We study a generalized branching random walk where particles breed at a rate which depends on the number of neighboring particles. Under general assumptions on the breeding rates we prove the existence of a phase where the population survives without exploding. We construct a nontrivial invariant measure for this case.

Bertacchi, D., Posta, G., Zucca, F. (2007). Ecological equilibrium for restrained branching random walks. THE ANNALS OF APPLIED PROBABILITY, 17(4), 1117-1137 [10.1214/105051607000000203].

Ecological equilibrium for restrained branching random walks

BERTACCHI, DANIELA;
2007

Abstract

We study a generalized branching random walk where particles breed at a rate which depends on the number of neighboring particles. Under general assumptions on the breeding rates we prove the existence of a phase where the population survives without exploding. We construct a nontrivial invariant measure for this case.
Articolo in rivista - Articolo scientifico
interacting particle systems, branching random walks, contact process, phase transitions
English
2007
17
4
1117
1137
open
Bertacchi, D., Posta, G., Zucca, F. (2007). Ecological equilibrium for restrained branching random walks. THE ANNALS OF APPLIED PROBABILITY, 17(4), 1117-1137 [10.1214/105051607000000203].
File in questo prodotto:
File Dimensione Formato  
ecological.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 238.35 kB
Formato Adobe PDF
238.35 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/1045
Citazioni
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
Social impact