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Abstract

In continuation of [20], we analyse the properties of spectral mini-
mal k-partitions of an open set Ω in R3 which are nodal, i.e. produced
by the nodal domains of an eigenfunction of the Dirichlet Laplacian in
Ω. We show that such a k-partition is necessarily the nodal one asso-
ciated with a k-th eigenfunction. Hence we have in this case equality
in Courant’s nodal theorem.

1 Introduction

Let Ω is an open set2 in Rd and let H(D) denote, for any open set D in Ω, the
Dirichlet realization of the Laplacian H(D) in D; for a given integer k ≥ 1,
we associate with each k-partition D = (D1, . . . , Dk) of Ω (that is with each
family of k disjoint open sets (D1, . . . , Dk) in Ω)) the quantity

Λ(D) = max
j

(λ(Dj)) ,

with λ(Dj) denoting the lowest eigenvalue of H(Dj).
Now, let us consider an eigenfunction having exactly k nodal domains of
H(Ω): this produces a k-partition of Ω, which will be called nodal k-partition.
Of course the value of Λ for that nodal partition if nothing but the value of
the associated eigenvalue λ.

1991 Mathematics Subject Classification 35B05
2The precise assumptions of regularity will be given in Sections 2 and 3. We only give

in this introduction “rough” statements.
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In this paper we are concerned with the extremal values of

Lk(Ω) = inf
D

Λ(D)

and with the associated minimal k-partitions, that is, k-partitions which
achieve the infimum.

Our aim is to show, in continuation of [20], that if a minimal k-partition
is a nodal partition, then it necessarily corresponds to the nodal domains of
the k-th eigenfunction. With Courant’s nodal theorem is mind, we call these
eigenfunctions “Courant-sharp” because they have the maximal number of
nodal domains. Hence Courant sharpness is equivalent to minimality of the
corresponding k–partition.

This result was obtained in dimension two in [20] together with other
qualitative results on minimal spectral partitions. In contrast with the two
dimensional case, the general structure of k-minimal partitions is only poorly
understood in higher dimension. Our Theorem 3.1 summarises the results
on the geometry of the boundary of the minimizing partition that can be
obtained joining the results [20, 6, 7, 29]. In spite of this lack of information,
we shall be able to perform the proof of the result for the 3-dimensional case,
exploiting a careful analysis of the nodal sets of eigenfunctions for a class of
auxiliary problems.

In Section 2 the main definitions and some 2-dimensional results are pre-
sented. The exact statement of the main theorem will be presented in Sec-
tion 3. In §4, we recall the properties of nodal sets for domains in R3. The
proof is then given in the §5-7 and finally in Section 8 we give two illustrative
examples.
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2 Definitions, notation and previous results.

We first recall notation, definitions and results extracted essentially from [20].

We consider the Dirichlet Laplacian H(Ω) on a bounded domain Ω ⊂ Rd.
Under some weak regularity assumption, H(Ω) is selfadjoint when viewed
as the Friedrichs extension of the quadratic form associated to H with form
domain W 1,2

0 (Ω) and form core C∞
0 (Ω). We are interested in the eigenvalue

problem for H(Ω) and note that H(Ω) has discrete spectrum σ(H(Ω)). We
denote by {λk}k∈N\{0} the ordered sequence of eigenvalues, such that the
associated eigenfunctions uk can be chosen to form an orthonormal basis for
L2(Ω). We shall denote for any open domain D by λ(D) the lowest eigenvalue
of H(D) with Dirichlet boundary condition

λ(D) = λ1(H(D)) . (2.1)

We know that u1 can be chosen to be strictly positive in Ω. We define for
any function u ∈ C0

0(Ω)

N(u) = {x ∈ Ω
∣∣ u(x) = 0} (2.2)

and call the components of Ω \ N(u) the nodal domains of u. The number
of nodal domains of such a function will be called µ(u).

We now introduce the notions of partition and spectral minimal partition.

Definition 2.1
Let 1 ≤ k ∈ N. We call a partition of Ω (or k-partition if we want to
indicate the cardinality of the partition) a family D = {Di}k

i=1 of pairwise
disjoint open sets such that

∪k
i=1Di ⊂ Ω. (2.3)

It is called strong if
Int (∪k

i=1Di) \ ∂Ω = Ω. (2.4)

We denote by Ok the set of such partitions.

We now introduce spectral minimal partitions:

Definition 2.2
For 1 ≤ k ∈ N and D ∈ Ok we introduce

Λ(D) = max
i

λ(Di) , (2.5)
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and
Lk(Ω) = inf

D∈Ok

Λ(D) (2.6)

We call a k-partition D ∈ Ok a spectral minimal k-partition if Lk(Ω) = Λ(D).

Remark 2.3
If k = 2, the minimal value L2 is the second eigenvalue and any minimal
2–partition is represented as the nodal partition associated to some second
eigenfunction.

To eachD we associate a graph G(D) in the following way. We say Di, Dj ∈ D
are neighbors, if

Int (Di ∪Dj) \ ∂Ω is connected (2.7)

and denote this by Di ∼ Dj. To each Di ∈ D we associate a vertex vi and
to each pair Di ∼ Dj we associate an edge ei,j. This defines a graph G(D).

Attached to a partition D we can associate a closed set N ∈ Ω defined by

N(D) =
⋃
i

(∂Di ∩ Ω) , (2.8)

called the boundary of the partition. In the case of a nodal partition (associ-
ated to the nodal domains of an eigenfunction) this is simply the nodal set.
In the 2D case, the boundary sets of minimal partitions exhibit regularity
properties which are close to the properties of the nodal sets. We have in-
troduced in [20] a class of sets called regular describing these properties. In
particular we also introduced the notion of the equal angle property, a nat-
ural generalisation of the local properties of zero sets of eigenfunctions near
points where the eigenfunction vanishes of higher order, see [20] for details.

The following theorem has been proved by Conti-Terracini-Verzini [8, 9,
10].

Theorem 2.4
We assume that the dimension is two. Then for each k ∈ N∗, there exists a
minimal regular3 strong k-partition.

This existence theorem was completed in [20] by a regularity result.

Theorem 2.5
If the dimension is two, then any minimal spectral k-partition admits a rep-
resentative which is regular, connected and strong. Moreover these partitions

3Except for isolated points, the boundary of the partition consists of C∞ arcs.
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satisfy the equal angle meeting property. Furthermore if D = {Di}k
i=1 is a

spectral minimal k-partition, then λ(Di) = λ(Dj) for all i, j.

A natural question is whether a minimal partition is the nodal partition
induced by an eigenfunction. We have given in [20] (in the 2D-case) a simple
criterion for a partition to be associated to a nodal set. For this we need
some additional definitions. We will say that the graph G(D) is bipartite
if its vertices can be colored by two colors (two neighbours having different
colors). We recall that the graph associated to a collection of nodal domains
of an eigenfunction is always bipartite. We have now the following converse
theorem [20] :

Theorem 2.6
Assume that the dimension is two and that there is a minimal spectral k-
partition (we choose then a strong, regular representative) of Ω such that the
associated graph is bipartite. Then this partition is associated to the nodal set
of an eigenfunction of H(Ω) corresponding to an eigenvalue equal to Lk(Ω).

A natural question is now to determine how general is the situation de-
scribed in the previous theorem. The surprise is that this will only occur in
the so called Courant-sharp situation.

Courant’s nodal theorem says that the number of nodal domains µ(u)
satisfies m(u) ≤ k for each function in the eigenspace of λk Then we say,
as in [1], that u is Courant-sharp if µ(u) = k. For any integer k ≥ 1, we
denote by Lk the smallest eigenvalue for which its eigenspace contains an
eigenfunction with k nodal domains. In general we have

λk(Ω) ≤ Lk(Ω) ≤ Lk(Ω) . (2.9)

The next result of [20] gives the full picture of the equality cases :

Theorem 2.7
Suppose Ω ⊂ R2 is regular. If either Lk = Lk or λk = Lk, then

λk = Lk = Lk .

In addition, any minimal k-partition admits a representative which is the
family of nodal domains of some Courant-sharp eigenfunction u associated
with λk.
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3 The case of dimension 3

We now discuss what can be extended to three dimensions and present our
main theorem. In [20] (see also Conti-Terracini-Verzini [8, 9, 10], Bucur-
Buttazzo-Henrot [4], Caffarelli-Lin [5, 6] and references therein) the existence
of Lk together with the existence of some minimal k-partition was shown.
In particular, it is shown in [20] that properly normalized eigenfunctions
associated with the minimal partition satisfy a certain system of differen-
tial inequalities (Theorems 3.4 and 3.8). This fact makes the results of [7]
applicable and gives the following result on the structure of the minimal
partitions :

Theorem 3.1
Let Ω be an open subset of Rd with a C2 boundary. For any k there is a
representative4 for a minimal spectral k-partition which is strong and con-
nected. Its boundary consists of the union of a singular set, having Hausdorff
dimension at most d− 2, and of a collection of analytic codimension 1 man-
ifolds. Furthermore if D = {Di}k

i=1 is a spectral minimal k-partition, then
λ(Di) = λ(Dj) for all i, j.

Sketch of the Proof.
According to Theorem 3.4 of [20], let D = {Di}k

i=1 be any minimal partition
associated with Lk and let (φ̃i)i be any corresponding set of positive eigen-
functions normalized in L2. Then there are nonnegative coefficients ai ≥ 0,
not all vanishing, such that the functions ui = aiφ̃i satisfy a certain system
of differential inequalities, denoted in [20] as (I1) and (I2). From these in-
equalities, that can be extended through a regular boundary, it is deduced
in [7] the validity of the Almgren’s monotonicity formula and consequently
the fact that the boundary set consists in the union of a singular set, having
Hausdorff dimension at most d− 2, and of a collection of C1,α manifolds (see
also [29] for more details). Using the regularity of the boundary set, one
can easily extend Theorem 4.14 in [20] from dimension 2 to any dimension,
obtaining positivity of all coefficients ai and connectedness of the open rep-
resentative of the minimizing partition. Finally, arguing as in Remark 3.11
in [20] one then conclude that λ(Di) = λ(Dj) for all i, j. This last fact also
improves the regularity of the regular part subset from C1,α to Cω.

Unfortunately, the information contained in this Theorem are too weak
to be used in extending Theorem 2.7 to the higher dimensional case. In
contrast, in the proof of the extension of Theorem 2.7, which is a proof by

4see [20] for the definition
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contradiction, with start with a nodal configuration associated with an eigen-
function. Hence we will exploit the regularity properties of nodal sets which
are already proved in the former literature, rather than those of a minimal
partition stated in Theorem 3.1. Indeed, our proof relies on the finiteness
of the 1-Hausdorff measure of the singular part of the nodal set proved in
[18], which is of course stronger than the fact that its Hausdorff dimension
is at most one. On the other hand, it requires more stringent regularity of
the boundary. The properties of the nodal set will be recalled in Section 4
(Proposition 4.2).

To avoid technical difficulties, we make the following strong but natural
assumption.

Assumption 3.2
Ω ⊂ R3 is a bounded domain with ∂Ω ∈ Cω.

This assumption occurs in a related context in [14, 15].

Our main result is the following extension of Theorem 2.7 (Theorem 1.17
in [20]) to dimension 3.

Theorem 3.3
Suppose that Ω satisfies Assumption 3.2. If for some k, Lk = Lk, then

λk = Lk = Lk . (3.1)

Remark 3.4
Suppose Ω satisfies the previous assumptions. Assume that λk(Ω) < Lk(Ω),
then D, the spectral minimal k-partition associated with Lk, is non-nodal, i.e.
is not produced by the eigenfunction um. This would be non-trivial only if D
consisted of k′ > k domains. But this impossible due to Theorem 3.1.

Remark 3.5
As done in [20] for the 2D-case, we observe that Pleijel’s sharpened version of
Courant’s nodal theorem [27] implies that, for any Ω satisfying the assump-
tions above, there is a k0(Ω) such that for k > k0(Ω) the minimal spectral
partition associated to Lk(Ω) is non-nodal.

Remark 3.6
In addition, if for some k, λk = Lk, then (3.1) holds. This fact does not
depend on the dimension and is simply based on the variational principle.
If ϕi (i = 1, . . . , k) is the ground state relative to Di. There exists indeed
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a non trivial combination of the ϕi which is orthogonal to the eigenspace
associated with the interval [0, λk−1] for which the energy is λk. So by the
minimax-principle, it is an eigenfunction.

4 Properties of nodal sets in the case of di-

mension 3

We consider the eigenvalues and the minimal spectral partitions associated
to the Dirichlet problem on Ω. It is more difficult to describe the regularity
properties of the nodal sets in three and higher dimensions than for the two
dimensional case.

We know that an eigenfunction is analytic (hypoanalyticity of the Lapla-
cian) in Ω and, under Assumption 3.2, it is also standard [22] that an eigen-
function is analytic up to the boundary. In fact we have, see [15], Proposition
4.1, the following more precise result:

Lemma 4.1
Suppose that Ω satisfies Assumption 3.2 and that u is a Dirichlet eigenfunc-
tion associated to λ. Then there is an open set Ω̃ so that Ω ⊂ Ω̃ and u
extends to a real analytic function ũ in Ω̃ satisfying −∆ũ = λũ in Ω̃.

This can be proved in two steps. First one shows that it has an analytic ex-
tension. Secondly, one observes that −∆ũ−λũ is analytic in a neighborhood
of Ω̄ and vanishes in Ω. The result follows by unique continuation.

This result permits us to reduce the analysis of the local properties of
nodal sets of eigenfunctions at the boundary to the analysis of the same
problem at an interior point.

The next property concerns the Hausdorff measures of the nodal set of
an eigenfunction and of the critical points of the nodal set (see [24] for the
definition). It is worthwhile noticing that in the C∞ case the Hausdorff di-
mension of the singular set can be any number between 0 and 1 as is noted
in [18]. This is shown for a smooth divergence type operator. Of course for
the analytic case we must have either 0 or 1.
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Proposition 4.2
Suppose that Ω satisfies Assumption 3.2 and that u is an eigenfunction of
H(Ω). Then :

• The zeroset N(u) of an eigenfunction u has finite 2-dimensional Haus-
dorff measure.

• The singular set Σ(u) , which is defined by

Σ(u) = N(u) ∩ {x ∈ Ω : |∇u(x)| = 0} , (4.1)

has finite 1-dimensional Hausdorff measure.

Proof.
This follows either from more general results for the smooth case derived in
[21] for the 3D case, see also [18] and [17] for the the higher dimensional case.
For the real analytic case we can proceed more directly by investigating the
function defined on Ω by :

f = |∇u|2 + u2 . (4.2)

f is real analytic and its zeroset is

N(f) = Σ(u) . (4.3)

In order to describe the structure of N(f), let us observe that the real an-
alyticity implies, by a result of S. Lojasievicz [23], that N(f) admits the
following stratification :

N(f) = Γ0 ∪ (∪s
i=1Γi1) ∪ (∪r

j=1Γj2) (4.4)

with Γ0 (a finite set) and, for each i, Γi1 an analytic curve such that ∂Γi1 ⊂ Γ0,
Γj2 an analytic surface such that ∂Γj2 ⊂ Γ0 ∪ (∪s

i=1Γi1).
Next we want to show that the decomposition of N(f) does not contain a
2D-component. Because we are in the analytic case, one can use the Cauchy-
Kowalewski theorem and get that u is identically 0 near this 2D-component,
hence everywhere by analyticity.

So we have obtained :

Lemma 4.3
Under Assumption 3.2, we have in each relatively compact open set ω in Ω :

N(f) ∩ ω = Γ0 ∪ (∪s
i=1Γi1) (4.5)

with Γ0 (a finite set) and, for each i, Γi1 an analytic curve such that ∂Γi1 ⊂
Γ0.
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The same proof applied to u gives

Lemma 4.4
Under Assumption 3.2, we have in each relatively compact open set ω in Ω :

N(u) ∩ ω = Γ0 ∪ (∪s1
i=1Γi1) ∪ (∪s2

j=1Nj) (4.6)

with Γ0 (a finite set), for each i, Γi1 an analytic curve such that ∂Γi1 ⊂ Γ0,
and Nj is a (2D)-analytic surface such that ∂Nj ⊂ N(f) .

Remark 4.5
The same proofs can be applied to ũ and f̃ = ũ2 + |∇ũ|2, with the notation
of Lemma 4.1. This permits us to replace in the two previous statements ω
by Ω.

Remark 4.6
Note that the proof of Lojasiewicz implies that the curves in Σ(u) have finite
length.

We will need the following relation between capacity (defined in the ap-
pendix) and Hausdorff measure.

Lemma 4.7
Suppose that Ω ⊂ Rd is a bounded domain and that E ⊂ Ω has finite (d− 2)-
dimensional Hausdorff measure, then Cap (E) = 0.

This is due to [26] (see e.g. Theorem 2.52 in [25]). As a consequence we
have :

Proposition 4.8
Under Assumption 3.2 and if u is a real valued eigenfunction of H(Ω), then
Cap (Σ(u)) = 0.

Proof
We use Lemma 4.1. Hence Ω ⊂ Ω̃ for some open domain Ω̃. Now Lemma 4.7
applies directly. 2

We end this section with a property related with the nodal partition
associated with an eigenvalue that we will use in the following.

Proposition 4.9
Let u be an eigenfunction of the Dirichlet Laplacian in Ω, and let N(u) its
nodal set. Then
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• u ∈ H1
0 (Ω \N(u))

• u is an eigenfunction of the Laplacian in Ω \ Ñ for every Ñ ⊂ N(u).

Proof
We only have to prove that u ∈ H1

0 (Ω\N(u)), the other part of the assertion
being obviously true. To this aim, let η be a real smooth function such that
η(s) = 0 for |s| ≤ 1 and η(s) = s for |s| ≥ 2, and let uε(x) = εη(u(x)/ε). As
u ∈ C∞ we have that uε ∈ C∞0 (Ω \N(u)). Moreover, as ε → 0, uε converges
to u in the strong H1 topology. This can be seen as an easy consequence of
the Dominated Convergence Theorem, observing that

∫
Ω

1u=0(x)|∇u(x)|2 dx
where 1u=0 is the characteristic function of u = 0.

5 Proof of Theorem 3.3.

5.1 Starting point of the proof

We follow as close as possible the proof given in Section 7 of [20]. We assume
by contradiction that :

λk < Lk = Lk = λm (5.1)

for some m > k.
This implies that there exists an eigenfunction u = um with k nodal domains.
We also assume for the moment that

λm−1 < λm < λm+1, (5.2)

hence that λm is simple. The goal is to show that (5.1) and (5.2) lead to a
contradiction.

At the end of the section we will, as in [20], obtain the contradiction
without assuming (5.2).

5.2 Abstract properties of the interpolating familyN (α).

The proof of Theorem 2.7 in [20] was based on an explicit construction of
a continuously increasing interpolating family between N(u) and ∅. We can
explicitly consider each component of N(u) \Σ(u) which was either a closed
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line or a segment with end points in Σ(u). The (3D)-construction is more
involved and will be given in Section 6.

Our goal in this subsection is to propose to list all the “abstract proper-
ties” needed for the proof. We write u = um and N(u) = N(um). What we
need is to construct a continuous increasing family of closed sets N (α)α∈[0,1]

in Ω satisfying four properties.

Property 5.1 [P1]

N (0) = Σ(u) , N (α) ⊂ N (α′) if α ≤ α′ , N (1) = N(u) ,

Actually, for technical reasons, we will start instead of N (0), from a suitable
neigborhood of Σ(u) (see (6.2)) in N(u), noting that the Assumptions (5.1)
and (5.2) are still satisfied if Ω is replaced by Ω \ N (0).
Similarly, we will replace N(u) for the definition of N (1) by N(u)\X+ where
X+ has capacity 0. The definition of N (0) and N (1) will be given in Sec-
tion 6, respectively in (6.2) and (6.4).

With
Ω(α) = Ω \ N (α) , (5.3)

we need the continuity of the eigenvalues with respect to α :

Property 5.2 [P2]
For any `,

α 7→ λ`(Ω(α)) ∈ C0([0, 1]) .

The continuity of the eigenvalues will ensured by the continuity in capac-
ity of the exhausting family Ω(α) (see section 7.3) :

Property 5.3 [P3]
N (α) \ limβ→α , β<αN (β) has capacity 0.

Finally we require that, all along our family, λm is a an eigenvalue:

Property 5.4 [P4]
λm is an eigenvalue of H(α) for any α ∈ [0, 1].

This requirement will be automatically fullfilled, thanks to Proposition 4.9,
from the fact that N (α) is already contained in the nodal set of the selected
m-th eigenfunction.
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An immediate consequence is the following

Lemma 5.5
Under Assumption [P1], the eigenvalues of H(α) are monotonically increas-
ing for 0 ≤ α ≤ 1. Furthermore λ1(1) = · · · = λk(1) = λm(0).

In the 2-dimensional case, the construction was easy because the descrip-
tion of N(u) and Σ(u) was explicit. In higher dimensions the situation is
more complicated and one cannot hope for such an explicit description of
N(u), Σ(u) even for the analytic case (see Section 4).
In the construction given below N (α) \ limβ→α , β<αN (β) will be a union of
analytic curves in N(u) \ Σ(u).

By Lemma 4.7 and a theorem of Gesztesy, Zhao [16] we have

σ(H(Ω(0))) = σ(H(Ω)) . (5.4)

where σ denotes the spectrum. Furthermore, thanks to the properties [P2]
and [P3], we deduce

lim
α→0

σ(H(Ω(α))) = σ(H(Ω)) . (5.5)

5.3 Continuation of the proof.

We assume that we have constructed an exhausting family satisfying the
properties [P1], [P2], [P3] and [P4] and continue to follow the proof of of
Theorem 2.7 given in [20]. We are going to treat in full detail only those
arguments that differ from the 2-dimensional case and we refer the reader to
§7 of [20] for the remaining parts.

Lemma 5.6
There is an α1 < 1 such that λm is an eigenvalue of H(α1) with multiplicity
at least 2.

For α = 0, λm is the m-th eigenvalue and for α = 1 it is the k-th eigenvalue
with k < m. This is then an immediate consequence of properties [P1] and
[P2].

We consider at α1 some normalized real valued eigenfunction of H(α1)
associated with λm which is orthogonal to u = um and which we call w.
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We try to prove that λm has multiplicity at least 2 as eigenvalue of H(Ω)
which will be the desired contradiction to (5.2). So we consider for β ∈]−ε, ε[
for sufficiently small ε > 0

wβ = u + βw. (5.6)

Remember that by assumption u := um has k nodal domains.

As in [20] we have the following lemma:

Lemma 5.7
Under Assumptions [P1], [P2], [P3] and [P4], there is an ε > 0 such that for
|β| ≤ ε, wβ has exactly k nodal domains.

Proof
The proof has two parts.
First part : µ(wβ) ≤ k .
Suppose for contradiction wβ has more than k nodal domains. We now con-
sider those nodal domains in all of Ω. Take one of those domains, say D1 and
consider one neighboring domain, say D2. Then ∂D1 ∩ ∂D2 6= ∅. Hence we
can consider some domain D′

1 ⊂ D1 which also neighbors D2 and introduce
D′

2 = Int (D2 ∪D′
1). Then λ1(H(D′

2)) < λ1(D2). Also the other neighboring
domains can be treated the same way and eventually we will obtain a new
k-partition with a L′

k < Lk, the desired contradiction.

Here we emphasize that our deformation can be done in a neighborhood
of a regular point of ∂D1 ∩ ∂D2.

Second part: µ(wβ) ≥ k
Next we have to show that µ(wβ) is at least k. To see this we observe that
by construction Σ(u) ⊂ ∂Ω(α1). Moreover, assuming that we have affected
a sign ± to each component Di of Ω \ N(u) (in order to have a bipartite
associated graph), we observe that our construction of Ω(α1) implies that a
path joining two Di’s of same sign contained in Ω(α1) crosses another D` of
opposite sign.
Now let us choose xi ∈ Di (i = 1, . . . , k). It is clear that there exists a β0 > 0
such that for |β| ≤ β0 we have

u(xi)wβ(xi) > 0 .

Hence, for i = 1, . . . , k, there exists a nodal domain D̂i of wβ in Ω(α1) con-
taining xi.
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It remains to show that xi can not be connected to xj (for j 6= i) inside D̂i.
Of course, this concerns only two points such that u(xi)u(xj) > 0.

In the construction of Ω(α1), we have opened some windows in the regu-
lar 2D-part of N(u).

Let us consider one window Wi` contained in ∂Di. Of course there could
be more than one window in ∂Di and hence the index `. This window con-
nects Di and a neighboring Dk of opposite sign. We claim that there exists a
neighborhood of Wi` in Ω such that W nbd

i` ∩Dj = ∅, W nbd
i` contains only one

window and xi 6∈ W nbd
i` . Moreover for β small enough wβ(x)u(xi) < 0 for x

on Σi`k := ∂W nbd
i` ∩Dk (Here we use that |∇u| 6= 0 in W nbd

i` ).
Now any path in Ω(α1) joining xi and xj must cross one of the Σi`k. In

particular xj cannot belong to D̂i.

We hence have two distinct minimal k-partitions corresponding respec-
tively to u and wβ and it is immediate to see that the associated graphs are
the same, hence bipartite.

By construction w = 1
β
(wβ − u) and is orthogonal to u. Consequently if

we show that the extension ŵβ of wβ in Ω by 0 is an eigenfunction of H(Ω),
then ŵ := 1

β
(ŵβ − u) is an eigenfunction of H(Ω) which is orthogonal to u

and the corresponding eigenvalue λm of H(Ω) cannot be simple and we have
a contradiction to the assumption done in the first subsection.

In the 2D-case, we were applying Theorem 1.14 in [20] to the minimal
k-partition created by wβ. Because, we do not have proven this result in the
(3D)-case, we will come back to a more direct proof related to the fact that
we have more information on our partition (and in particular its regularity).
The argument is more closed to the approach in [19].

From our construction we know that

−∆wβ = λmwβ in Ω \ N (α1) ,

Consider the k-partition D̂ associated with wβ. We know that it is min-

imal. In particular, for any pair (i, j), (D̂i, D̂j) is a minimal 2-partition of

D̂ij := Int (D̂i ∪ D̂j).
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Let us denote by wi
β the restriction of wβ to D̂i extended by 0 outside D̂i.

From the characterization of the minimal 2-partitions, we obtain that, for
any pair (i, j) of neighbors, there exists α1(i, j) and α2(i, j) such that

α1(i, j)w
i
β + α2(i, j)w

j
β ∈ H1

0 (Ω)

But looking at this function in the neighborhood of a window between Di

and Dj, we obtain that α1(i, j) = α2(i, j).
Hence, we get

wi
β + wj

β ∈ H1
0 (Ω) . (5.7)

From this we deduce that the extension of wβ by 0 satisfies wβ ∈ H1
0 (Ω) and

−∆wβ = λmwβ in Ω \ J(D̂) ,

where J(D̂) denotes the set of the critical points of wβ in Ω ∩ N (α1). It is

worthwhile noticing that J(D̂) has null capacity: indeed it consists either
of regular points of the boundary ∂Ω(α1), where Proposition 4.2 applies, or
of irregular points of ∂Ω(α1) which by property [P3] of our construction are
included in a set of capacity 0.

End of the proof
The general case does not introduce additional difficulties in comparison,
with that of the 2D-case (case (b) in the proof of Theorem 1.17 in [20]).

6 Effective construction of the interpolating

family

The remaining point is to construct an explicit family satisfying the abstract
properties. Note that in a close context a construction was proposed in [3]
but this does5 not seem to be directly applicable.

We start by observing that N(u)\Σ(u) has a nice differentiable structure.
Moreover, according to Lemmas 4.3 and 4.4 together with Remark 4.5,

N(u) = Σ(u) ∪ (∪iNi) (6.1)

5The first author thanks D. Bucur for useful discussions.
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where the family of the Ni is finite, each Ni is a regular “open” connected
submanifold of dimension 2 in Ω whose boundary points are points of Σ(u).

Now we use the function f = |∇u|2 as a measure of the distance from
Σ(u) in N(u). Indeed, the family U δ = f−1([0, δ[) is a fundamental system
of neighborhoods of Σ(u). We select those indices for which ∂U δ is a regular
submanifold of N(u) \ Σ(u) and we call J ⊂ R the corresponding set. We
can apply Sard’s Lemma to the restriction of f to each Ni to prove that
transversality holds for almost every δ > 0 (here transversality means that
∇|Ni

f is transverse to ∂U δ):

Proposition 6.1
There is a full measure set J such that, for every δ ∈ J , ∂U δ is a smooth
submanifold of N(u) \ Σ(u).

In particular, for any δ̄ > 0, there exists δ ∈ J such that dist (∂U δ, Σ(u)) <
δ̄.

We denote

N δ
i = Ni \ U δ(Σ(u)) , N δ =

⋃
i

N δ
i ,

and
Σδ = ∂U δ(Σ(u)) .

Notice that, for each δ ∈ J , N δ is a 2-dimensional compact manifold
whose boundary Σδ is a smooth 1-dimensional submanifold.

We are going to deal with the steepest ascending flow Φt associated with
a small perturbation of f . We remark that, because of the transverse in-
tersection, N δ is positively invariant under this flow: i.e., Φt(N δ) ⊂ N δ, for
every positive t.

Next, using again standard transversality theory (Sard’s lemma), for each
fixed δ ∈ J we can take a smooth perturbation ϕ : N δ → R of f restricted to
N δ which is a Morse function, whose associated flow enjoys all the standard
nondegeneracy properties (Morse–Smale), that is:

• ϕ has a finite number of critical points of Morse index (0, 1, 2) (corre-
sponding to local minima, saddle point or maxima),

• the stable and unstable manifolds of critical points intersect transver-
sally along heteroclinic lines joining two of them.
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A basic reference on gradient flow of Morse-Smale type is [28]. Moreover,
for δ ∈ J , we can assume that the normal derivative of ϕ is not zero on Σδ.
Moreover, we can extend ϕ smoothly to the whole of N(u), in such a way
that it vanishes in a small neighborhood of Σ(u).

Let us consider the gradient flow Φt associated with ∇ϕ on N(u). By
construction, ∇ϕ agrees with ∇|Ni

f at the boundary of N δ: then, as already
pointed out, since ϕ increases along the flow lines, N δ is positively strictly
invariant and Σδ is its entrance set with respect to the flow Φt (t > 0). Now,
consider the (finite) set of critical points K = {x` ∈ N δ : ∇ϕ(x`) = 0},
each with its Morse index m(x`) ∈ {0, 1, 2} and a pair of stable (unstable)
manifolds W s(x`) (resp. W u(x`)).

Among all critical points, we select the local maxima KMax = {x ∈ K :
m(x) = 2} and the local minima KMin = {x ∈ K : m(x) = 0}. Now,
removing all the local minima KMin, the flow Φt has the global attractor

X+ =
⋃

m(x`)≥1

W u(x`) ∪KMax

which is a union of compact manifolds having at most dimension 1.

We can provide a uniform estimate for the time of absorption of X+.

Proposition 6.2
For every ν > 0 small enough there exists T > 0 such that ∀x ∈ N δ with
d(x, KMin) > ν, d(Φt(x), X+) < ν for every t > T .

Proof. Indeed, assume the proposition was false. Then, for some ν̄ (ν̄
must be taken small enough so that the flow exits the balls of radius ν̄ around
local minimizers), there would be a sequence (xn, tn) such that d(xn, KMin) >
ν̄, tn → +∞ and d(Φtn(xn), X+) ≥ ν̄. Hence we have d(Φt(xn), KMin) > ν̄
for every t > 0. Up to a subsequence, we can assume Φtn(xn) → y 6∈ X+,
and hence, d(Φt(y), KMin) > ν̄, for every t ∈ R. Consequently, the α–limit of
y –i.e. the limit as t → −∞ of Φt(y)– of y can not be a local minimum, thus
the orbit of y is an heteroclinic connection between two critical points with
non vanishing Morse index. As such it lies entirely on X+, while we have
y 6∈ X+, a contradiction.

We now describe what is our initial Ω(0). In the construction of the inter-
polating family, instead removing Σ(u), we will remove a full neighborhood
of Σ(u) together with a suitable neighborhood of the local minimizers of ϕ:
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indeed, we define

N (0) = U δ ∪
⋃

m(x`)=0

N(u) ∩B(x`, ν) . (6.2)

and
Ω(0) := Ω \ N (0) . (6.3)

Let us denote the boundary of N (0) by :

Σ+ = ∂U δ ∪
⋃

m(x`)=0

N(u) ∩ ∂B(x`, ν) .

Because of our transversality and invariance assumptions, the following
holds true.

Lemma 6.3
Σ+ is a smooth, compact 1-dimensional manifold, transverse to the flow.
It cuts N(u) into two parts: N (0) and its complement. Moreover N (0) is
invariant by the flow for negative times.

It is clear from the previous discussion that the parameters δ and ν can
be taken small enough so that the capacity of Ω\Ω(0) is as small as we wish.
Next we define our interpolating family simply as the flow evolution of the
starting set.

N (α) = Ω \ Ω(α) = Φα/(1−α)(N (0)) , ∀α ∈ [0, 1)

N (1) = N(u) \X+ .
(6.4)

In order to show that it fits the requirements for an interpolation family,
we need the following proposition.

Proposition 6.4
For every T > 0, ⋃

0≤t≤T

Φt (N (0)) = ΦT (N (0))

ΦT (N (0)) \
⋃

0≤t<T

Φt (N (0)) = ΦT
(
Σ+

)
⋃
t>0

Φt (N (0)) = N(u) \X+ ,

(6.5)
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This is non-trivial only if D would consist of k′ > k domains. But this
impossible due to Theorem 3.1.

Proof.
Going back to our Lemma 6.3, as the flow turns on, we can see the boundary
Φt (Σ+) moving towards the interior of N(u) \ N (0). Of course the mov-
ing boundary will keep the property of transversality with respect to the
flow. Hence the first two assertions are straightforward consequences of the
definition. The third point follows directly from Proposition 6.4.

As a consequence of the above proposition, the family is continuous in
capacity:

Lemma 6.5
For every α ∈ [0, 1], there holds:

lim
β→α

β∈[0,1]

Cap (Ω(β) \ Ω(α)) = 0 . (6.6)

Moreover, for every ε > 0, the parameters can be chosen so that

Cap (Ω \ Ω(0)) < ε. (6.7)

Proof.
When α ∈ [0, 1[ this is a consequence of the fact that

lim
β→α

β∈[0,1]

Ω(β) \ Ω(α) = Φα/(1−α)(Σ+)

and the last set has null capacity. The continuity at α = 1 follows again from
Proposition 6.4. To prove the last assertion, just consider that, for δ and ν
sufficiently small, N (0) can be included in an arbitrarily small neighborhood
of the singular set Σ(u) together with a finite number of arbitrarily small
balls.

Joining the last lemma together with the results of next Section 7.3, we
can finally conclude that

Proposition 6.6
The exhausting family defined in (6.4) satisfies [P1], [P2] and [P3] for suit-
able values of the parameters δ and ν.
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7 Continuity of eigenvalues

7.1 Main result.

This section is devoted to the proof of the continuity of eigenvalues for fam-
ilies of domains which are continuous with respect to capacity. This result
is probably known but, since we could not find it in the literature, we prefer
to give an explicit proof. We refer to §6 in the book [2] for a systematic ex-
position of the continuity properties of eigenvalues with respect to variations
of the domains, in connection to other types of domain approximations and
with Mosco and γ–convergence.

Theorem 7.1
Let Ω be a bounded domain in R3. Let Ωn a sequence of open subsets of Ω,
converging to an open Ω̂ in capacity, in the sense that:

lim
n→+∞

Cap (Ω̂4Ωn) = 0 . (7.1)

Then, for any j ∈ N∗,
lim

n→+∞
λj(Ωn) = λj(Ω̂) . (7.2)

7.2 Around L∞-boundedness of the eigenfunctions.

To prove our theorem, we make use of an L∞ bound on normalized eigen-
functions. To our purposes, the bound may depend on the eigenvalue but
should be uniform with respect to families of domains which are continuous
in capacity. The L∞ bound for the eigenfunctions is6 a result of Davies [12]
(Lemma 3.1 together with the remarks at the end of the paper) or [13] (Ex-
ample 2.1.8 on page 62-63). More precisely, if Ω is any bounded subset of Rd,
then the heat kernel K0(t, x, y) of exp−tH(Ω) satisfies the pointwise bound

0 ≤ K0(t, x, y) ≤ (4πt)−
d
2 e−|x−y|2/4t ,

This implies for a suitable choice of t that an j’th normalized eigenfunc-
tion Φj (associated with the eigenvalue λj) of H(Ω) satisfies

‖Φj‖∞ ≤ e1/8πλ
d/4
j .

In our application j will be fixed. The dependence on the open set Ω is
only through λj and will be easy to control by monotonicity.

6We thank M. Van den Berg for mentioning to us these references.
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Remark 7.2
One can also think of using Theorem 1.1 [11] (case (ii)) showing that for
open sets Ω ⊂ R3 with vertices (as we will construct later) then there exists
ε > 0 such that an eigenfunction u belongs to W 1,3+ε(Ω). The statement
implies that u is bounded but the control of the uniformity with respect to Ω
seems more difficult.

7.3 Proof of Theorem 7.1

In what follows we use the characterization of the spaces H1
0 (Ωn) (and simi-

larly for Ω̂) as:

H1
0 (Ωn) := C∞

0 (Ωn)
H1(Ωn)

Step 1. We first prove upper semi–continuity, i.e. that

lim sup
n→+∞

λj(Ωn) ≤ λj(Ω̂).

For this, we only need to find a j-dimensional subspace Ej,n in H1
0 (Ωn) and

εn such that limn→+∞ εn = 0 and

Qn(Φ) ≤ (λj(Ω̂) + εn)||Φ||2 , (7.3)

for all Φ ∈ Ej,n. Here Qn(Φ) is the Dirichlet form :

Φ 7→ Qn(Φ) =

∫
Ωn

|∇Φ(x)|2 dx . (7.4)

Let us construct Ej,n. Our assumption (7.1) gives (see Proposition A.1)

the existence of maps ηn ∈ H1
0 (Ω) such that, 0 ≤ ηn ≤ 1, ηn = 0 in Ω̂4Ωn,

ηn = 1 in a compact set Kn of Ωn and such that

lim
n→+∞

∫
(|∇ηn|2 + (1− ηn)2) dx = 0 .

Let Êj some7 spectral space attached to λ1(Ω̂), . . . , λj(Ω̂). For any Φ ∈ Êj,
we have

Q∞(Φ) ≤ λj||Φ||2 . (7.5)

We now define Ej,n by

Ej,n = ηnÊj .

7In the case that λj is not simple, we make a choice!
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We write Φ =
∑j

`=1 a`ϕ`. Then by the regularity of the eigenfunctions of

−∆D in Ω̂, we obtain the existence of Cj such that

||Φ||∞ ≤ Cj||Φ||2 , ∀Φ ∈ Ej . (7.6)

We now compute Qn(ηnΦ). By testing the equation for Φ with η2
nΦ we

find, using the L∞–estimate above,

Qn(ηnΦ) =
∫

Ω
|∇(ηnΦ)|2 dx

=
∫

Ω
η2

n|∇Φ|2 dx + 2
∫

Ω
ηn∇ηn∇Φ dx +

∫
Ω
|∇ηn|2 dx

=
∫

Ω
η2

n

(∑j
` λ`a`ϕ`

) (∑j
` a`ϕ`

)
dx +

∫
Ω
|∇ηn|2|Φ|2 dx

≤ (λj + Cj(λj||(1− η2)||2 + ||∇ηn||2)) ||Φ||2 .

(7.7)

We now observe that, there exists a sequence γn tending to 0 such that, for
Φ ∈ Ej

(1− γn)||Φ||2 ≤ ||ηnΦ||2 ≤ ||Φ||2 . (7.8)

This achieves the proof of the first step.

Step 2. Now we prove that, j ∈ N∗,

lim inf
n→+∞

λj(Ωn) ≥ λj(Ω̂).

First of all, by selecting a subsequence such that cap(Ωn4Ω) < 1/2n and

by replacing Ωn with Ω̂ ∪
⋃

k≥n Ωk we can reduce to the case of decreasing
sequences.

Let us consider, for a given j, a converging sequence of normalized eigen-
functions ϕj,n in H1

0 (Ωn) attached to λj(Ωn) =:= λj,n. We denote its limit
by λj,∞.
We now observe that, there exists a constant C such that

||ϕj,n||L∞(Ω) + ||ϕj,n||H1
0 (Ω) ≤ C . (7.9)

Extracting possibly a subsequence, we can assume that ϕj,n weakly converges
in H1

0 (Ω) and (by compactness) strongly in L2(Ω) to some vj in the unit
sphere of L2. We also deduce a uniform bound on the L∞ norm of the ϕj,n’s
and, of course, of their limit vj.

Let ηε be as in Proposition A.1 be vanishing on Ω̂4Ωn = Ωn \ Ω̂ for each
n sufficiently large. Then ηεϕj,n and ηεvj ∈ H1

0 (Ωn); we also remark that
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ηεϕj,n converges weakly in H1(Ω̂) and strongly in L2 to ηεvj. Hence testing
the equation

−∆ϕj,n = λj,nϕj,n in Ωn , (7.10)

with ϕj,n−ηεvj and passing to the limit first with respect to n and then with
respect to ε, we infer the convergence of the norms and hence the strong
convergence of ϕj,n to vj. Therefore vj ∈ H1

0 (Ω̂). In addition, we have

−∆vj = λj,∞vj in Ω̂ , (7.11)

in the sense of distributions. Hence, as vj 6≡ 0, λj,∞ is an eigenvalue of the

Dirichlet Laplacian in Ω̂.

In this way we have proved that the sequence of eigenvalues if the approx-
imating domains do converge to an eigenvalue of the limiting domain. With
a simple inductive argument it is now quite easy to finish the proof. Indeed,
it is clear from Step 1 that the sequence of first eigenvalues of the approxi-
mating domains converges to the first eigenvalue of Ω̂. Let us assume that
continuity has been proved up to the j-th eigenvalue. If this last eigenvalue
is simple, then the sequence of the (j + 1)-th eigenvalues must converge to
some eigenvalue which, by Step 1, can be only the (j + 1)-th eigenvalue of
the limiting domain.

To control the case of multiple j-th eigenvalue it is enough to consider the
full family of the first j orthonormal converging eigenfunctions and to select
a sequence of (j + 1)-th eigenfunctions orthogonal to this family. Again,
passing to the limit, the upper semicontinuity proved in Step 1 allows to
conclude that

lim
n→+∞

λj+1(Ωn) = λj+1(Ω̂) . (7.12)

8 Some Examples.

In this last section we consider two explicit examples of nodal, respectively
non-nodal minimal partitions.
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8.1 Cylindrical domains.

As first example of application, we can consider a cylinder

Ω = ω×]0, `[ , (8.1)

where ω is a bounded domain with analytic boundary in R2 or a suitable
polygon like a rectangle, a half disk or another domain which can be extended
analytically. We want to investigate whether λ3(Ω) has a Courant-sharp
eigenfunction or not.

First consider the eigenvalues associated to Ω = Ω(`). Let γ1 < γ2 ≤ γ3 ≤
be the increasing eigenvalues of the 2-dimensional Dirichlet problem −∆ on
ω. Then λ1(`) = λ1(Ω(`)) = γ1 + π2

`2
and the spectrum of H(Ω(`)) is given

by

{γi +
k2π2

`2
}i,k. (8.2)

Proposition 8.1
Under assumption 8.1, if

`2 ≥ 8π2(γ2 − γ1)
−1 , (8.3)

then any minimal 3-partition is nodal and the nodal partition is given by

ω ×
(]

0 ,
`

3

[
∪

] `

3
,

2`

3

[
∪

]2`

3
, `

[)
. (8.4)

If
3π2(γ3 − γ1)

−1 < `2 < 8π2(γ2 − γ1)
−1 , (8.5)

no minimal 3-partition can be nodal.

Proof. (8.2) implies that

λ3(`) ∈
{

γ1 +
4π2

`2
, γ1 +

9π2

`2
, γ2 +

π2

`2
, γ3 +

π2

`2

}
. (8.6)

Courant’s nodal theorem implies γ2 + 4π2

`2
> λ3 because the associated eigen-

function has 4 nodal domains. We know for sure that if λ3 = γ1 + 9π2

`2
there

is a nodal 3-partition. This can happen only if γ1 + 9π2

`2
< γ2 + π2

`2
and this

leads to (8.3).

If λ3(`) = γ1 + 4π2

`2
then we must have λ3 ≤ γ3 + π2

`2
and if λ3 = γ2 + π2

`2

then λ3 ≤ γ1 + 9π2

`2
. Those inequalities yield (8.5) and hence by remark 3.4

the result. This ends the proof.
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Finally we note that if we know that γ3 is associated to an eigenfunction
on ω with 3 nodal domains that then `2 < 3π2/(γ3 − γ1) implies also that
there is a nodal 3-partition.

8.2 The cuboid.

We can also consider a cuboid, i.e. Ω =]0, a[×]0, b[×]0, c[ , where a, b, c are
chosen such that the eigenvalues λmnk = π2(m2

a2 + n2

b2
+ k2

c2
) are simple. Then

we can show the following:

Proposition 8.2
If min(m, n, k) ≥ 2 then λmnk is not Courant sharp. This means that the
spectral minimal partition associated to Lmnk is non-nodal.

To see this we just have to show that λ2,2,2 > λ8(Ω). It suffices following
a similar argument of [20] to show that λ3,1,1, λ1,3,1, λ1,1,3 > λ2,2,2 leads to a
contradiction. This means that λ2,2,2 is not Courant sharp. We have

π2(
9

a2
+

1

b2
+

1

c2
) > 4π2(

1

a2
+

1

b2
+

1

c2
) := λ2,2,2

π2(
1

a2
+

9

b2
+

1

c2
) > λ2,2,2, π2(

1

a2
+

1

b2
+

9

c2
) > λ2,2,2.

Adding up these three inequalities, we obtain

11(
1

a2
+

1

b2
+

1

c2
) > 12(

1

a2
+

1

b2
+

1

c2
),

a contradiction. Here we use that, if a Courant sharp eigenfunction has some
connected subfamily of nodal domains, then the corresponding restriction is
associated with a Courant sharp eigenfunction of this subdomain. This can
be found in [1].

Finally we can deduce from results in [20] the following:
If k = 1, min{m,n} ≥ 3 or if k = 1 and m = 2, n ≥ 4, then also the
corresponding eigenfunctions are not Courant sharp.
Of course the indices k,m, n above can be permuted.

A Capacity

Denote by C(E) the capacity of a set E . Following [2]

Cap(E) = inf
u∈UE

{∫
Rd

(|∇u|2 + |u|2)dx
}

(A.1)
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where

UE = {u ∈ W 1,2(Rd)
∣∣ u ≥ 1 a.e in a neighborhood of E}. (A.2)

A local version of capacity, the capacity of a subset E of D is defined as
follows:

Cap(E , D) = inf
{∫

D

|∇u|2dx | u ∈ W 1,2
0 (D) ∩ UE

}
. (A.3)

Proposition A.1
Let Σ be compactly contained set in an open set Ω and having finite 1-
dimensional Hausdorff measure. Then, for any ε > 0 there exists η ∈ C∞

0 (Ω)
such that η = 0 on Σ, η = 1 in the complement of a neighborhood U(Σ) of
Σ, and ∫

Ω

|∇η|2 dx < ε .

This is a standard result. The conclusion is simply a reformulation of the
property that Σ has zero relative capacity with respect to Ω.
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Sud, 91 405 Orsay Cedex, France.

email: Bernard.Helffer@math.u-psud.fr

T. Hoffmann-Ostenhof: Institut für Theoretische Chemie, Universität Wien,
Währinger Strasse 17, A-1090 Wien, Austria and International Erwin Schrödinger
Institute for Mathematical Physics, Boltzmanngasse 9, A-1090 Wien, Aus-
tria.

email: thoffman@esi.ac.at
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