},C) with respect

to the norm ‖ · ‖H1,a(Ω,C).
For every a ∈ Ω, we say that λ ∈ R is an eigenvalue of problem (Ea) in a weak sense if

there exists u ∈ H1,a
0 (Ω,C) \ {0} (called an eigenfunction) such that

(15)

∫
Ω

(i∇u+Aau) · (i∇v +Aav) dx = λ

∫
Ω
uv dx for all v ∈ H1,a

0 (Ω,C).

2.1. Change of coordinates. Up to a change of coordinates (a rotation), it is not restrictive
to assume in (5) that

(16) β1 = 0,

see [1, Remark 2.2]. Under condition (16), we have that α0 = 0 and one nodal line of ϕ0 is
tangent the x1-axis.

2.2. Polar eigenfunctions. The limit function in (5) is an eigenfunction of the operator

Lψ = −ψ′′ + iψ′ +
1

4
ψ

acting on 2π-periodic functions. The eigenvalues of L are
{ j2

4 : j ∈ N, j is odd
}

; moreover

each eigenvalue j2

4 has multiplicity 2 and the functions

(17) ψj1(t) =
ei
t
2

√
π

cos
( j

2
t
)
, ψj2(t) =

ei
t
2

√
π

sin
( j

2
t
)

form an L2((0, 2π),C)-orthonormal basis of the eigenspace associated to the eigenvalue j2

4 .
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2.3. Angles and approximating eigenfunctions. As in [5], for every α ∈ [0, 2π) and
b = (b1, b2) = |b|(cosα, sinα) ∈ R2 \ {0}, we define

(18) θb : R2 \ {b} → [α, α+ 2π) and θb0 : R2 \ {0} → [α, α+ 2π)

such that

θb(b+ r(cos t, sin t)) = t and θb0(r(cos t, sin t)) = t, for all r > 0 and t ∈ [α, α+ 2π).

E.g. if b1 > 0 and b2 > 0 the functions θb and θb0 are given by

θb(x1, x2) =



arctan x2−b2
x1−b1 , if x1 > b1, x2 ≥ b2

b1
x1,

π
2 , if x1 = b1, x2 > b2,

π + arctan x2−b2
x1−b1 , if x1 < b1,

3
2π, if x1 = b1, x2 < b2,

2π + arctan x2−b2
x1−b1 , if x1 > b1, x2 <

b2
b1
x1,

(19)

θb0(x1, x2) =



arctan x2
x1
, if x1 > 0, x2 ≥ b2

b1
x1,

π
2 , if x1 = 0, x2 > 0,

π + arctan x2
x1
, if x1 < 0,

3
2π, if x1 = 0, x2 < 0,

2π + arctan x2
x1
, if x1 > 0, x2 <

b2
b1
x1.

We notice that θb and θb0 are regular except on the half-lines

(20) sb :=
{
tb : t ≥ 1

}
, sb0 :=

{
t b : t ≥ 0

}
,

respectively, whereas the difference θb0 − θb is regular except for the segment {tb : t ∈ [0, 1]}
from 0 to b.

We also define
θ0 : R2 \ {0} → [0, 2π)

as

(21) θ0(x1, x2) =



arctan x2
x1
, if x1 > 0, x2 ≥ 0,

π
2 , if x1 = 0, x2 > 0,

π + arctan x2
x1
, if x1 < 0,

3
2π, if x1 = 0, x2 < 0,

2π + arctan x2
x1
, if x1 > 0, x2 < 0,

so that θ0(cos t, sin t) = θ0
0(cos t, sin t) = t for all t ∈ [0, 2π) and θ0 is regular except for the

half-axis {(x1, 0) : x1 ≥ 0}. We notice that

(22) (θb0 − θ0)(r cos t, r sin t) =

{
0, if t ∈ [α, 2π),

2π, if t ∈ [0, α).

Let us now consider a suitable family of eigenfunctions relative to the approximating eigen-
value λa. For all a ∈ Ω, let ϕa ∈ H1,a

0 (Ω,C) \ {0} be an eigenfunction of problem (Ea)
associated to the eigenvalue λa, i.e. solving

(23)

{
(i∇+Aa)

2ϕa = λaϕa, in Ω,

ϕa = 0, on ∂Ω,
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such that

(24)

∫
Ω
|ϕa(x)|2 dx = 1 and

∫
Ω
e
i
2

(θa0−θa)(x)ϕa(x)ϕ0(x) dx is a positive real number,

where ϕ0 is as in (3). From (1), (3), (23), (24), and standard elliptic estimates, it follows that
ϕa → ϕ0 in H1(Ω,C) and in C2

loc(Ω \ {0},C) and

(25) (i∇+Aa)ϕa → (i∇+A0)ϕ0 in L2(Ω,C).

2.4. Limit profile in dependence on α. A key role in the proof of our main result is
played by a suitable magnetic-harmonic function in R2, which will turn out to be the limit of
blowed-up sequences of eigenfunctions with poles approaching 0 along the half-line starting
from 0 with slope tanα.

For every p ∈ R2, we denote by D1,2
p (R2,C) the completion of C∞c (RN \{0},C) with respect

to the magnetic Dirichlet norm

‖u‖D1,2
p (R2,C)

:=

(∫
R2

∣∣(i∇+Ap)u(x)
∣∣2 dx)1/2

.

We recall from [11] that functions in D1,2
p (R2,C) satisfy the Hardy type inequality∫

R2

|(i∇+Ap)u|2 dx ≥
1

4

∫
R2

|u(x)|2

|x− p|2
dx;

furthermore (see also [7, Lemma 3.1 and Remark 3.2]) the inequality∫
Dr(p)

|(i∇+Ap)u|2 dx ≥
1

4

∫
Dr(p)

|u(x)|2

|x− p|2
dx,

holds for all r > 0 and u ∈ H1,p(Dr(p),C), where Dr(p) denotes the disk of center p and
radius r.

If a = |a|(cosα, sinα) → 0 with α ∈ [0, 2π), i.e. if a → 0 along the line of slope α, all the
functions of the blowed-up family (14) are singular at the same point p = (cosα, sinα). We
will prove in section 3 that the family (14) converges to the limit profile Ψp described in the
following proposition.

Proposition 2.1. Let α ∈ [0, 2π) and p = (cosα, sinα). There exists a unique function

Ψp ∈ H1,p
loc (R2,C) such that

(26) (i∇+Ap)
2Ψp = 0 in R2 in a weak H1,p-sense,

and

(27)

∫
R2\Dr

∣∣(i∇+Ap)(Ψp − e
i
2

(θp−θp0)e
i
2
θ0ψk)

∣∣2 dx < +∞, for any r > 1,

where Dr = Dr(0).

Proof. Let η be a smooth cut-off function such that η ≡ 0 in D1 and η ≡ 1 in R2 \ DR for
some R > 1. We observe that

F = (∆η)e
i
2

(θp−θp0)e
i
2
θ0ψk − 2i∇η · (i∇+Ap)

(
e
i
2

(θp−θp0)e
i
2
θ0ψk

)
= −(i∇+Ap)

2
(
ηe

i
2

(θp−θp0)e
i
2
θ0ψk

)
∈
(
D1,2
p (R2,C)

)?
.
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Hence, via Lax-Milgram’s Theorem there exists a unique solution g ∈ D1,2
p (R2,C) to the

problem
(i∇+Ap)

2g = F , in
(
D1,2
p (R2,C)

)?
.

The function Ψp = g + ηe
i
2

(θp−θp0)e
i
2
θ0ψk satisfies (26) and (27).

To prove uniqueness, it is enough to observe that, if two functions Ψ1
p,Ψ

2
p ∈ H

1,p
loc (R2,C)

satisfy (26) and (27), then their difference Ψ1
p − Ψ2

p belongs to the space D1,2
p (R2,C) (see

[1, Proposition 4.3]); since (i∇ + Ap)
2(Ψ1

p − Ψ2
p) = 0 in (D1,2

p (R2,C))?, we conclude that

necessarily Ψ1
p −Ψ2

p ≡ 0. �

Remark 2.2. We observe that from [7, Theorem 1.5] it follows easily that

Ψp − e
i
2

(θp−θp0)e
i
2
θ0ψk = O(|x|−1/2), as |x| → +∞.

3. Sharp asymptotics for λ0 − λa in dependence on α

In this section we prove some estimates of the eigenvalue variation λ0 − λa, by evaluating
the Rayleigh quotient at suitable test functions obtained by manipulation of eigenfunctions.
Although this procedure follows the scheme of [1], it presents some additional difficulties
requiring nontrivial adaptions, mainly due to the fact that the limit profile of Proposition 2.1
cannot be explicitly constructed as in [1]. We describe below this procedure, referring to [1]
for details of arguments already developed there and instead highlighting the differences with
[1] and the difficulties in the adaption to the general case of poles moving along a generic
direction.

For all 1 ≤ j ≤ n0 and a ∈ Ω, let ϕaj ∈ H
1,a
0 (Ω,C) \ {0} be an eigenfunction of problem

(Ea) associated to the eigenvalue λaj , i.e. solving

(28)

{
(i∇+Aa)

2ϕaj = λajϕ
a
j , in Ω,

ϕaj = 0, on ∂Ω,

such that

(29)

∫
Ω
|ϕaj (x)|2 dx = 1 and

∫
Ω
ϕaj (x)ϕa` (x) dx = 0 if j 6= `.

For j = n0, we choose

(30) ϕan0
= ϕa,

with ϕa as in (23)–(24).

3.1. Estimate from below of λ0−λa. Letting p = (cosα, sinα), we define the function wR
as the unique solution to the minimization problem∫

DR

|(i∇+Ap)wR(x)|2 dx

= min

{∫
DR

|(i∇+Ap)u(x)|2 dx : u ∈ H1,p(DR,C), u = e
i
2

(θp−θp0)e
i
2
θ0ψk on ∂DR

}
,

which then solves

(31)

{
(i∇+Ap)

2wR = 0, in DR,

wR = e
i
2

(θp−θp0)e
i
2
θ0ψk, on ∂DR.
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Arguing as in [1, Subsection 6.2], we can prove the following lemma.

Lemma 3.1. For α ∈ [0, 2π) and a = |a|(cosα, sinα) ∈ Ω, let λa ∈ R and ϕa ∈ H1,a
0 (Ω,C)

solve (23)-(24) and λ0 ∈ R and ϕ0 ∈ H1,0
0 (Ω,C) solve (3). If (1) and (4) hold and (16) is

satisfied, then, for all R > R̃ and a = |a|(cosα, sinα) ∈ Ω,

λ0 − λa
|a|k

≥ gR(a)

where

lim
|a|→0

gR(a) = i|β2|2κ̃R,

with

(32) κ̃R =

∫
∂DR

(
e−

i
2
θpe

i
2

(θp0−θ0)(i∇+Ap)wR · ν − (i∇)ψk · ν
)
ψk ds

being p = (cosα, sinα) and ψk as in (8).

Proof. The proof follows exactly as in [1, Lemma 6.6], so we omit it. �

For any R > 1 let us introduce the following Fourier-type coefficient

(33) υR(r) :=

∫ 2π

0
e−

i
2
θp(r cos t,r sin t)wR(r cos t, r sin t)e

i
2
θp0(r cos t,r sin t)ψk2 (t) dt, r ∈ [1, R],

with ψk2 defined in (17). Due to jumps of the phases appearing in (33) on sp (see (20)), the
derivation of the equation satisfied by the Fourier-type coefficient υR is more delicate than in
[1]; hence we give the details in Lemma 3.2 below.

Lemma 3.2. For any R > 1 the function υR defined in (33) satisfies

(34)
(
r−k/2υR(r)

)′
=

cR
r1+k

, in (1, R),

for some cR ∈ C.

Proof. To prove (34) it is enough to show that∫ R

1

(
− υ′′R −

1

r
υ′R +

k2

4r2
υR

)
rη(r) dr = 0, for all η ∈ C∞c (1, R).

By (31), it is easy to see that the function u(x) := e−
i
2
θp(x)wR(x) is harmonic in DR \ sp,

where sp is defined in (20). Let us consider an arbitrary function η(r) ∈ C∞c (1, R) and the
function

g(t) :=
1√
π
e
i
2

(θp0−θ0)(cos t,sin t) sin(k2 t) =

{
− 1√

π
sin(k2 t) t ∈ [0, α)

1√
π

sin(k2 t) t ∈ [α, 2π).



10 LAURA ABATANGELO AND VERONICA FELLI

Testing equation −∆u = 0 with v(r cos t, r sin t) = η(r)g(t) in DR \ sp, integrating by parts
and observing that both v and ∇u jump across sp, we obtain that

0 =

∫ R

1

(∫ 2π

0

(
r∂ru(r cos t, r sin t)η′(r)g(t) +

η(r)

r
g′(t)∂tu(r cos t, r sin t)

)
dt

)
dr

= −
∫ R

1
η(r)

(∫ 2π

0

(
∂ru(r cos t, r sin t) + r∂2

rru(r cos t, r sin t)
)
g(t) dt

)
dr

+

∫ R

1

η(r)

r

(∫ 2π

0
∂tu(r cos t, r sin t)g′(t) dt

)
dr

= −
∫ R

1

(
η(r)υ′R(r) + rη(r)υ′′R(r)

)
dr +

∫ R

1

η(r)

r

(∫ 2π

0
∂tu(r cos t, r sin t)g′(t) dt

)
dr.

A further integration by parts yields∫ 2π

0
∂tu(r cos t, r sin t)g′(t) dt = −

∫ 2π

0
u(r cos t, r sin t)g′′(t) dt

+ g′−(2π)u(r cos(2π−), r sin(2π−))− g′+(α)u(r cos(α+), r sin(α+))

+ g′−(α)u(r cos(α−), r sin(α−))− g′+(0)u(r cos(0+), r sin(0+))

= −
∫ 2π

0
u(r cos t, r sin t)g′′(t) dt =

k2

4

∫ 2π

0
u(r cos t, r sin t)g(t) dt =

k2

4
υR(r)

in view of the fact that g′+(0) = g′−(2π), g′+(α) = −g′−(α), and

lim
t→α+

u(r cos(t), r sin(t)) = − lim
t→α−

u(r cos(t), r sin(t)).

The conclusion then follows. �

For α ∈ [0, 2π) and p = (cosα, sinα), let us define the following Fourier-type coefficient of
the limit profile Ψp

(35) ξp(r) :=

∫ 2π

0
e−

i
2
θp(r cos t,r sin t)Ψp(r cos t, r sin t)e

i
2
θp0(r cos t,r sin t)ψk2 (t) dt, r ≥ 1.

Lemma 3.3. Let κ̃R be as in (32). Then

lim
R→+∞

κ̃R = ik
√
π(
√
π − ξp(1)),

where ξp(r) is defined in (35).

Proof. The proof follows from integration of (34) arguing as in the proof of [1, Lemma 6.7]. �

Combining the results of Lemmas 3.1 and 3.3 we have that

(36) λ0 − λa ≥ |a|kk|β2|2
√
π
(
ξp(1)−

√
π + o(1)

)
as a = |a|p→ 0.
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3.2. Blow-up analysis and Rayleigh quotient for λ0. Differently from the lower bound
for λ0 − λa, the upper bound of the eigenvalue variation presents significant new difficulties
with respect to the case of poles moving along nodal lines of ϕ0 treated in [1, Subsection 6.1].
Indeed, when the direction along which a→ 0 is not a nodal line of ϕ0 the value (ξp(1)−

√
π)

can have any sign (and vanish along some directions); this does not allow deriving the exact
asymptotic behavior of the normalization term in the blow-up analysis from estimates of the
Rayleigh quotient from above and below as done in [1]. On the other hand, from [1] we can
derive Lemma 1.1 and hence obtain a control on the size of the eigenvalue variation along
any direction.

The proof of Lemma 1.1 is based on the following result (see also [5, Lemma 6.6]).

Lemma 3.4. Let Q(x1, x2) =
∑h

j=0 cjx
j
1x
h−j
2 be a homogeneous polynomial in two variables

x1, x2 of degree at most h ∈ N. If there exist θ̄ ∈ [0, 2π) and an odd natural number k such
that k > h and

(37) Q
(

cos
(
θ̄ + j 2π

k

)
, sin

(
θ̄ + j 2π

k

))
= 0, for all j = 0, 1, . . . , k − 1,

then Q ≡ 0.

Proof. Up to a rotation, it is not restrictive to assume that θ̄ = 0. If x1 6= 0, we can write Q
as

Q(x1, x2) = xh1Q̃
(
x2
x1

)
, where Q̃(t) =

h∑
j=0

cjt
h−j .

Since k is odd, we have that cos
(
j 2π
k

)
6= 0 for all j = 0, 1, . . . , k − 1. Then, from assumption

(37) it follows that Q̃
(

tan
(
j 2π
k

))
= 0 for all j = 0, 1, . . . , k − 1. Since k is odd, we also have

that tan
(
j 2π
k

)
6= tan

(
`2π
k

)
for all j, l ∈ {0, 1, . . . , k − 1} with j 6= `. Hence Q̃ has k distinct

zeros. Since Q̃ is a polynomial of degree at most h and h < k, from the Fundamental Theorem
of Algebra we conclude Q̃ ≡ 0, i.e. cj = 0 for all j = 0, 1, . . . , k − 1. Hence Q ≡ 0. �

Proof of Lemma 1.1. Since the function a = (a1, a2) 7→ λ0 − λa is C∞ in a neighborhood of
0 (see [5, Theorem 1.3]), it admits a Taylor expansion up to order k of the form

λ0 − λa =
k∑
j=1

Pj(a1, a2) + o(|a|k), as |a| → 0,

where, for every j = 1, . . . , k, Pj(a1, a2) is either identically zero or a homogeneous polynomial
in the two variables a1, a2 of degree j. From [1, Theorem 1.2] (see also (7)) we have that, for
every ` < k,

P`

(
cos
(
α0 + j 2π

k

)
, sin

(
α0 + j 2π

k

))
= 0, for all j = 0, 1, . . . , k − 1,

where α0 is as in (6) (i.e. α0 + j 2π
k , with j = 0, 1, . . . , k − 1, identify the directions of the k

half-lines tangent to the nodal lines of the eigenfunctions associated to λ0). The conclusion
follows directly from Lemma 3.4. �

From the expansion (12)–(13) in Lemma 1.1 it follows that

(38) |λa − λ0| = O(|a|k)
as |a| → 0 along any direction. Exploiting (38) we can perform a sharp blow-up analysis prior
to the estimate from above of the eigenvalue variation λ0 − λa.
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Let α ∈ [0, 2π) and p = (cosα, sinα). Arguing as in [1] we can prove that, for every
δ ∈ (0, 1/4), there exist rδ,Kδ > 0 such that, for all R ≥ Kδ,

(39) the family of functions
{
ϕ̃a : a = |a|p, |a| < rδ

R

}
is bounded in H1,p(DR,C)

where

(40) ϕ̃a(x) :=
ϕa(|a|x)√

Ha,δ

,

and

Ha,δ :=
1

Kδ|a|

∫
∂DKδ |a|

|ϕa|2 ds.

Furthermore, from [1, Estimates (113) and (114)] we have that

(41) Ha,δ ≥ Cδ|a|k+2δ, if |a| < rδ
Kδ

,

for some Cδ > 0 independent of a, and

(42) Ha,δ = O(|a|1−2δ) as |a| → 0.

We observe that ϕ̃a weakly solves

(43) (i∇+Ap)
2ϕ̃a = |a|2λaϕ̃a, in 1

|a|Ω = {x ∈ R2 : |a|x ∈ Ω},

and

(44)
1

Kδ

∫
∂DKδ

|ϕ̃a|2 ds = 1.

Let R > 2. For |a| sufficiently small we define the functions vj,R,a as follows:

(45) vj,R,a =

{
vextj,R,a, in Ω \DR|a|,

vintj,R,a, in DR|a|,
j = 1, . . . , n0,

where

vextj,R,a := e
i
2

(θa0−θa)ϕaj in Ω \DR|a|,

with ϕaj as in (28)–(30) and θa, θ
a
0 as in (18) (notice that e

i
2

(θa0−θa) is smooth in Ω \DR|a|), so
that it solves {

(i∇+A0)2vextj,R,a = λajv
ext
j,R,a, in Ω \DR|a|,

vextj,R,a = e
i
2

(θa0−θa)ϕaj on ∂(Ω \DR|a|),

whereas vintj,R,a is the unique solution to the problem{
(i∇+A0)2vintj,R,a = 0, in DR|a|,

vintj,R,a = e
i
2

(θa0−θa)ϕaj , on ∂DR|a|.

It is easy to verify that dim
(

span{v1,R,a, . . . , vn0,R,a}
)

= n0.
For all R > 2 and a = |a|p ∈ Ω with |a| small, we define

(46) ZRa (x) :=
vintn0,R,a

(|a|x)√
Ha,δ

.
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Arguing as in [1, Lemma 6.2] we can prove that, as a consequence of (39) and the Dirichlet
principle,

(47) the family of functions
{
ZRa : a = |a|p, |a| < rδ

R

}
is bounded in H1,0(DR,C).

We also define

Wa(x) :=
ϕ0(|a|x)

|a|k/2
.(48)

As in [1], under assumption (16) and letting k as in (4), from [7, Theorem 1.3 and Lemma
6.1] we have that

(49) Wa →
β2√
π
e
i
2
θ0ψk as |a| → 0

in H1,0(DR,C) for every R > 1, with β2 as in (5).

Theorem 3.5. For every R > 2,

‖vn0,R,a − ϕ0‖H1,0
0 (Ω,C)

= O
(√

Ha,δ

)
as a = |a|p→ 0.

Proof. Let R > 2. We first notice that vn0,R,a → ϕ0 in H1,0
0 (Ω,C) as |a| → 0+. Indeed∫

Ω

∣∣(i∇+A0)(vn0,R,a − ϕ0)
∣∣2 dx =

∫
Ω
|e

i
2

(θa0−θa)(i∇+Aa)ϕa − (i∇+A0)ϕ0|2 dx

+

∫
DR

∣∣∣√Ha,δ(i∇+A0)ZRa − |a|k/2(i∇+A0)Wa

)∣∣∣2 dx
−
∫
DR

∣∣∣√Ha,δe
i
2

(θp0−θp)(i∇+Ap)ϕ̃a − |a|k/2(i∇+A0)Wa

)∣∣∣2 dx = o(1)

in view of (25), (39), (47), (49) and (42).
From [1, Lemma 7.1] the function

F : C×H1,0
0 (Ω,C) −→ R× R× (H1,0

0,R(Ω,C))?

(λ, ϕ) 7−→
(
‖ϕ‖2

H1,0
0 (Ω,C)

− λ0, Im
( ∫

Ω ϕϕ0 dx
)
, (i∇+A0)2ϕ− λϕ

)
is Fréchet-differentiable at (λ0, ϕ0) and its Fréchet-differential dF (λ0, ϕ0) is invertible. In the

above definition, (H1,0
0,R(Ω,C))? is the real dual space of H1,0

0,R(Ω,C) = H1,0
0 (Ω,C), which is

here meant as a vector space over R endowed with the norm

‖u‖
H1,0

0 (Ω,C)
=

(∫
Ω

∣∣(i∇+A0)u
∣∣2dx)1/2

.

Therefore

|λa − λ0|+ ‖vn0,R,a − ϕ0‖H1,0
0 (Ω,C)

≤ ‖(dF (λ0, ϕ0))−1‖L(R×R×(H1,0
0,R(Ω,C))?,C×H1,0

0 (Ω,C))
‖F (λa, vn0,R,a)‖R×R×(H1,0

0,R(Ω))?
(1 + o(1))

as |a| → 0+. To prove the theorem it is then enough to estimate the norm of

F (λa, vn0,R,a) = (αa, βa, wa)

=
(
‖vn0,R,a‖2H1,0

0 (Ω,C)
− λ0, Im

(∫
Ω vn0,R,aϕ0 dx

)
, (i∇+A0)2vn0,R,a − λavn0,R,a

)
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in R × R × (H1,0
0,R(Ω))?. The estimates of βa and wa can be performed as in [1, Proof of

Theorem 7.2] obtaining that

βa = o
(√

Ha,δ

)
and ‖wa‖(H1,0

0,R(Ω,C))?
= O

(√
Ha,δ

)
,

as a = |a|p→ 0. As far as αa is concerned, differently from [1], the estimate of [1, Proposition
6.10] which, in the case α = 0, implied that |λa − λ0| = O(Ha,δ), is not available after
preliminary estimates of the Rayleigh quotient for generic values of α since (ξp(1)−

√
π) can

have any sign. This difficulty can be overcome by observing that (41) and (38) imply that

|λa − λ0| = O(|a|
k
2
−δ√Ha,δ) and then

|λa − λ0| = o(
√
Ha,δ),

as a = |a|p→ 0. Then, from (39) and (47), we obtain that

αa =

(∫
DR|a|

|(i∇+A0)vintn0,R,a|
2 dx−

∫
DR|a|

|(i∇+Aa)ϕa|2 dx

)
+ (λa − λ0)

= Ha,δ

(∫
DR

|(i∇+A0)ZRa |2 dx−
∫
DR

|(i∇+Ap)ϕ̃a|2 dx
)

+ (λa − λ0)

= o(
√
Ha,δ),

as a = |a|p→ 0, thus concluding the proof. �

Via Theorem 3.5 and a change of variables, it follows that, letting α ∈ [0, 2π), p =
(cosα, sinα), and R > 1,

(50)

∫(
1
|a|Ω
)
\DR

∣∣∣∣(i∇+Ap)
(
ϕ̃a(x)− e

i
2

(θp−θp0) |a|k/2√
Ha,δ

Wa

)∣∣∣∣2dx = O(1), as a = |a|p→ 0.

Theorem 3.6. For α ∈ [0, 2π), p = (cosα, sinα) and a = |a|p ∈ Ω, let ϕa ∈ H1,a
0 (Ω,C) solve

(23-24) and ϕ0 ∈ H1,0
0 (Ω,C) be a solution to (3) satisfying (1), (4), and (16). Let ϕ̃a and

Kδ be as in (40) and Ψp be as in Proposition 2.1. Then

(51) lim
|a|→0+

|a|k/2√
Ha,δ

=
1

|β2|

√
Kδ∫

∂DKδ
|Ψp|2ds

and

(52) ϕ̃a →
β2

|β2|

√
Kδ∫

∂DKδ
|Ψp|2ds

Ψp as a = |a|p→ 0,

in H1,p(DR,C) for every R > 1, almost everywhere and in C2
loc(R2 \ {p},C).

Proof. Step 1. We first prove that for every sequence an = |an|p with |an| → 0, there exist

Φ̃ ∈ H1,p
loc (R2,C), Φ̃ 6≡ 0, and a subsequence an` such that ϕ̃an` → Φ̃ in H1,p(DR,C) for every

R > 1, almost everywhere and in C2
loc(R2 \ {p},C) and Φ̃ weakly solves

(53) (i∇+Ap)
2Φ̃ = 0, in R2.

To prove it, we observe that from (39) it follows that, for every sequence an = |an|p with

|an| → 0, by a diagonal process there exists Φ̃ ∈ H1,p
loc (R2,C), and a subsequence an` such

that ϕ̃an` ⇀ Φ̃ weakly in H1,p(DR,C) for every R > 1 and almost everywhere. Φ̃ 6≡ 0
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since 1
Kδ

∫
∂DKδ

|Φ̃|2 ds = 1 thanks to (44) and the compactness of the trace embedding

H1,p(DKδ ,C) ↪→ L2(∂DKδ ,C).

Passing to the limit in (43), we have that Φ̃ weakly solves (53), whereas, arguing as in the

proof of [1, Theorem 8.1], we can prove that the convergence of the subsequence ϕ̃an` to Φ̃ is

actually strong in H1,p(DR,C) for every R > 1. The convergence in C2
loc(R2 \ {p},C) follows

easily from classical elliptic estimates.

Step 2. We claim that, for every sequence an = |an|p with |an| → 0, there exists a subse-
quence an` such that

lim
`→+∞

|an` |k/2√
Han` ,δ

is finite and strictly positive.

To prove the claim, we argue by contradiction, assuming that

(i) either there exists a sequence an = |an|p with |an| → 0 such that limn→+∞
|an|k/2√
Han,δ

= 0

(ii) or there exists a sequence an = |an|p with |an| → 0 such that limn→+∞
|an|k/2√
Han,δ

= +∞.

If (i) holds, then, by step 1, along a subsequence, ϕ̃an` → Φ̃ in H1,p(DR,C) for every R > 1,

for some Φ̃ 6≡ 0 weakly solving (53). Then from (49), passing to the limit in (50) we would
obtain that ∫

R2\DR
|(i∇+Ap)Φ̃(x)|2dx < +∞,

contradicting the fact that Φ̃ 6≡ 0 is a non trivial weak solution to (53) (and so cannot have

finite energy otherwise by testing the equation we would get that Φ̃ ≡ 0, see [1, Proof of
Proposition 4.3]). Hence case (i) cannot occur.

If (ii) holds, then from (50) we would have, for all R > 2

|a|k

Ha,δ

∫
D2R\DR

∣∣∣∣(i∇+Ap)
(√

Ha,δ

|a|k/2 ϕ̃a(x)− e
i
2

(θp−θp0)Wa

)∣∣∣∣2dx = O(1), as a = |a|p→ 0,

and hence, in view of (49) and (39), passing to the limit along the sequence we would obtain
that

|an|k

Han,δ

(∫
D2R\DR

∣∣∣∣(i∇+Ap)
(
e
i
2

(θp−θp0)β2e
i
2
θ0ψk

)∣∣∣∣2dx+ o(1)

)
=
|an|k

Han,δ

(
|β2|2

∫
D2R\DR

|∇ψk|2dx+ o(1)

)
= O(1), as n→ +∞,

which is not possible if lim`→+∞
|an` |

k/2

√
Han` ,δ

= +∞ as in case (ii), since
∫
D2R\DR |∇ψk|

2dx > 0.

Hence also case (ii) cannot occur and the claim of step 2 is proved.

Step 3. From steps 1 and 2, it follows that, for every sequence an = (|an|, 0) = |an|p
with |an| → 0, there exist c ∈ (0,+∞), Φ̃ ∈ H1,p

loc (R2,C) weakly solving (53), Φ̃ 6≡ 0, and

a subsequence an` such that lim`→+∞
|an` |

k/2

√
Han` ,δ

= c and ϕ̃an` → Φ̃ in H1,p(DR,C) for every
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R > 1 and in C2
loc(R2 \ {p},C). Passing to the limit along an` in (50) and recalling (49), we

obtain that, for every R > 2,∫
R2\DR

∣∣∣∣(i∇+Ap)
(

Φ̃(x)− cβ2e
i
2

(θp−θp0)e
i
2
θ0ψk

)∣∣∣∣2dx < +∞.

Hence from Proposition 2.1 we conclude that necessarily

(54) Φ̃ = cβ2Ψp.

Since 1
Kδ

∫
∂DKδ

|Φ̃|2 ds = 1, from (54) and the fact that c is a positive real number, it follows

that c = 1
|β2|
(

Kδ∫
∂DKδ

|Ψp|2ds
)1/2

. Hence we have that

ϕ̃an` →
β2

|β2|

√
Kδ∫

∂DKδ
|Ψp|2dsΨp in H1,p(DR,C) for every R > 1 and in C2

loc(R2 \ {p},C),

and
|an` |k/2√
Han` ,δ

→ 1

|β2|

√
Kδ∫

∂DKδ
|Ψp|2ds

.

Since the above limits depend neither on the sequence {an}n nor on the subsequence {an`}`,
we conclude that the above convergences hold as |a| → 0+, thus proving (51) and (52). �

Remark 3.7. Combining (51) and (52) we deduce that

ϕa(|a|x)

|a|k/2
→ β2Ψp as a = |a|p→ 0,

in H1,p(DR,C) for every R > 1 and in C2
loc(R2 \ {p},C). Furthermore, arguing as in [1,

Lemma 8.3], from Theorem 3.6 we can deduce that, letting ZRa as is (46),

ZRa →
β2

|β2|

√
Kδ∫

∂DKδ
|Ψp|2ds

zR as a = |a|p→ 0,

in H1,0(DR,C) for every R > 2, where zR is the unique solution to{
(i∇+A0)2zR = 0, in DR,

zR = e
i
2

(θp0−θp)Ψp, on ∂DR.

Thanks to the convergences of blow-up sequences established in Theorem 3.6 and Remark
3.7, we can now follow closely the arguments of [1, Subsection 6.1, Lemma 9.1] thus obtaining
the following upper bound for the difference λ0 − λa.

Lemma 3.8. For α ∈ [0, 2π) and a = |a|(cosα, sinα) ∈ Ω, let λa ∈ R and ϕa ∈ H1,a
0 (Ω,C)

solve (23-24) and λ0 ∈ R and ϕ0 ∈ H1,0
0 (Ω,C) solve (3). If (1) and (4) hold and (16) is

satisfied, then, for a = |a|(cosα, sinα) and p = (cosα, sinα),

lim sup
|a|→0

λ0 − λa
|a|k

≤ |β2|2 k
√
π(ξp(1)−

√
π),

with ξp(r) defined in (35).

Collecting (36) and Lemma 3.8 we can state the following result.



EIGENVALUE VARIATION FOR AHARONOV-BOHM MOVING POLE 17

Proposition 3.9. For α ∈ [0, 2π) and a = |a|(cosα, sinα) ∈ Ω, let ϕa ∈ H1,a
0 (Ω,C) and

λa ∈ R solve (23-24) and λ0 ∈ R and ϕ0 ∈ H1,0
0 (Ω,C) solve (3). If (1) and (4) hold and (16)

is satisfied, then, for a = |a|(cosα, sinα),

lim
|a|→0

λ0 − λa
|a|k

= |β2|2 k
√
πf(α),

where

(55) f : [0, 2π)→ R, f(α) = (ξp(1)−
√
π), p = (cosα, sinα),

with ξp(r) defined in (35).

4. Properties of f(α)

To prove our main result, we are going to investigate two suitable symmetry properties of
the function f(α). Let us define two transformations R1,R2 acting on a general point

x = (x1, x2) = (r cos t, r sin t), r > 0, t ∈ [0, 2π),

as

(56) R1(x) = R1(x1, x2) = Mk

(
x1

x2

)
, Mk =

(
cos 2π

k − sin 2π
k

sin 2π
k cos 2π

k

)
i.e.

R1(r cos t, r sin t) =
(
r cos(t+ 2π

k ), r sin(t+ 2π
k )
)
,

and

(57) R2(x) = R2(x1, x2) = (x1,−x2),

i.e.
R2(r cos t, r sin t) = (r cos(2π − t), r sin(2π − t)),

The transformation R1 is a rotation of 2π
k and R2 is a reflexion through the x1-axis.

We would like to study how the coefficient ξp(1) (see (35)) changes when the above trasfor-
mations act on p. In particular, we are going to prove that such a quantity ξp(1) is invariant
under the transformations R1,R2.

In order to obtain such an invariance, we first study the relation between the limit profiles
Ψp(Rj(x)) and ΨR−1

j (p)(x), j = 1, 2.

Lemma 4.1. For p = (cosα, sinα), α ∈ [0, 2π), let Ψp be the limit profile introduced in
Proposition 2.1 and let R1,R2 be the transformations introduced in (56) and (57). Then

(58) ΨR−1
1 (p) = −e−i

π
k
(
Ψp ◦ R1

)
and

(59) ΨR2(p) = −eiθR2(p)
(
Ψp ◦ R2

)
.

Proof. In order to prove (58), we observe that, by direct calculations,(
Ap ◦ R1

)
(x) = AR−1

1 (p)(x)M−1
k ,(60)

e
i
2

(θ0◦R1)(ψk ◦ R1) = −ei
π
k e

i
2
θ0ψk,(61)

e
i
2

(θ0◦R1)(x)∇ψk(R1(x)) = −ei
π
k e

i
2
θ0(x)∇ψk(x)M−1

k .(62)
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Furthermore

θp(R1(x)) =

{
θR−1

1 (p)(x) + 2π
k , if α ∈

[
2π
k , 2π

)
,

θR−1
1 (p)(x) + 2π

k − 2π, if α ∈
[
0, 2π

k

)
,

and

θp0(R1(x)) =

θ
R−1

1 (p)
0 (x) + 2π

k , if α ∈
[

2π
k , 2π

)
,

θ
R−1

1 (p)
0 (x) + 2π

k − 2π, if α ∈
[
0, 2π

k

)
,

so that

(63) θR−1
1 (p) − θ

R−1
1 (p)

0 = θp ◦ R1 − θp0 ◦ R1.

Let us denote Ψ̃p(y) = Ψp(R1(y)). By direct calculations we have that, since Ψp weakly

solves the equation (i∇ + Ap)
2Ψp = 0, the function Ψ̃p solves (i∇ + (Ap ◦ R1)Mk)

2Ψ̃p = 0
and hence, in view of (60),

(64) (i∇+AR−1
1 (p))

2Ψ̃p = 0, in R2 in a weak H1,R−1
1 (p)-sense.

Passing to the limit in (50) and taking into account (49) and Theorem 3.6, we obtain that,
for all R > 1,

(65)

∫
R2\DR

∣∣∣∣(i∇+Ap)
(

Ψp − e
i
2

(θp−θp0+θ0)ψk

)∣∣∣∣2dx
=

∫
R2\DR

∣∣∣∣(i∇+Ap)Ψp − e
i
2

(θp−θp0+θ0)i∇ψk
∣∣∣∣2dx < +∞.

By the change of variable x = R1(y) in the above integral, using (60), (62), and (63) we
obtain that ∫

R2\DR

∣∣∣∣(i∇+Ap)Ψp(x)− e
i
2

(θp−θp0+θ0)(x)i∇ψk(x)

∣∣∣∣2dx(66)

=

∫
R2\DR

∣∣∣∣(i∇+AR−1
1 (p))Ψ̃p(y) + e

i
k
πe

i
2

(
θR−1

1 (p)
−θ
R−1

1 (p)

0 +θ0
)

(y)
i∇ψk(y)

∣∣∣∣2dy
=

∫
R2\DR

∣∣∣∣(i∇+AR−1
1 (p))

(
− e−

i
k
πΨ̃p

)
(y)− e

i
2

(
θR−1

1 (p)
−θ
R−1

1 (p)

0 +θ0
)

(y)
i∇ψk(y)

∣∣∣∣2dy < +∞.

From (64), (66) and Proposition 2.1 we conclude that

−e−
i
k
πΨ̃p = ΨR−1

1 (p)

thus proving (58).
To prove (59), we first observe that direct calculations yield(

AR2(p) ◦ R2

)
M−1 = −Ap, where M =

(
1 0
0 −1

)
,(67)

ψk ◦ R2 = ψk, ∇ψk(R2(x)) = ∇ψk(x)M−1.(68)
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Moreover

θp(R2(x)) =

{
4π − θR2(p)(x), if θp(R2(x)) ∈

(
α, α+ 2π

)
,

2π − θR2(p)(x), if θp(R2(x)) = α,
if α ∈ (0, 2π),

θp(R2(x)) =

{
2π − θR2(p)(x) = 2π − θp(x), if θp(R2(x)) ∈

(
0, 2π

)
,

−θR2(p)(x) = 0, if θp(R2(x)) = 0,
if α = 0,

and

θp0(R2(x)) =

{
4π − θR2(p)

0 (x), if θp0(R2(x)) ∈
(
α, α+ 2π

)
,

2π − θR2(p)
0 (x), if θp0(R2(x)) = α,

if α ∈ (0, 2π),

θp0(R2(x)) = θ0(R2(x)) =

{
2π − θ0(x), if θ0(x) ∈

(
0, 2π

)
,

−θ0(x) = 0, if θ0(x) = 0,
if α = 0,

so that

(69) θ
R2(p)
0 − θR2(p) = θp ◦ R2 − θp0 ◦ R2, in R2 \ {tp : t ∈ [0, 1]},

and

(70) e
i
2
θ0(R2(y)) = −e−

i
2
θ0(y), in R2 \ {(x1, 0) : x1 ≥ 0}.

Let us denote Ψ̂p(y) = −eiθR2(p)Ψp(R2(y)). In view of (67), it is easy to verify that Ψ̂p

solves

(71) (i∇+AR2(p))
2Ψ̂p = 0, in R2 in a weak H1,R2(p)-sense.

By the change of variable x = R2(y) in the integral (65), using (67), (68), (69), and (70) and

observing that, by (22), e−i
(
θ
R2(p)
0 −θ0

)
≡ 1 in R2 \DR, we obtain that∫

R2\DR

∣∣∣∣(i∇+Ap)Ψp(x)− e
i
2

(θp−θp0+θ0)(x)i∇ψk(x)

∣∣∣∣2dx(72)

=

∫
R2\DR

∣∣∣∣(i∇+ (Ap ◦ R2)M)(−Ψp ◦ R2)(y)− e−
i
2

(
θR2(p)

−θR2(p)
0 +θ0

)
(y)i∇ψk(y)

∣∣∣∣2dy
=

∫
R2\DR

∣∣∣∣(i∇−AR2(p))(−Ψp ◦ R2)(y)− e−
i
2

(
θR2(p)

−θR2(p)
0 +θ0

)
(y)i∇ψk(y)

∣∣∣∣2dy
=

∫
R2\DR

∣∣∣∣ei(θR2(p)
−θR2(p)

0 +θ0
)
(i∇−AR2(p))(−Ψp ◦ R2)− e

i
2

(
θR2(p)

−θR2(p)
0 +θ0

)
i∇ψk

∣∣∣∣2dy
=

∫
R2\DR

∣∣∣∣eiθR2(p)(i∇−AR2(p))(−Ψp ◦ R2)− e
i
2

(
θR2(p)

−θR2(p)
0 +θ0

)
i∇ψk

∣∣∣∣2dy
=

∫
R2\DR

∣∣∣∣(i∇+AR2(p))Ψ̂p − e
i
2

(
θR2(p)

−θR2(p)
0 +θ0

)
i∇ψk

∣∣∣∣2dy.
From (71), (72) and Proposition 2.1 we conclude that

Ψ̂p = ΨR2(p)

thus proving (59). �
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We are now in position to prove invariance properties of the function p 7→ ξp(1) under the
transformations (56) and (57).

Lemma 4.2. Let R1,R2 be the transformations introduced in (56)-(57), α ∈ [0, 2π), and
p = (cosα, sinα). Then

(73) ξR−1
1 (p)(1) = ξp(1)

and

(74) ξR2(p)(1) = ξp(1),

where ξp is defined in (35).

Proof. We first notice that, from (17),

(75) ψk2

(
s+

2π

k

)
= −ei

π
kψk2 (s), for all s ∈ R,

and

(76) ψk2 (2π − s) = −e−isψk2 (s), for all s ∈ R.

By the change of variable t = s + 2π
k in the integral defining ξp(1), from (75), (63) and (58)

we obtain that

ξp(1) =

∫ 2π

0
e−

i
2

(θp−θp0)(cos t,sin t)Ψp(cos t, sin t)ψk2 (t) dt

= −e−i
π
k

∫ 2π

0
e−

i
2

(θp−θp0)(R1(cos s,sin s))Ψp(R1(cos s, sin s))ψk2 (s) ds

=

∫ 2π

0
e
− i

2

(
θR−1

1 (p)
−θ
R−1

1 (p)

0

)
(cos s,sin s)

ΨR−1
1 (p)(cos s, sin s)ψk2 (s) ds

= ξR−1
1 (p)(1),

thus proving (73).
By the change of variable t = 2π − s in the integral defining ξp(1), from (76), (69), (59),

and (22) we obtain that

ξp(1) =

∫ 2π

0
e−

i
2

(θp−θp0)(cos t,sin t)Ψp(cos t, sin t)ψk2 (t) dt

= −
∫ 2π

0
e−

i
2

(θp−θp0)(R2(cos s,sin s))Ψp(R2(cos s, sin s))eiθ0(cos s,sin s)ψk2 (s) ds

=

∫ 2π

0
e−

i
2

(
θ
R2(p)
0 −θR2(p)

)
(cos s,sin s)e−iθR2(p)

(cos s,sin s)ΨR2(p)(cos s, sin s)eiθ0(cos s,sin s)ψk2 (s) ds

=

∫ 2π

0
e−

i
2

(
θR2(p)

−θR2(p)
0

)
(cos s,sin s)e−i

(
θ
R2(p)
0 −θ0

)
(cos s,sin s)ΨR2(p)(cos s, sin s)ψk2 (s) ds

=

∫ 2π

0
e−

i
2

(
θR2(p)

−θR2(p)
0

)
(cos s,sin s)ΨR2(p)(cos s, sin s)ψk2 (s) ds

= ξR2(p)(1),

thus proving (74). �
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Let f be the 2π-periodic extension of the function introduced in (55), i.e.

(77) f(α) = ξ(cosα,sinα)(1)−
√
π, for all α ∈ R,

with ξp defined in (35).

Corollary 4.3. Let f be defined in (77). Then

f(α) = f
(
α+ 2π

k

)
and f(α) = f(2π − α)

for all α ∈ R.

Proof. It is a straightforward consequence of Lemma 4.2. �

5. Proof of the main result

From Lemma 1.1 and Proposition 3.9, it follows that, under assumption (16), the homoge-
neous polynomial P (13) of degree k appearing in the expansion (12) is given by

(78) P (r cosα, r sinα) = rk|β2|2k
√
πf(α), r > 0, α ∈ R,

with f as in (77). Furthermore, from Corollary 4.3 and (78), we have that the 2π-periodic
function

(79) g : R→ R, g(α) := P (cosα, sinα) =
k∑
j=0

cj(cosα)k−j(sinα)j

satisfies the periodicity/symmetry conditions

(80) g(α) = g
(
α+ 2π

k

)
and g(α) = g(2π − α), for all α ∈ R.

From [1, Theorem 1.2] we also know that

(81) c0 = g(0) = −4|β2|2mk > 0,

with mk being as in (9)–(10).

Lemma 5.1. Under the assumptions of Lemma 1.1 and (16), let P be as in (12)-(13) and g
be defined in (79). Then

g(α) =
c0∏k

`=1 sin
(
π
2k (2`− 1)

) k∏
j=1

sin
( π

2k
(2j − 1)− α

)
, for all α ∈ R.

Proof. From (81) and (80), we have that

(82) g
(
j

2π

k

)
> 0 for all j = 0, 1, . . . ,

k − 1

2
.

Moreover, from (79) and the oddness of k, we have that

(83) g(α+ π) = −g(α), for all α ∈ R,

and hence from (80) we deduce that

g

(
π

k
+ j

2π

k

)
= g
(
π +

(
π
k − π + j 2π

k

))
(84)

= g
(
π + 2π

k

(
j + 1−k

2

))
= g(π) = −g(0) < 0 for all j = 0, 1, . . . ,

k − 1

2
.
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From (82) and (84) we infer that g has at least k distinct zeros θ1, θ2, . . . , θk in (0, π) such
that

(j − 1)
π

k
< θj < j

π

k
, for all j = 1, . . . , k.

In view of this fact, we aim at factorizing the function g. For every α ∈ R \ {`π : ` ∈ Z} we
have that

(85) g(α) = (sinα)kP̃ (cotα)

where

P̃ (t) =
k∑
j=0

cjt
k−j .

From (81) the 1-variable polynomial P̃ has degree k. Furthermore, by (85), cot θ1, . . . , cot θk
are k distinct real zeroes of P̃ . Therefore from the Fundamental Theorem of Algebra it follows

that P̃ (t) = c0
∏k
j=1(t− cot θj), and hence, in view of (85),

g(α) = c0(sinα)k
k∏
j=1

(cotα− cot θj) = c0

k∏
j=1

(cosα− cot θj sinα)

= c0

k∏
j=1

1

sin θj
(sin θj cosα− cos θj sinα) = c0

k∏
j=1

1

sin θj
sin(θj − α),

for all α ∈ R \ {`π : ` ∈ Z}. Then, by continuity, we conclude that

(86) g(α) = c0

k∏
j=1

1

sin θj
sin(θj − α), for all α ∈ R.

We notice that (86) implies that the values θ1, θ2, . . . , θk are the unique zeros of g in the
interval (0, π). In particular, for every j ∈ {1, . . . , k},

(87) θj is the unique zero of g in the interval

(
(j − 1)

π

k
, j
π

k

)
.

From (80) and (83) we have that

g
(
θ1 + (j − 1)

π

k

)
=

{
g(θ1), if j is odd,

−g
(
θ1 + π + (j − 1)πk

)
= −g

(
θ1 + (j − 1 + k)πk

)
= −g(θ1), if j is even,

= 0,

and hence, in view of (87) and since θ1 + (j − 1)πk ∈
(
(j − 1)πk , j

π
k

)
, we have that

(88) θj = θ1 + (j − 1)
π

k
, for all j = 1, . . . , k.

From (80) it follows that g
(
− θ1 + 2π

k

)
= g(−θ1) = g(2π − θ1) = g(θ1) = 0; therefore, since

−θ1 + 2π
k ∈

(
π
k ,

2π
k

)
, from (87) and (88) we can conclude that −θ1 + 2π

k = θ2 = θ1 + π
k and

hence θ1 = π
2k . Then from (88) we deduce that

θj =
π

2k
(2j − 1), for all j = 1, . . . , k,
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thus reaching the conclusion in view of (86). �

Lemma 5.2. Let k ∈ N \ {0}. Then

k∏
j=1

sin
( π

2k
(2j − 1)− α

)
= 21−k cos(kα)

for all α ∈ R.

Proof. Since the complex numbers ei
2π
k
j with j = 1, 2, . . . , k are k-th distinct roots of unity

and k is odd, we have that

(89) 1− zk = (−1)k+1
k∏
j=1

(
ei

2π
k
j − z

)
, for all z ∈ C.

Since

sin
( π

2k
(2j − 1)− α

)
=
ei(

π
2k

(2j−1)−α) − e−i(
π
2k

(2j−1)−α)

2i

=
1

2i
e−iαe−i

π
2k

(2j+1)
(
ei

2π
k
j − ei(2α+π

k
)
)

=
1

2
e−iαe−i

π
2k

(2j+1+k)
(
ei

2π
k
j − ei(2α+π

k
)
)
,

from (89) we deduce that

k∏
j=1

sin
( π

2k
(2j − 1)− α

)
=

1

2k
e−ikαe−i

π
k

∑k
j=1 je−i

π
2

(1+k)
k∏
j=1

(
ei

2π
k
j − ei(2α+π

k
)
)

=
1

2k
e−ikαe−iπ(1+k)

(
1− ei(2kα+π)

)
(−1)k+1

=
1

2k
e−ikα

(
1 + e2kiα

)
=

1

2k

(
e−ikα + ekiα

)
= 21−k cos(kα)

thus proving the lemma. �

Proof of Theorem 1.2. From Lemmas 5.1 and 5.2 it follows that, under the assumptions of
Lemma 1.1 and (16), the polynomial P in (12)-(13) is given by

P (r cosα, r sinα) = −4|β2|2mkr
k cos(kα),

thus proving the conclusion in the case in which assumption (16) is satisfied. The general case
β1 6= 0 can be easily reduced to the case β1 = 0 by a change of the Cartesian coordinate system
(x1, x2) in R2 which rotates the axes in such a way that the positive x1-axis is tangent to one
of the k nodal lines of ϕ0 ending at 0. If β1 6= 0 and α0 is defined in (6), the nodal lines of ϕ0

at 0 have tangent half-lines forming with the x1-axis angles of α0 + 2π
k j, j = 0, 1, . . . , k − 1.

If ϕ̃0(x) = ϕ0(R(x)) and ϕ̃a(x) = ϕa(R(x)) with

R(x1, x2) =

(
cosα0 − sinα0

sinα0 cosα0

)(
x1

x2

)
,

it is easy to verify that ϕ̃0, ϕ̃a solve the problems

(i∇+A0)2ϕ̃0 = λ0ϕ̃0, (i∇+AR−1(a))
2ϕ̃a = λaϕ̃a,

in the domain R−1(Ω). Moreover

r−k/2ϕ̃0(r(cos t, sin t))→ β̃1e
i t
2 cos

(k
2
t
)

+ β̃2e
i t
2 sin

(k
2
t
)

in C1,τ ([0, 2π],C)
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as r → 0+, where (
β̃1

β̃2

)
= ei

α
2

(
cos(k2α0) − sin(k2α0)

sin(k2α0) cos(k2α0)

)(
β1

β2

)
.

From (6) it follows that β̃1 = 0 and hence |β̃2|2 = |β1|2 + |β2|2. Since we have already proved
the theorem in the case β1 = 0, we know that

λ0 − λa
|a|k

→ −4|β̃2|2mk cos(kα), as a→ 0 with R−1(a) = |a|(cosα, sinα),

which yields

λ0 − λa
|a|k

→ −4
(
|β1|2 + |β2|2

)
mk cos(k(θ − α0)), as a→ 0 with a = |a|(cos θ, sin θ),

thus concluding the proof. �
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