Let G be a finite non-abelian simple group and let p be a prime. We classify all pairs (G,p) such that the sum of the complex irreducible character degrees of G is greater than the index of a Sylow p-subgroup of G. Our classification includes all groups of Lie type in defining characteristic p (because every Gelfand-Graev character of G is multiplicity free and has degree equal to the above index), and a handful of well-described examples

Spiga, P., Zalesski, A. (2014). A uniform upper bound for the character degree sums and Gelfand-Graev-like characters for finite simple groups. In R.F. Morse, D. NikolovaPopova, S. Witherspoon (a cura di), Group Theory, Combinatorics and Computing (pp. 169-187). Providence : American Mathematical Society [10.1090/conm/611/12158].

A uniform upper bound for the character degree sums and Gelfand-Graev-like characters for finite simple groups

SPIGA, PABLO
Primo
;
ZALESSKI, ALEXANDRE
Ultimo
2014

Abstract

Let G be a finite non-abelian simple group and let p be a prime. We classify all pairs (G,p) such that the sum of the complex irreducible character degrees of G is greater than the index of a Sylow p-subgroup of G. Our classification includes all groups of Lie type in defining characteristic p (because every Gelfand-Graev character of G is multiplicity free and has degree equal to the above index), and a handful of well-described examples
Capitolo o saggio
Gelfand-Graev character, finite non-simple group, complex characters
English
Group Theory, Combinatorics and Computing
Morse, RF; NikolovaPopova, D; Witherspoon, S
2014
978-0-8218-9435-4
611
American Mathematical Society
169
187
Spiga, P., Zalesski, A. (2014). A uniform upper bound for the character degree sums and Gelfand-Graev-like characters for finite simple groups. In R.F. Morse, D. NikolovaPopova, S. Witherspoon (a cura di), Group Theory, Combinatorics and Computing (pp. 169-187). Providence : American Mathematical Society [10.1090/conm/611/12158].
reserved
File in questo prodotto:
File Dimensione Formato  
Revisited2013_05_27.pdf

Solo gestori archivio

Dimensione 245.71 kB
Formato Adobe PDF
245.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/133228
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
Social impact