In continuation of èrevious papers, we analyze the properties of spectral minimal partitions and focus in this paper our analysis on the case of the sphere. We prove that a minimal 3-partition for the sphere S^2 is up to rotation the so called Y-partition. This question is connected to a celebrated conjecture of Bishop in harmonic analysis

Helffer, B., Hoffmann Ostenhof, T., Terracini, S. (2010). On spectral minimal partitions: the case of the sphere. In A. Laptev (a cura di), Around the Research of Vladimir Maz'ya III, Analysis and Applications (pp. 153-178). New York : Springer [10.1007/978-1-4419-1345-6_6].

On spectral minimal partitions: the case of the sphere

TERRACINI, SUSANNA
2010

Abstract

In continuation of èrevious papers, we analyze the properties of spectral minimal partitions and focus in this paper our analysis on the case of the sphere. We prove that a minimal 3-partition for the sphere S^2 is up to rotation the so called Y-partition. This question is connected to a celebrated conjecture of Bishop in harmonic analysis
Capitolo o saggio
Spectral Theory, optimal partitions
English
Around the Research of Vladimir Maz'ya III, Analysis and Applications
Laptev, A
2010
978-1-4419-1344-9
13
Springer
153
178
Helffer, B., Hoffmann Ostenhof, T., Terracini, S. (2010). On spectral minimal partitions: the case of the sphere. In A. Laptev (a cura di), Around the Research of Vladimir Maz'ya III, Analysis and Applications (pp. 153-178). New York : Springer [10.1007/978-1-4419-1345-6_6].
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/10259
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 39
Social impact