For the reaction-diffusion system of three competing species: -Delta u(i) = -mu mu(i) Sigma(j not equal i) u(j), i = 1, 2, 3, we prove uniqueness of the limiting configuration as mu --> infinity on a planar domain Omega, with appropriate boundary conditions. Moreover we prove that the limiting configuration minimizes the energy associated to the system E(U) = Sigma(3)(i=1) integral(Omega) \del u(i)(x)\(2) dx among all segregated states (u(i) . u(j) = 0 a. e.) with the same boundary conditions

Conti, M., Terracini, S., Verzini, G. (2006). Uniqueness and least energy property for solutions to strongly competing systems. INTERFACES AND FREE BOUNDARIES, 8(4), 437-446 [10.4171/IFB/150].

Uniqueness and least energy property for solutions to strongly competing systems

Terracini, S;
2006

Abstract

For the reaction-diffusion system of three competing species: -Delta u(i) = -mu mu(i) Sigma(j not equal i) u(j), i = 1, 2, 3, we prove uniqueness of the limiting configuration as mu --> infinity on a planar domain Omega, with appropriate boundary conditions. Moreover we prove that the limiting configuration minimizes the energy associated to the system E(U) = Sigma(3)(i=1) integral(Omega) \del u(i)(x)\(2) dx among all segregated states (u(i) . u(j) = 0 a. e.) with the same boundary conditions
Articolo in rivista - Articolo scientifico
Reaction diffusion, strong competition, spatial segregation
English
2006
8
4
437
446
open
Conti, M., Terracini, S., Verzini, G. (2006). Uniqueness and least energy property for solutions to strongly competing systems. INTERFACES AND FREE BOUNDARIES, 8(4), 437-446 [10.4171/IFB/150].
File in questo prodotto:
File Dimensione Formato  
Uniqueness_and_least_energy.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 217.81 kB
Formato Adobe PDF
217.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/10087
Citazioni
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
Social impact