In continuation of [20], we analyze the properties of spectral minimal k-partitions of an open set Ω in ℝ3 which are nodal, i.e. produced by the nodal domains of an eigenfunction of the Dirichlet Laplacian in Ω . We show that such a partition is necessarily a nodal partition associated with a k-th eigenfunction. Hence we have in this case equality in Courant's nodal theorem.

Helffer, B., Hoffmann Ostenhof, T., Terracini, S. (2010). Nodal minimal partitions in dimension 3. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 28(2), 617-635 [10.3934/dcds.2010.28.617].

Nodal minimal partitions in dimension 3

TERRACINI, SUSANNA
2010

Abstract

In continuation of [20], we analyze the properties of spectral minimal k-partitions of an open set Ω in ℝ3 which are nodal, i.e. produced by the nodal domains of an eigenfunction of the Dirichlet Laplacian in Ω . We show that such a partition is necessarily a nodal partition associated with a k-th eigenfunction. Hence we have in this case equality in Courant's nodal theorem.
Articolo in rivista - Articolo scientifico
Courant nodal Theorem; Eigenvalues; Nodal domains; Optimal partitions; Spectral minimal partitions;
English
2010
28
2
617
635
open
Helffer, B., Hoffmann Ostenhof, T., Terracini, S. (2010). Nodal minimal partitions in dimension 3. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 28(2), 617-635 [10.3934/dcds.2010.28.617].
File in questo prodotto:
File Dimensione Formato  
HHOT3.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 270.84 kB
Formato Adobe PDF
270.84 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/10609
Citazioni
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
Social impact