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ECOLOGICAL EQUILIBRIUM FOR RESTRAINED BRANCHING
RANDOM WALKS
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We study a generalized branching random walk where particles breed at
a rate which depends on the number of neighboring particles. Under general
assumptions on the breeding rates we prove the existence of a phase where
the population survives without exploding. We construct a nontrivial invariant
measure for this case.

1. Introduction. Scientists have been studying models for the evolution of a
population since the end of the 19th century, starting from the branching process
introduced by Galton and Watson in 1875 [5]. The need for more realistic models
has led to the introduction of a spatial structure: the branching random walk and
the contact process (briefly, BRW and CP, resp.) are perhaps the most natural gen-
eralizations. In the BRW model each individual has a fixed position on a connected
graph, for example, the integer lattice Z

d , and an exponential lifespan of parame-
ter 1 during which it breeds on neighboring sites according to a Poisson process of
intensity λ > 0. The number of individuals allowed per site is unbounded. Requir-
ing that a site can be occupied by at most one individual, one obtains the CP. Both
these processes exhibit two possible behaviors: starting from a finite population,
either the population faces almost sure extinction (subcritical behavior), or it sur-
vives with a positive probability (supercritical behavior). In the supercritical case
the BRW’s population grows indefinitely and the mean density of the population
diverges. For the contact process, obviously there is no divergence of the mean
density of the population because this quantity is a priori bounded. In the super-
critical phase, the CP has two invariant extremal measures (see [8]). It is known
that there exists a critical value of λ separating the two behaviors: if λ is smaller
than the critical parameter, the process exhibits the subcritical behavior, while, for
larger λ, it exhibits the supercritical one. We denote by λBRW and λCP the critical
parameters of the BRW and of the CP respectively.

The observation of natural environments suggests to remove any a priori bound
on the number of individuals allowed per site and to introduce a self-regulating
mechanism on the birth rates, which should provide a surviving though nonexplod-
ing population. Indeed, some ecological systems seem to be in a sort of equilibrium
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where the density of a population neither tends to zero nor to infinity. One may ar-
gue that we could be observing a subcritical or supercritical system during a too
short time span, nevertheless, it seems natural to try to translate into mathematical
terms the competition for resources (see, e.g., the discussion in [7]). Other authors
have introduced models for self-regulating populations. For instance, in the case
of a population living on a continuous and homogeneous space, Bolker and Pacala
[2] studied a process where the death rates depend on the local density centered on
the father. A slightly different model was considered in [4] where the reproduction
rate depends on the local density centered on the father. The main technical tools
are moment equations and stochastic differential equations respectively. A differ-
ent approach is carried out in [3] where the population has no spatial structure and
each individual can be affected by a gene mutation at birth; the evolution is studied
as a Markov process in the trait space.

We introduce a self-regulating mechanism where the birth rate is a decreas-
ing function of the local density at the location where the offspring would live.
Moreover, noting that the spatial structure of the interaction between individuals
in a biological population might be irregular, we study a population on a discrete
(possibly nonhomogeneous) space. To this aim, we consider the following model,
which we call restrained branching random walk (RBRW briefly). Consider an
infinite connected graph X with bounded geometry (i.e., the number of neighbors
of the vertices is bounded, e.g., Z

d ) as the environment where the population lives
and let η(x) be the number of individuals living at the site x ∈ X. The lifespan
of each individual is an exponential random variable of mean 1. During its life-
time each individual tries to reproduce following a Poisson process of intensity λ.
Every time the clock associated to the Poisson process rings, the individual tries to
send an offspring to a randomly chosen target neighboring site. The target neigh-
boring site is chosen using the transition matrix P = (p(x, y))x,y∈X of a nearest
neighbor random walk on X, for example, the simple random walk on Z

d . Call the
target site y. The reproduction on y is effective only with probability c(η(y))/λ,
where c : N → R

+ is a nonincreasing and nonnegative function with c(0) = λ. In
this case the population living at y increases by one individual, otherwise nothing
happens.

Observe that the process described above is a Markov process and includes the
BRW and the CP as special cases (c ≡ λ and c = λ1{0}, resp.). The formal con-
struction of this process is carried out in Section 3, where the existence of a Markov
process {ηt }t≥0 with state space � ⊂ N

X is proven. In general � is smaller than
N

X because we can only consider configurations η such that η(x) does not diverge
too fast when x goes to infinity (see Section 2 for more details). We prove that
{ηt }t≥0 has different behaviors depending on c(0), c(+∞) := limk→+∞ c(k) and
on the transition kernel p(x, y) (see Proposition 4.1 for the complete statement).

PROPOSITION 1.1. Let P n = (p(n)(x, y))x,y∈X be the nth power of the
transition matrix P and {ηt }t≥0 be the RBRW described above. Let us define
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ρ := lim supn→∞ n

√
p(n)(x, y) and θ := limn→∞ n

√
supx

∑
y p(n)(y, x) (notice that

θ ≥ ρ):

(i) If c(0) < 1/ρ, then limt→+∞ E
η[ηt (x)] = 0 for any finite η ∈ �, x ∈ X;

(ii) If c(0) > λCP, then limt→+∞ E
η[ηt (x)] > 0 for any η ∈ � \ {0}, x ∈ X and

P
η(lim supt→∞ ηt (x) > 0) > 0;
(iii) If c(+∞) > 1/ρ, then limt→+∞ E

η[ηt (x)] = +∞ for any η ∈ � \ {0};
(iv) If c(+∞) < 1/θ , then lim supt→+∞ E

η[ηt (x)] < +∞ uniformly for any
bounded η ∈ �, x ∈ X.

The critical parameters ρ and θ (and λCP as well) depend only on P (hence, in
the case of the simple random walk, on the geometry of the graph); in particular,
λBRW = 1/ρ (see [15] and [1]). We discuss further details in Section 2.1. The proof
of Proposition 1.1 is quite simple and essentially based on coupling techniques
with the CP and the BRW (and on explicit estimates on the moments of the BRW
with immigration; see Lemma 3.3).

Notice that, given a bounded initial state η ∈ � \ {0}, if c(0) is sufficiently large
and c(+∞) is sufficiently small, then by (ii) of Proposition 1.1, the population has
a positive probability to survive indefinitely, while by (iv), almost surely, it does
not explode. This is the ecological equilibrium phase we are looking for. It is quite
natural to wonder if there is a stationary distribution for the population in this case.
We prove that this is the case (see Theorem 4.3 for the complete statement).

THEOREM 1.2. Let {ηt }t≥0 be the RBRW described above and assume that c

is such that c(0) > λCP and c(+∞) < 1/θ . Then there exists a nontrivial proba-
bility measure µ on (�,B(�)) which is invariant for {ηt }t≥0.

We construct this invariant measure as a limit of invariant measures of processes
where the number of individuals per site is bounded.

Important examples are the RBRW on the d-dimensional lattice and on the ho-
mogeneous tree of degree n + 1 (both endowed with the transition matrix of the
simple random walk).

If X = Z
d and P is the simple random walk, we have that ρ = θ = 1. So (i)

of Proposition 1.1 implies that the population dies out when c(0) is smaller than
the death rate 1, while (iii) states that the mean density of the population explodes
when c(+∞) is larger than 1. Moreover, the system can reach the ecological equi-
librium if c(+∞) < 1 and c(0) > λCP (i.e., the critical parameter of the CP on Z

d ).
In this case the stationary measure µ given by Theorem 1.2 is translation invariant.

If X = Tn+1 (the homogeneous tree where the degree of each vertex is n + 1)
and P is the simple random walk, we have ρ = 2

√
n/(n + 1) < 1 = θ , whence,

to ensure ecological equilibrium we require c(+∞) < 1 and c(0) > λCP (i.e., the
critical parameter of the CP on Tn+1), while, for the almost sure extinction, it
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is sufficient that c(0) < (n + 1)/2
√

n. The stationary measure µ given by Theo-
rem 1.2 is translation invariant in this case as well. Considering different random
walks on Tn+1 leads to different values for θ (see Example 5.1).

One may wonder how the two parameters ρ and θ come to surface: the analysis
of the two examples above, shows that on general graphs the behavior of interact-
ing particle systems can be different than on Z

d . For instance, it is known that on
some fast growing graphs there is the so-called weak phase (see, e.g., [11] and [9],
Part I, Chapter 4 for the CP on trees, [15] and [1] for the BRW on graphs and [12]
for the BRW on Galton–Watson trees): the population can survive by drifting to
infinity and leaving eventually any site.

On Z
d , λBRW = 1 and, in the subcritical phase, starting from a bounded η with

at least one individual per site, with probability one, there is no extinction and the
expected number of individuals at a fixed site is a bounded function of the time t .

On a general graph the subcritical phase of the BRW is further subdivided:
λBRW = 1/ρ, but only if λ < 1/θ one can ensure that the expected number of
individuals at a fixed site is a bounded function of the time t (starting from a
bounded η with at least one individual per site). Indeed, if λ ∈ (1/θ,1/ρ) and η is
as above, then there are examples where the expected number of individuals at a
fixed site diverges as t goes to infinity (e.g., if P is the simple random walk on a
homogeneous tree: see Example 5.1).

We give here a brief outline of the paper. In Section 2 we give the definitions
needed in the sequel and we introduce the generator of the process. The construc-
tion of the RBRW is carried out in Section 3. Since the state space of this process
is not locally compact, the classical approach of Hille–Yosida cannot be used: we
follow the ideas of [10]. Some of the results we prove are obtained via a coupling
argument (see Proposition 3.5) with particular BRWs (with immortal particles).
Furthermore, we give explicit estimates of some moments of these processes (see
Lemma 3.3). In Section 4 we prove our main results: Proposition 1.1 and Theo-
rem 1.2 (see Proposition 4.1 and Theorem 4.3, resp.). Section 5 is devoted to final
remarks, examples and open questions.

2. Preliminaries.

2.1. Graph geometry and random walks. Let X be a connected, nonoriented
graph, with bounded geometry (i.e., the number of neighbors of a vertex x, called
degree of x, is uniformly bounded on X); denote by D the maximum degree of
vertices on X. Let P = (p(x, y))x,y∈X be a stochastic matrix (although one can
apply easily our methods to a substochastic P ) such that p(x, y) > 0 if and only
if x and y are neighbors (we write x ∼ y in this case). For any � ⊂ X, let �◦ :=
{x ∈ � :∀y ∼ x, y ∈ �} be the interior of � and let

p�(x, y) :=
{

p(x, y), if x, y ∈ �,
0, otherwise.
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The two parameters ρ and θ , associated to P , play a crucial role in distinguish-
ing between different behaviors of the RBRW (see Proposition 1.1). Recall that

in Section 1 we defined ρ := lim supn→∞ n

√
p(n)(x, y): this is usually called the

convergence parameter and it is independent of x, y ∈ X (see [14]).
Consider the space of (infinite) matrices endowed with the norm ‖A‖ :=

supx

∑
y |axy |. As usual, each matrix with a finite norm can be identified with a lin-

ear continuous operator from l∞(X) into itself. Let θ(A) be the spectral radius of
the operator A; note that θ(A) = limn→∞ ‖An‖1/n (see, e.g., [13], Theorem 18.9).
The parameter θ , defined in Section 1, satisfies θ = θ(P T ). The estimate of θ is
easy in some cases:

(a) if there exists ν :X �→ [0,+∞), ν 
≡ 0, such that ν(x) ≤ Cν(y) for any
x, y ∈ X (and some constant C > 0) and ν(x) ≥ ∑

y ν(y)p(y, x) [resp. ν(x) ≤∑
y ν(y)p(y, x)], then θ ≥ 1 (resp. θ ≤ 1);

(b) if limn→+∞(#{y : |y| ≤ n})1/n = 1, then θ ≤ 1.

Note that in general ρ ≤ 1 and ρ ≤ θ . Using the above result (a), given a
graph X, if P is strongly reversible (see [6]), then the amenability of X implies
ρ = θ = 1, while nonamenability implies ρ < θ = 1. Roughly speaking, amenable
graphs are graphs where the boundary of a finite set may be arbitrarily small if
compared to the size of the set itself (see [16], page 112). Hence, ρ = θ = 1
in the case of the simple random walk on Z

d , while there are examples where
θ 
= 1 and θ > ρ, for instance, on homogeneous trees Tn+1 [see Example 5.1 with
p 
= 1/(n + 1)].

2.2. Configuration space. Following [10], fix a reference vertex x0 ∈ X and
denote by |x| the graph distance between x and x0. Define a strictly positive func-
tion α :X → R

+ by α(x) = M−|x|, where M > (D − 1)2. By this choice of M , for
any z ≥ 1/2,

∑
x α(x)z < +∞ and∑

y

q(x, y)α(y) ≤ Mα(x)(2.1)

for any substochastic matrix Q. Given η :X → N, define ‖η‖ := ∑
x η(x)α(x).

The configuration space is � := {η ∈ N
X such that ‖η‖ < +∞}, while �� :=

{η : N� such that ‖η‖ < +∞}. Note that the finite configurations, that is, the con-
figurations η ∈ � such that

∑
x η(x) < +∞, are dense in � with this norm; more-

over, the Borel σ -algebra induced by the norm is the same as the one induced by
the product topology. We introduce the usual partial order on �, that is, ξ ≤ η if
ξ(x) ≤ η(x) for any x ∈ X. We denote by 0 the configuration identically equal to 0,
by 1 the configuration identically equal to 1 and by δx the configuration which is
equal to 0 at any site but x, where it equals 1. We say that a function f :� → R

is nondecreasing if ξ ≤ η implies f (ξ) ≤ f (η). Given µ,ν probability measures
on �, we say that ν stochastically dominates µ and we write µ ≤ ν if for any
nondecreasing function f we have µ(f ) ≤ ν(f ) [where µ(f ) = ∫

� f dµ].
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From (2.1) we derive a useful bound on the transition kernel of the continuous
time random walk associated with P and with jump rate λ > 0. Indeed, let

pλ
t (x, y) := e−λt

+∞∑
n=0

(λt)n

n! p(n)(x, y),

then the iteration of (2.1) gives∑
y

pλ
t (x, y)α(y) ≤ eλt (M−1)α(x).(2.2)

For � ⊂ X, we will also denote by

pλ
t,�(x, y) := e−λt

+∞∑
n=0

(λt)n

n! p
(n)
� (x, y).(2.3)

Clearly, pλ
t,�(x, y) ≤ pλ

t (x, y), hence, the bound in (2.2) holds for these “re-
stricted” kernels as well.

2.3. Dynamics. Denote by Lip(�) the set of the Lipschitz functions on �,
and given f ∈ Lip(�), let L(f ) be its Lipschitz constant. For any f :� → R

and x ∈ X, define (∂−
x f )(η) = 1[1,+∞)(η(x))[f (η − δx)− f (η)] and (∂+

x f )(η) =
f (η + δx) − f (η). Note that |(∂±

x f )(η)| ≤ L(f )α(x) for any f ∈ Lip(�), x ∈ X.
Fix a nonincreasing function c : N → R

+, a transition matrix P on X and define
L : Lip(�) → R

� by

(Lf )(η) := ∑
x

η(x)

[
(∂−

x f )(η) + ∑
y

c(η(y))p(x, y)(∂+
y f )(η)

]
.(2.4)

It easy to check that |(Lf )(η)| ≤ L(f )[(c(0)M + 1)‖η‖], hence, L is a well-
defined operator on Lip(�).

3. Construction of the process. The main result of this section concerns the
construction of a process having generator L given by (2.4). It is a standard fact
of the theory of countable state continuous time Markov chains that there exists
a unique Markov process {ηt }t≥0 with generator given by (2.4) starting from any
finite η ∈ �. The extension of this construction to more general configurations
requires more sophisticated techniques. Our efforts in this direction may be sum-
marized in the following proposition whose proof is the consequence of several
intermediate steps.

PROPOSITION 3.1. There exists a unique semigroup {St }t≥0 of operators,
St : Lip(�) → Lip(�) such that:

(i) (Stf )(η) = E
η[f (ηt )] for f ∈ Lip(�) and η finite.

(ii) L(Stf ) ≤ L(f ) exp(c(0)Mt) for f ∈ Lip(�).
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(iii) (Stf )(η) = f (η) + ∫ t
0 (LSuf )(η) du for f ∈ Lip(�) and η ∈ �.

(iv) Let µ be a probability measure on � such that µ[‖η‖] is finite. Then µ is
invariant for {St }t≥0 [i.e., for any t ≥ 0, µ[Stf ] = µ[f ] for any f ∈ Lip(�)] if
and only if µ[Lf ] = 0 for any f ∈ Lip(�).

Given Proposition 3.1, in order to define the process {ηt }t≥0 starting from any
η ∈ �, according to [10] (see discussion after Theorem 1.4), one shows that {St }t≥0
can be extended to any measurable function f on � which satisfies either f ≥ 0
or |f (η)| ≤ C(1 + ‖η‖) for some constant C. Thus, it identifies a unique Markov
process on � (the RBRW) which we still denote by {ηt }t≥0.

We start by constructing the process on a finite subset � ⊂ X. We need
an auxiliary process defined on �. Fix γ ≥ 0, c : N → R

+, k ∈ N and define
G� : Lip(�) → R

� by

(G�f )(η) : = ∑
x

[
γ1�(x)

(
η(x) − k

)+
(∂−

x f )(η)

(3.1)

+ η(x)
∑
y

p�(x, y)c(η(y))(∂+
y f )(η)

]
.

It is obvious that G� generates a Markov process {ηt }t≥0 defined on ��. Clearly,
this process may be thought as a process on � where the particles outside � are
“frozen” in the initial state. Furthermore, if this process starts from η0 ∈ � such
that η0 ≥ k1, then obviously ηt ≥ k1 for any t ≥ 0; in this case we say that there
are k immortal particles per site.

3.1. BRW with immortal particles. The estimate of the first and the second
moments of the process generated by (3.1) will follow from a coupling with the
BRW with k immortal particles, that is, the process where c(·) ≡ λ. Hence, we
take a technical detour and study this particular process [or, equivalently, the BRW
with constant immigration rate; see (3.4)].

Although in this section we are treating only finite sets, the following lemma is
needed also in the countable case (see Remark 3.11).

LEMMA 3.2. Let Q be a (possibly infinite) matrix with q(x, y) ∈ [0,1] and fi-
nite norm and define qt (x, y) := e−λt ∑∞

n=0(λt)nq(n)(x, y)/n!. Let f : [0,+∞) →
l∞(X) be such that limt→∞ f (t) = v. Given the system of linear differential equa-
tions,  u̇(t, x) = λ

(∑
y

q(x, y)u(t, y) − u(t, x)

)
+ βu(t, x) + f (t, x) ∀x,

u(0, ·) = ϕ(·),
(3.2)

where ϕ ∈ l∞(X) and β > λ(1 + θ(Q), the corresponding solution satisfies
limt→∞ u(t, x) = ((λ − β)I − λQ)−1v for any x ∈ X and ϕ ∈ l∞(X).
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PROOF. The proof is standard and we just sketch it. One can solve the system
by considering the (stronger) Cauchy problem in l∞(X){

u̇(t) = −Au(t) + f (t),

u(0) = ϕ,

where A = (λ − β)I − λQ. By our hypotheses we have that Re(σ (A)) ≥
ε > 0, hence, ‖e−At‖ t→∞→ 0, ‖ ∫ t

0 e−As ds‖ ≤ ∫ +∞
0 ‖e−As‖ds < +∞ for any

t ∈ [0,+∞] and A is invertible. The solution is given by the well-known formula
u(t) = e−Atϕ + ∫ t

0 e−A(t−s)f (s) ds. The first term tends to zero, while the sec-
ond one can be written as

∫ t0
0 e−A(t−s)f (s) ds + ∫ t

t0
e−A(t−s)f (s) ds and the claim

follows choosing t0 such that for t ≥ t0, ‖f (t) − v‖∞ is sufficiently small. �

LEMMA 3.3. Let � ⊂ X be finite. Fix γ ≥ 0 and k ∈ N. Consider G� defined
in (3.1) with c(·) ≡ λ > 0. Let {ηt }t≥0 be the process generated by G� starting
from η bounded, η ≥ k1. Moreover, if λ < γ/θ , then there exists two nonnegative
constants U1,�(k, λ, γ ) and U2,�(k, λ, γ ) such that, for any x ∈ �, we have that

lim
t→∞E

η[ηt (x)] ≤ U1,�(k, λ, γ ), lim
t→∞E

η[(ηt (x))2] ≤ U2,�(k, λ, γ ),(3.3)

where the limits are attained uniformly with respect to x.

PROOF. Define {ξt }t≥0 as ξt := ηt − k1. This process is a Markov process
(viz., it is the branching random walk with constant immigration rate λk) and its
generator is

(H�g)(ξ) := ∑
x∈�

[
γ ξ(x)(∂−

x g)(ξ)+λ
(
ξ(x)+k

)∑
y

p�(x, y)(∂+
y g)(ξ)

]
.(3.4)

Obviously for any η ∈ � such that η ≥ k1, we have

E
η[ηt (x)] = E

η−k1[ξt (x)] + k,
(3.5)

E
η[(ηt (x))2] = E

η−k1[(ξt (x))2] + 2kE
η−k1[ξt (x)] + k2.

Choose ξ ∈ � and let m(t, x) := E
ξ [ξt (x)], for any x ∈ �; by basic semigroup

properties we have that d
dt

m(t, x) = E
ξ [(H�πx)(ξt )] (where πx is the projection

on the x coordinate). By computing explicitly H�πx , we obtain that m satisfies the
system (3.2) with Q = P T , f (t, x) = kλ

∑
y p�(y, x) and β = λ − γ . The claim

follows from Lemma 3.2.
To prove the second moment assertion, consider C(t, x, y) := E

ξ [ξt (x)ξt (y)],
for any x, y ∈ �. Using the same arguments as before, we obtain that C is the
solution following system of linear differential equations:

d

dt
C(t, x, y) = −AC(t, x, y) + f (t, x, y) ∀x, y ∈ �,

C(0, x, y) = ξ(x)ξ(y),

(3.6)
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where

A = 2(γ I − λB),

B((x, y), (x1, y1)) = δy(y1)
p�(x1, x)

2
+ δx(x1)

p�(y1, y)

2
,

f (t, x, y) = λk

(
m(t, x)

∑
z

p�(z, y) + m(t, y)
∑
z

p�(z, x)

)

+ δx(y)λ

(
k

∑
z

p�(z, x) + ∑
z

p�(z, x)m(t, z)

)
+ δx(y)γm(t, x).

The system (3.6) is formally equivalent to the one in (3.2) with X × X in
the place of X. The results just obtained for m ensure that f satisfies the as-
sumptions in Lemma 3.2. Moreover, θ(B) ≤ θ , since b(n)((x, y), (x1, y1)) =
1
2n

∑n
k=0

(n
k

)
p(k)(x1, x)p(n−k)(y1, y) and the claim follows. �

REMARK 3.4. It is known that, given the equations (3.2) with x ∈ �, where
� is finite, an explicit expression of the solution, for any ϕ ∈ �, is

u(t, x) = eβt
∑
y

qt (x, y)ϕ(y) + ∑
y

∫ t

0
eβ(t−s)qt−s(x, y)f (s, y) ds.

This formula represents the solution also for infinite � under mild assumptions
on f : suppose, for instance, that f ≥ 0,

∑
x f (t, x)α(x) < +∞ for some t ≥ 0

and ∂tf (t, x) is bounded on any compact set, uniformly with respect to x ∈ �.
Moreover, if we consider two families {Q�}� and {f�}� which are nondecreasing
with respect to � and we denote by {u�}� the corresponding solutions, then we
have that u� ↑ uX as � ↑ X [hence, one may replace the upper bounds in (3.3)
with U1,X and U2,X which clearly are uniform with respect to �].

We note that the bound (3.3) can be obtained starting from any η ∈ � (not
necessarily bounded) by using similar computations, if λ < γ/‖P T ‖ ≤ γ /θ . It is
easy to show that ‖P T ‖ = 1, for instance, for any symmetric random walk.

3.2. The finite volume process. The following proposition shows how to con-
struct a monotone coupling of different processes generated by (3.1).

PROPOSITION 3.5. Fix N ∈ N and let �1 ⊂ · · · ⊂ �N ⊂ X be finite subsets.
Fix k1, . . . , kN ∈ N, γ1, . . . , γN ∈ [0,+∞) and let c1, . . . , cN : N → [0,+∞) be
nonincreasing functions. Then for any fixed (η0,1, . . . , η0,N ) ∈ �N such that η0,h ≥
kh1 for any h ∈ {1, . . . ,N}, there exists a Markov process {(ηt,1, . . . , ηt,N)}t≥0 on
�N such that, for any h ∈ {1, . . . ,N}, the semigroup associated with the process
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{ηt,h}t≥0 has generator G�h
. Furthermore, assume that kh ≤ kh+1, γh ≥ γh+1,

ch(kh+1 + n) ≤ ch+1(kh+1 + n) for any n ∈ N and η0,h ≤ η0,h+1 for any h ∈
{1, . . . ,N − 1}. Then ηt,1 ≤ · · · ≤ ηt,N for any t ≥ 0.

PROOF. It is enough to consider the processes on ��N
. Choose (η0,1, . . . ,

η0,N ) in (��N
)N such that η0,h ≥ kh1 for any h ∈ {1, . . . ,N} as the ini-

tial configurations. For any x ∈ �N , let A(x) := max{η0,1(x), . . . , η0,N (x)},
γ̄ := max{γ1, . . . , γN }, c̄ := max{c1(0), . . . , cN(0)}. Choose an independent fam-
ily of exponential clocks, two per site x ∈ �N : one of parameter γ̄ A(x) which
controls the deaths and one of parameter c̄A(x) which controls births. Define
(ηt,1, . . . , ηt,N) := (η0,1, . . . , η0,N ) for any t < τ , where τ is the time of the first
ring of the collection of clocks. Assume that the clock which rings first is at site x:

• If the clock is a death clock, then for any z 
= x put ητ,h(z) := ητ−,h(z), pick a
uniform U in the interval (0,1) and define ητ,h(x) := ητ−,h(x) − 1 for any h

such that U ≤ (γh(ητ−,h(x)−kh)
+)/γ̄A(x) and ητ,h(x) := ητ−,h(x) otherwise.

Finally, restart the procedure from (ητ,1, . . . , ητ,N).
• If the clock is a birth clock, then for any z 
∼ x put ητ,h(z) := ητ−,h(z). Choose

at random, accordingly to the transition matrix P , a site y among the neighbors
of x. Now pick a uniform V in (0,1) and define ητ,h(y) := ητ−,h(y)+ 1 for any
given h such that V is not larger than ητ−,h(x)

× p�h
(x, y)ch(ητ−,h(y))/(c̄A(x)p(x, y)) and ητ,h(y) = ητ−,h(y) otherwise.

Finally, restart the procedure from (ητ,1, . . . , ητ,N).

It is a simple exercise to check that this construction leads to the desired coupling.
�

In the remaining part of this section we prove some basic bounds on the semi-
group {St,�}t≥0 generated by G�. We need these bounds to extend the construc-
tion of the process to an infinite � ⊂ X. The next result shows that the semigroup
{St,�}t≥0 generated by G� maps Lip(�) into itself. The proof follows closely the
proof of Lemma 2.1 in [10].

LEMMA 3.6. Let � ⊂ X be finite and {St,�}t≥0 be the semigroup generated
by G�. Then for any f ∈ Lip(�),

L(St,�f ) ≤ L(f ) exp(c(0)Mt).

PROOF. Take ξ, ζ ∈ � (ξ, ζ ≥ k1) and consider the monotone coupling
{(η1

t , η
2
t , η

3
t , η

4
t )}t≥0 of Proposition 3.5 such that (η1

0, η
2
0, η

3
0, η

4
0) := (ξ ∧ ζ, ξ, ζ,

ξ ∨ ζ ). This means that η1
t ≤ η2

t , η
3
t ≤ η4

t for any t ≥ 0. Therefore,

|(St,�f )(ξ) − (St,�f )(ζ )| = |E[f (η2
t ) − f (η3

t )]|
≤ E[|f (η2

t ) − f (η3
t )|] ≤ L(f )E[‖η2

t − η3
t ‖].
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To bound this last term notice that by monotonicity

‖η2
t − η3

t ‖ ≤ ∑
x

α(x)
(
η4

t (x) − η1
t (x)

)
.

Furthermore, for any x ∈ �, we claim that
d

dt
E[η4

t (x) − η1
t (x)] ≤ c(0)

∑
y

p�(y, x)E[η4
t (y) − η1

t (y)],(3.7)

which implies, by (2.1), that
d

dt
E[‖η4

t − η1
t ‖] ≤ c(0)ME[‖η4

t − η1
t ‖].

This gives

E[‖η4
t − η1

t ‖] ≤ E[‖η4
0 − η1

0‖] exp(c(0)Mt)

and the proof is complete. To obtain (3.7), use the generator of the coupled process
or better notice (see the proof of Proposition 3.5) that the rate of the transition
η4

t (x) − η1
t (x) → η4

t (x) − η1
t (x) + 1 is

c(η4
t−(x))

∑
y

p�(y, x)
(
η4

t−(y) − η1
t−(y)

)
.

�

The following result is a simple consequence of Lemma 3.6. The proof is the
same as the one of Corollary 2.5 in [10], hence, we omit it.

COROLLARY 3.7. Let � ⊂ X be finite and {St,�}t≥0 be the semigroup gener-
ated by G�. For any f :� → R such that |f (η)| ≤ Cf ‖η‖ for all η ≥ k1 and for
some constant Cf > 0, we have that

|(St,�f )(η)| ≤ Cf ‖η‖ exp(c(0)Mt).

The next two results are the analogs of Lemma 2.6 and Lemma 2.7 in [10].

LEMMA 3.8. Let � ⊂ �′ ⊂ X be finite subsets. Fix γ ≥ 0 and k ∈ N. Let
G�,G�′ be defined by (3.1). Then for any f ∈ Lip(�), η ≥ k1,

|(G�′f )(η) − (G�f )(η)| ≤ L(f )
(
γ + c(0)M

)∑
x

1�′\�0(x)η(x)α(x).

PROOF. The proof can be obtained by direct computation. �

LEMMA 3.9. Let � ⊂ �′ ⊂ X be two finite subsets. Fix γ ≥ 0 and k ∈ N.
Consider the semigroups {St,�}t≥0 and {St,�′ }t≥0 associated with the generators
G�,G�′ defined by (3.1). Then for any f ∈ Lip(�) and η ≥ k1,

|(St,�′f )(η) − (St,�f )(η)|
≤ L(f )

(
γ + c(0)M

)
ec(0)Mt

∑
x,y

α(x)1�′\�0(x)η(y)

∫ t

0
p

c(0)
u,�′(y, x) du.
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PROOF. Note that

(St,�′f )(η) − (St,�f )(η) =
∫ t

0

(
Su,�′(G�′ − G�)St−u,�f

)
(η) du.

By Lemma 3.8,∣∣((G�′ − G�)St−u,�f
)
(η)

∣∣ ≤ L(St−u,�f )
(
γ + c(0)M

)∑
x

1�′\�0(x)η(x)α(x).

By Lemma 3.6,

L(St−u,�f ) ≤ L(f )ec(0)M(t−u).

Using this last estimate and the positivity of Su,�′ , we get∣∣(Su,�′(G�′ − G�)St−u,�f
)
(η)

∣∣
(3.8)

≤ L(f )ec(0)M(t−u)(γ + c(0)M
)∑

x

α(x)1�′\�0(x)Su,�′(πx)(η).

By Proposition 3.5, (Su,�′πx)(η) ≤ E
η

�′ [ηu(x)], where {ηt }t≥0 is the process gen-
erated by (3.1) with γ = 0, c(·) ≡ c(0) and k = 0. By Remark 3.4, we know that

E
η

�′ [ηu(x)] = ec(0)u
∑
y

p
c(0)
u,�′(y, x)η(y).

Plugging this bound in (3.8), we get∣∣(Su,�′(G�′ − G�)St−u,�f
)
(η)

∣∣
≤ L(f )ec(0)Mt (γ + c(0)M

)∑
x,y

α(x)1�′\�0(x)p
c(0)
u,�′(y, x)η(y),

which concludes the proof. �

3.3. Finite volume approximation. Following [10], we construct the process
on X as a limit of processes defined on � finite. For any n ∈ N, define �n :=
B(x0, n), that is, the ball of radius n and center x0.

PROPOSITION 3.10. Fix γ ≥ 0 and k ∈ N. For any n ∈ N, consider the
semigroups {St,�n}t≥0 generated by G�n defined in (3.1). For any fixed t ≥ 0,
f ∈ Lip(�) and η ∈ �, η ≥ k1, the sequence {St,�n :n ∈ N} is a Cauchy sequence.

PROOF. Assume that m ≤ n, then by Lemma 3.9,

|(St,�nf )(η) − (St,�mf )(η)|
≤ L(f )

(
γ + c(0)M

)
ec(0)Mt

∑
x,y

α(x)1�n\�0
m
(x)η(y)

∫ t

0
p

c(0)
u,�n

(y, x) du.
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We have to show that ∑
y

p
c(0)
u,�n

(y, x)η(y)

can be dominated uniformly in n ∈ N by a function φ(x,u) ∈ L1(X×[0, t]), where
the measure on X is α(·). The result follows by dominated convergence since
limm,n→+∞ 1�n\�0

m
(x) ≤ limm→+∞ 1

(�0
m)�(x) = 0. We claim that we can take

φ(x,u) = ∑
y η(y)p

c(0)
u (y, x), indeed, p

c(0)
u,�n

(y, x) ≤ p
c(0)
u (y, x) and by (2.2), we

have ∑
x

α(x)
∑
y

pc(0)
u (y, x)η(y) ≤ ec(0)(M−1)u

∑
y

η(y)α(y)

= ec(0)(M−1)u‖η‖ ∈ L1([0, t]). �

The proposition above allows us to define for any t ≥ 0, f ∈ Lip(�) and η ∈ �,
η ≥ k1:

(Stf )(η) := lim
n→+∞(St,�nf )(η).

REMARK 3.11. It easy to show that with this definition we can drop the hy-
pothesis that � is finite (take � ↑ X) in Proposition 3.5, Lemma 3.6, Corollary 3.7,
Lemma 3.8 and Lemma 3.9. The same can be done in Lemma 3.3, since one proves
that E

η[ηt (x)] = lim�↑X m(t, x) + k and E
η[ηt (x)ηt (y)] = lim�↑X C(t, x, y),

where the limit functions satisfy the corresponding differential systems. Note that,
in particular, the latter is not obvious, because η �→ η(x)η(y) /∈ Lip(�). Moreover,
the process generated by (2.4) is monotone as a consequence of Proposition 3.5.

PROPOSITION 3.12. For any t ≥ 0, f ∈ Lip(�) and η ∈ �, η ≥ k1, define

(Stf )(η) := lim
n→+∞(St,�nf )(η):

1. {St }t≥0 is a semigroup.
2. For all f ∈ Lip(�), η ∈ �,

(Stf )(η) = f (η) +
∫ t

0
(GSuf )(η) du.

PROOF. These properties can be proven exactly as in [10] (page 451 and
Lemma 2.12) by using Lemma 3.6, Corollary 3.7, Lemma 3.3, Lemma 3.8 and
Lemma 3.9 instead of Lemma 2.1, Corollary 2.5, Lemma 2.6 and Lemma 2.7,
respectively. �

Among the properties of the semigroup {St }t≥0 which can be proven, we state
the one which we need in the next section.
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PROPOSITION 3.13. Let µ be a probability measure on � such that µ[‖η‖]
is finite. Then µ is invariant for {St }t≥0 (i.e., for any t ≥ 0, µ[Stf ] = µ[f ] for any
f ∈ Lip(�)) if and only if µ[Gf ] = 0 for any f ∈ Lip(�).

PROOF. See the proof of Corollary 2.17 in [10]. �

PROOF OF PROPOSITION 3.1. It is easy to show that (i) holds. The claim (ii)
follows from Lemma 3.6 and Remark 3.11, while Propositions 3.12 and 3.13 imply
(iii) and (iv), respectively. �

4. Ecological equilibrium and invariant measure. In this section we study
the behavior of the RBRW constructed in Section 3. In particular, Proposition 1.1
and Theorem 1.2 are proven (see Proposition 4.1 and Theorem 4.3 below). The
main tool is the coupling between this monotone process and suitable contact and
BRW processes.

PROPOSITION 4.1. Let {ηt }t≥0 the RBRW generated by (2.4):

(i) If c(0) ≤ 1/ρ [resp. c(0) < 1/ρ], then limt→+∞ ηt (x) = 0 a.s. (resp.
limt→+∞ E

η[ηt (x)] = 0) for any finite η ∈ �, x ∈ X;
(ii) If c(0) > λCP, then limt→+∞ E

η[ηt (x)] > 0 for any η ∈ � \ {0}, x ∈ X and
P

η(lim supt→∞ ηt (x) > 0) > 0;
(iii) If c(+∞) > 1/ρ, then limt→+∞ E

η[ηt (x)] = +∞ for any η ∈ � \ {0};
(iv) If c(+∞) < 1/θ , then lim supt→+∞ E

η[ηt (x)] < +∞ uniformly for any
bounded η ∈ �, x ∈ X.

PROOF. Recall that Proposition 3.5 and Lemma 3.3 hold for � = X (see Re-
mark 3.11):

(i) By Proposition 3.5, we can couple the process with a branching random
walk {ζt }t≥0 starting from η with birth rate c(0) such that ηt ≤ ζt . The first part of
the claim follows by noting that ζt dies out almost surely (see [1], Theorem 3.1).
As for the second part, the assertion is a consequence of Lemma 3.3 and Remark
3.11 [since k = 0, one can choose U1,X(0, λ,1) = 0].

(ii) By Proposition 3.5, there exists a supercritical site-breeding CP {ζt }t≥0
starting from η ∧ 1 with birth rate c(0) > λCP and such that ζt ≤ ηt . Theorem 4.8
of Chapter VI in [8] yields to the conclusion.

(iii) By Proposition 3.5, we can couple {ηt }t≥0 with a branching random walk
{ζt }t≥0 starting from η with birth rate c(0) > 1 such that ζt ≤ ηt and the claim
follows.

(iv) In this case there exists k̄ ∈ N such that c(k̄) < 1/θ . By Proposition 3.5 and
Remark 3.11, there exists a process {ζt }t≥0 generated by (3.1) with k = k̄, γ = 1,
birth rate c(k̄), such that ζt ≥ ηt . By Lemma 3.3 and Remark 3.11, we have

lim sup
t→∞

E
η∨k1[ηt (x)] ≤ lim

t→∞E
η∨k1[ζt (x)] ≤ U1,X(k̄, c(k̄),1). �
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REMARK 4.2. The condition lim supt→+∞ E
η[ηt (x)] < +∞ implies that

P
η(limt→+∞ ηt (x) = +∞) = 0, but ηt (x), as a function of t , could be unbounded

almost surely.

The remaining part of this section is devoted to the proof of the following theo-
rem.

THEOREM 4.3. Let {St }t≥0 be the semigroup generated by (2.4) using Propo-
sition 3.1. Assume that c(0) > λCP and c(+∞) < 1/θ . Then there exists a nontriv-
ial probability measure µ on (�,B(�)) such that µ[Stf ] = µ[f ] for all t ≥ 0
and f ∈ Lip(�).

We need some preparatory results.

LEMMA 4.4. Assume that c : N → [0,+∞) is a nonincreasing function such
that c(0) > λCP, while c(+∞) < 1/θ . For any n ∈ N, define cn := c1[0,n−1] and
consider the generator

(Lnf )(η) := ∑
x

η(x)

[
(∂−

x f )(η) + ∑
y

cn(η(y))p(x, y)(∂+
y f )(η)

]
.

Then there exists µn probability measure on � such that:

(i) µnLn ≡ 0;
(ii) the sequence {µn : n ≥ 1} is nondecreasing with respect to the stochastic

ordering of measures;
(iii) denote by νλ the nontrivial invariant probability measure of the CP on X

with parameter λ := c(0) > λCP (see [8], page 265). Then νλ ≤ µn for any n ≥ 2;
(iv) the sequence {µn}n∈N is tight.

PROOF. Notice that Ln is of the form (2.4) so it generates a Markov process
{ηt,n}t≥0:

(i) The process {ηt,n}t≥0 is monotone because of Proposition 3.5 and Re-
mark 3.11. If the initial condition is n1, then by standard arguments (see [8], Chap-
ter III, Theorem 2.3), ηt,n ⇒ µn as t → +∞. Furthermore, µnLn ≡ 0.

(ii) For any n ≥ 2, by Proposition 3.5 and Remark 3.11, there exists a
monotone coupling between {ηt,n}t≥0, starting from n1, and {ηt,n+1}t≥0, starting
from (n + 1)1, such that ηt,n ≤ ηt,n+1 for any t ≥ 0. Let f :� → R be a nonde-
creasing function, then E

n1[f (ηt,n)] ≤ E
(n+1)1[f (ηt,n+1)] for any t ≥ 0. By taking

the limit, as t → +∞, we get µn(f ) ≤ µn+1(f ).
(iii) By Proposition 3.5 we can couple {ηt,2}t≥0, starting from 21, and a super-

critical CP {ξt }t≥0, starting from 1, with parameter λ = c(0) in such a way that
ξt ≤ ηt,2 for any t ≥ 0.
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(iv) Note that c(+∞) < 1/θ implies k̄ := inf{k ∈ N : c(k) < 1/θ} < +∞.
Take n ≥ k̄ and observe that by Proposition 3.5 and Remark 3.11 there exists a
monotone coupling between {ηt,n}t≥0, and the BRW {ζt }t≥0 generated by (3.1),
with k := k̄, γ = 1, and parameter c(k̄), both starting from n1. Since ηt,n ≤ ζt for
any t ≥ 0, then E

n1[ηt,n(0)] ≤ E
n1[ζt (0)]. By taking the limit as t → +∞ and

using Lemma 3.3 and Remark 3.11, we have that µn(η(x)) ≤ U1,X(k̄, c(k̄),1) for
any n ≥ k̄, x ∈ X. Hence, there exists a constant C := U1,X(k̄, c(k̄),1) such that,
for any r > 0 and n ≥ k̄, we have, by the Chebyshev inequality, µn(η ∈ � : η(x) >

r) ≤ C/r . Let us fix A > 0 and define r(x) := A/
√

α(x) for any x ∈ X. We have

µn

(
η ∈ � :η(x) ≤ r(x) for any x ∈ X

)
= 1 − µn

(
η ∈ � : there exists x ∈ X such that η(x) > r(x)

)
≥ 1 − ∑

x

µn

(
η ∈ � : η(x) > r(x)

)
≥ 1 − C

∑
x

1

r(x)
= 1 − C

A

∑
x

√
α(x).

By our assumptions,
∑

x

√
α(x) < +∞, whence, for any ε > 0, we can choose

A so that µn(η ∈ � :η(x) ≤ r(x) for any x ∈ X) ≥ 1 − ε for any n ≥ k̄. The
subset K := {η ∈ � :η(x) ≤ r(x) for any x ∈ X} of � is compact. In fact, K =∏

x[0, r(x)] since η ∈ ∏
x([0, r(x)] ∩ N) implies that∑

x

η(x)α(x) ≤ A
∑
x

√
α(x) < +∞,

that is, η ∈ �. �

Since the sequence {µn}n∈N is tight and monotone and since the set of con-
tinuous, monotone functions separates the set of probability measures, then the
sequence converges weakly to a probability measure on �, say, µ.

Moreover, µ inherits all the symmetries of X and P : if T is a bijection of X

onto itself such that x ∼ y if and only if T x ∼ Ty and p(T x,T y) = p(x, y), then
µ(T −1(A)) = µ(A) for all measurable set of configurations A. In particular, if P

is the simple random walk on Z
d or on the homogeneous tree of degree n, then µ

is translation invariant.
By the previous lemma, µn ≤ µ for any n ∈ N. Furthermore, 0 < νλ(η(x)) ≤

µ(η(x)) ≤ U1,X(k̄, c(k̄),1) (by the same bound on µn), hence, µ is not δ0 and
µ[‖η‖] < +∞. We prove that µ is invariant by showing that µ[Lf ] = 0 for any
f ∈ Lip(�) (see Proposition 3.13). In order to see this, we need a preparatory
lemma, indeed, in the proof of Proposition 4.6 we need that µn(Lf ) → µ(Lf )

as n → +∞, but this does not follow directly from µn ⇒ µ because Lf is un-
bounded.
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LEMMA 4.5. Let {µn}n∈N be a nondecreasing sequence of probability mea-
sures on � and assume that µn ⇒ µ as n → +∞ and µ[‖η‖] < +∞. For any
m ∈ N, η ∈ � and g :� → R, define the configuration η̃m(·) := 1B(x0,m)(·)η(·)
and g̃m(η) := g(η̃m). Assume that g :� → R satisfies the following:

(1) there exists C > 0 such that |g(η)| ≤ C(‖η‖ + 1) for any η ∈ �;
(2) µn[|g − g̃m|] → 0 as m → +∞ uniformly in n ∈ N.

Then µn(g) → µ(g) as n → +∞.

PROOF. We have that

|µn[g] − µ[g]| ≤ |µn[g − g̃m]| + |µn[g̃m] − µ[g̃m]| + |µ[g̃m − g]|.
By hypothesis (2) and the dominated convergence theorem, the first and last term
on the right-hand side of the above inequality may be made small uniformly in n by
taking m sufficiently large. Fix m ∈ N such that these terms are smaller than ε > 0
for any n ∈ N. For the middle term, define gm,k(η) := gm(η)1(−∞,k](|gm(η)|),
k ∈ N and write

|µn[g̃m] − µ[g̃m]|
(4.1)

≤ |µn[g̃m − g̃m,k]| + |µn[g̃m,k] − µ[g̃m,k]| + |µ[g̃m,k − g̃m]|.
Note that by hypothesis (1) and elementary bounds,

|g̃m(η) − g̃m,k(η)| = |g̃m(η)|1(k,+∞)(|g̃m(η)|)
≤ C(‖η‖ + 1)1(k/C−1,+∞)(‖η‖) := vk(η).

By monotonicity, the first and the last term on the right-hand side of (4.1) can be
bounded above by µ[vk]. Furthermore, limk→+∞ vk = 0 and vk(η) ≤ C(‖η‖ + 1),
so, by dominated convergence, the first and the last term on the right-hand side
of (4.1) can be made smaller than ε by taking k large. Finally, fix k ∈ N large
enough, and observe that the middle term on the right-hand side of (4.1) goes to 0
as n → +∞ by weak convergence. �

PROPOSITION 4.6. Let µ be the weak limit of the sequence {µn}n∈N defined
in Lemma 4.4, then µ[Lf ] = 0 for any f ∈ Lip(�).

PROOF. We start splitting

|µ[Lf ]| ≤ |µ[Lf ] − µn[Lf ]| + µn[|Lf − Lnf |].(4.2)

Roughly speaking, the first one of these two terms goes to 0 by weak convergence,
while the second one goes to 0 since Lnf → Lf .
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By Lemma 4.5, |µ[Lf ] − µn[Lf ]| → 0 if we can show that condition (2) is
satisfied by g := Lf [condition (1) is easily verified]. Observe that

|(Lf )(η) − (Lf )(η̃m)|

≤ ∑
x

1B(x0,m)(x)η(x)

[
|(∂−

x f )(η) − (∂−
x f )(η̃m)|

(4.3)

+ c(0)
∑
y

p(x, y)|(∂+
y f )(η) − (∂+

y f )(η̃m)|
]

+ ∑
x

1
B(x0,m)�(x)η(x)

[
|(∂−

x f )(η)| + c(0)
∑
y

p(x, y)|(∂+
y f )(η)|

]
.

It easy to show that L(∂±
z f ) ≤ 2L(f ) for any f ∈ Lip(�), x ∈ X. Thus, the first

of the two sums on the right-hand side of (4.3) is dominated by

2L(f )
(
1 + c(0)

)‖η − η̃m‖∑
x

1B(x0,m)(x)η(x).

Moreover,

‖η − η̃m‖∑
x

1B(x0,m)(x)η(x) = ∑
x,y

α(y)1B(x0,m)(x)1
B(x0,m)�(y)η(x)η(y).

This implies that the µn mean of the first term on the right-hand side of (4.3) is
smaller or equal to

2L(f )
(
1 + c(0)

)∑
x,y

1B(x0,m)(x)1
B(x0,m)�(y)α(y)µn[η(x)η(y)].

This term goes to 0 uniformly in n ∈ N since µn[η(x)η(y)] ≤ µ[η(x)η(y)] ≤ C

by Remark 3.11 and Lemma 3.3 while, by our choice of M > (D − 1)2,∑
x,y

1B(x0,m)(x)1
B(x0,m)�(y)α(y)

m→∞−→ 0.

The second term on the right-hand side of (4.3) can be dominated by

L(f )
(
1 + c(0)M

)∑
x

1
B(x0,m)�(x)η(x)α(x),

hence, its µn mean converges uniformly in n to 0, since it is not larger than

U1,X(k̄, c(k̄), θ)
∑
x

1
B(x0,m)�(x)α(x)

m→∞−→ 0

(again use Lemma 3.3).
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We are left with the proof that the second term on the right-hand side of (4.2)
goes to 0 as n → +∞. Observe that since µn is concentrated on {η :η ≤ n1},

µn[|Lf − Lnf |] = c(n)
∑
x,y

p(x, y)µn

[
η(x)1{n}(η(y))|∂+

y f (η)|]
≤ c(0)L(f )

∑
x,y

p(x, y)α(y)µn

[
η(x)1[n,+∞)(η(y))

]
.

By the Schwarz and Chebyshev inequalities, Lemma 3.3 and Remark 3.11, we
have that

µn

[
η(x)1[n,+∞)(η(y))

] ≤
√

µn[η(x)2]µn

(
η(y) ≥ n

)
≤

√
µ[η(x)2]µ(

η(y) ≥ n
) ≤ C√

n
→ 0,

where C does not depend on x and y. �

PROOF OF THEOREM 4.3. It follows from Lemma 4.4, Lemma 4.5 and
Proposition 4.6. �

5. Final remarks and examples. In this paper we consider mainly local sur-
vival (i.e., persistence of the population in a fixed site). We already observed that,
for general P (e.g., for the simple random walk on a general graph), a weaker type
of survival (the weak phase) is possible for both the CP and the BRW. One can as-
sociate to this global phase two critical parameters (which coincide with λCP and
λBRW, for instance, on Z

d ). Clearly this phenomenon could be observed also in the
evolution of a RBRW.

Proposition 4.1 does not describe the behavior of all possible RBRW: in partic-
ular, it is not clear what happens if 1/ρ < c(0) ≤ λCP or if c(+∞) ∈ (1/θ,1/ρ).
As for this last question, one would ask whether this interval may be nonempty.
We already noticed that ρ = θ on amenable graphs with a strongly reversible ran-
dom walk (such as the simple random walk on Z

d ), nevertheless, there are ex-
amples of graphs (see Example 5.1) where ρ 
= θ and for any λ ∈ (1/θ,1/ρ),
the BRW starting from a finite configuration vanishes locally with probability 1,
while starting from a bounded configuration greater than 1, the expected number
of individuals at a fixed site diverges. Roughly speaking, this is possible on graphs
where the contribution of far distant individuals is not negligible; indeed, if P is
symmetric, this behavior is equivalent to the existence of a weak phase for the
BRW. One may conjecture that the critical parameter of this phenomenon may

be 1/ lim supn→∞ n

√∑
x p(n)(x, y) (which does not depend on y). Finally, another

open question is the extremality of the invariant measure µ.

EXAMPLE 5.1. Let us consider the homogeneous tree Tn+1 where the degree
of each vertex is n+1 and choose n ≥ 2. Fix a reference vertex o and p ∈ [0,1/n].
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Given two neighbors x and y, we define p(x, y) as p if |x| + 1 = |y| ≥ 2 (recall
that |x| is the distance from x to o), as 1/(n + 1) if y ∼ x = o and as 1 − np

otherwise. By using standard generating function techniques and the fact that

‖P T ‖ ≥ θ ≥ lim supn→∞ n

√∑
y p(n)(y, x) ≥ ρ (for all x), it is easy to show that

Range of p ρ θ

[0,1/2n] 1 1 < n − (n2 − 1)p ≤ θ ≤ (n + 1)(1 − np)

(1/2n,1/(n + 1)) 2
√

np(1 − np) 1 < n − (n2 − 1)p ≤ θ ≤ (n + 1)(1 − np)

1/(n + 1) 2
√

n/(n + 1) θ = 1
[1/(n + 1),1/n] 2

√
np(1 − np) θ = n − (n2 − 1)p < 1

Note that ρ < 1 for all p > 1/2n and that ρ < θ , for instance, if p = 1/(n + 1),
that is, the simple random walk. In this case θ = 1; by using the explicit solu-
tion given in Remark 3.4 (with ϕ ≡ 1), and noting that, by translation invariance,∑

x p(n)(x, y) = ‖(P T )n‖ ≥ θn = 1, we have that limt→∞ E
ϕ[ηt (x)] = +∞ if

λ > 1. Moreover, considering the BRW with at least one immortal particle per
site, if λ > 1, then the expected number of individuals on a fixed site diverges as t

goes to infinity.
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