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Abstract

For the reaction–diffusion system of three competing species:

−∆ui = −κui

X
j 6=i

uj , i = 1, 2, 3,

we prove uniqueness of the limiting configuration as κ → ∞ on a planar domain Ω, with
appropriate boundary conditions. Moreover we prove that the limiting configuration minimizes
the energy associated to the system

E(U) =

3X
i=1

Z
Ω

|∇ui(x)|2 dx

among all segregated states (ui · uj = 0 a.e.) with the same boundary conditions.

1 Introduction

Spatial segregation may occur in population dynamics when two or more species interact in a highly
competitive way. A wide literature is devoted to this topic, mainly for the case of competition
models of Lotka–Volterra type (see e.g. [1, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]). As a prototype for
the study of this phenomenon, in [4] we consider the competition–diffusion system of k differential
equations:

−∆ui = −κui
∑
j 6=i

uj , ui > 0 in Ω, ui = ϕi on ∂Ω, i = 1, . . . , k. (1)

∗Work partially supported by MIUR, Project “Metodi Variazionali ed Equazioni Differenziali Non Lineari”
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Here Ω ⊂ RN is a bounded regular domain, and (ϕ1, . . . , ϕk) is a given boundary datum (regular,
non negative, and satisfying ϕi · ϕj ≡ 0 for i 6= j). This system describes the stationary states
of the evolution of k species diffusing and competing for resources. The internal dynamics of
the populations and the diffusion coefficients are trivialized (although a wide class of internal
dynamics and diffusion coefficients could be considered, without providing substantial changes to
the qualitative behaviour of the model; see [2, 3, 6]), while the attention is pointed on the coefficient
κ, the rate of mutual competition. As a matter of fact, it can be shown that the large interaction
induces the spatial segregation of the species in the limit configuration, as κ →∞. Precisely, the
following result has been proved by the authors in [4]:

Theorem 1.1 The system (1) admits (at least) a solution (u1,κ, . . . , un,κ) ∈ (H1(Ω))k for every
κ > 0. Moreover there exists (ū1, . . . , ūk) ∈ (H1(Ω))k such that ūi · ūj = 0 for i 6= j and, up to
subsequences,

ui,κ → ūi in H1, for every i.

Not only the limiting configuration exhibits segregation, but also the differential structure of the
model passes to the limit in the form of a system of distributional inequalities. We collect these
properties introducing the functional class

S =

U = (u1, . . . , uk) ∈ (H1(Ω))k :

ui ≥ 0, ui · uj = 0 if i 6= j, in Ω
ui = ϕi on ∂Ω

−∆ui ≤ 0, −∆
(
ui −

∑
j 6=i uj

)
≥ 0

 .

In fact, we have
(ū1, . . . , ūk) ∈ S.

Thus the study of S provides the understanding of the segregated states induced by strong compe-
tition. In this direction, a number of regularity properties, both of the densities and of the mutual
interfaces, were obtained by the authors in [2, 3, 4, 5, 6].

On the other hand, in [6] we studied the minimal energy configurations in the class of all the
possible segregated states. Precisely, let us define the energy of a k–tuple of densities as

E(U) =
k∑
i=1

∫
Ω

|∇ui(x)|2 dx.

Then in [6] we proved the following:

Theorem 1.2 The problem

min
{
E(U) : ui ∈ H1(Ω), ui|∂Ω = ϕi, ui ≥ 0, ui · uj = 0 if i 6= j

}
. (2)

admits a solution. In addition

(a) the minimum is unique;

(b) the minimum belongs to S;

(c) the minimum depends H1–continuously from the boundary data, endowed with the H1/2

norm.

In particular, this result shows that the unique minimal energy configuration shares with the
limiting states of system (1) the common property of belonging to S. In the case of two populations,
we can say much more, indeed we know the explicit solution of both the problems. Setting Φ the
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harmonic extension of ϕ1 − ϕ2 on Ω, it is easy to see that the pair (Φ+,Φ−) achieves (2), while
in [4] we proved that it is the limit configuration of any sequence of pairs (u1,κ, u2,κ) as κ → ∞.
As a consequence, when k = 2, the class S consists in exactly one element, the minimal one. One
may wonder if this result can be extended to the case of three or more densities, case in which no
explicit solution is provided. Even without uniqueness,

Problem: is the minimal energy configuration the limiting state for the corresponding competitive
system?

When k ≥ 3, the answer is not obvious: it is worthwhile noticing that while problem (2) has
an evident variational structure, the reaction–diffusion system (1) is not variational at all (the
nonlinear part is not of gradient–type). Nevertheless, the present paper provides a partial positive
answer to this question: indeed we prove that, for 3 populations in the plane, the only element of
S is the minimizer of the energy. The main result we give is:

Theorem 1.3 Let k = 3, and Ω be a simply connected domain in R2. Then, for every admissible
datum (ϕ1, ϕ2, ϕ3), S consists in exactly one element.

This theorem, together with the results contained in [4, 6], immediately provides:

Theorem 1.4 Let Ω be a simply connected domain in R2, (u1,κ, u2,κ, u3,κ) be any solution of (1)
and (ū1, ū2, ū3) be the minimizer of (2). Then, for every α ∈ (0, 1),

the whole sequence ui,κ tends to ūi in H1 ∩ C0,α as κ→∞.

As we already observed, this is a remarkable fact, since it shows a deep connection between the
variational problem (2) and the non variational system (1).

2 Basic facts and notation

Due to the conformal invariance the problem, with no loss of generality we take

Ω = B = {x ∈ R2 : |x| < 1}.

Throughout the paper we will assume that:

• i, j, h denote integers between 1 and 3.

• (ϕ1, ϕ2, ϕ3) ∈ (W 1,∞(∂B))3 (an admissible boundary datum) is such that ϕi ≥ 0, for every
i, and ϕi · ϕj = 0 on ∂B, for i 6= j. The sets {ϕi > 0} are open connected arcs, and the
function

∑
ϕi vanishes in exactly 3 points of ∂B (the endpoints of the supports).

With the above notation, we define the class S of the segregated densities as

S =

U = (u1, u2, u3) ∈ (H1(B))3 :
ui ≥ 0, ui · uj = 0 if i 6= j, in B
ui = ϕi on ∂B
−∆ui ≤ 0, −∆ûi ≥ 0

 , (3)

where the hat operator is defined on the generic component of a triple as

ûi = ui −
∑
j 6=i

uj . (4)
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In the following, with some abuse of notation, U will denote both the generic triple (u1, u2, u3) in
S and the function

∑
ui in H1(B).

For any U ∈ S we define the sets (the “supports”)

ωi = {x ∈ B : ui(x) > 0}.

The multiplicity of a point x ∈ B (with respect to U) is

m(x) = ] {i : measure (ωi ∩B(x, r)) > 0 ∀ r > 0} .

The interfaces between two densities are defined as

Γij = ∂ωi ∩ ∂ωj ∩ {x ∈ B : m(x) = 2},

in such a way that ωi ∪ ωj ∪ Γij = B \ ωh. The supports ωi and ωj are said to be adjacent if Γij
is not empty.

Below we list the principal properties of the elements of S. We refer to [3, 6] for their proof, and
for further details.

Theorem 2.1 Let U ∈ S.

(a) U ∈W 1,∞(B). As a consequence, every ωh is open and x ∈ ωh implies m(x) = 1.

(b) ui is harmonic in ωi, ui − uj is harmonic on B \ ωh (with h 6= i, j). In particular

lim
y→x
y∈ωi

∇ui(y) = − lim
y→x
y∈ωj

∇uj(y) 6= 0.

(c) For every x ∈ B we have 1 ≤ m(x) ≤ 3, and m(x) = 3 for a finite number of points.

(d) Each Γij is (either empty or) a connected arc, locally C1, with endpoints either on ∂B or
points with multiplicity 3.

(e) If m(x0) = 3, then |∇U(x)| → 0 as x → x0. More precisely, we have the following asymptotic
estimate:

U(r, ϑ) = Cr3/2
∣∣∣∣cos

(
3
2
ϑ+ ϑ0

)∣∣∣∣+ o(r3/2)

(here (r, ϑ) denotes a system of polar coordinates around x0).

Remark 2.1 Every ωi is (pathwise) connected. Indeed, let ωi = α ∪ β, with α and β disjoint,
open, and non empty. Recall that ui is continuous on B, hence it vanishes (continuously) on
∂ωi \ {ϕi > 0}. Since {ϕi > 0} is connected, it can not intersect both ∂α and ∂β (recall that ui is
strictly positive on this set). We infer that ui vanishes, for instance, on ∂β. But ui ∈ C(β), and it
is harmonic on β. The classical maximum principle implies ui ≡ 0 in β, a contradiction.

We recall that, by Theorem 1.2, S possesses at least one element. In the next section we prove
that it is unique.

3 Uniqueness results

To start with, we prove a topological result, stating that every triple in S has exactly one triple
point.
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Lemma 3.1 For every U ∈ S there exists exactly one point aU ∈ B such that m(aU ) = 3.

Proof: this is an easy consequence of the fact that, if m(a) = 3, then any neighborhood of a
contains points of every ωi, and hence every non empty Γij satisfies Γij 3 a. But every Γij is
connected and starts from ∂B. �

3.1 Uniqueness when the triple point is on the boundary

The simplest situation is when aU belongs to ∂B. In this case, one Γij is empty, and ûh (for
h 6= i, j) is harmonic on B.

Proposition 3.1 Let U, V ∈ S with aU ∈ ∂B. Then V ≡ U .

Proof: the assumption implies that aU is the common endpoint of the supports of two data, say
ϕ1 and ϕ3, and, as a consequence, that Γ13 is empty. Now, û2 is C(B) and, by Theorem 2.1,(b),
it is harmonic both on B \ ω3 and on B \ ω1. Being ω1 ∩ ω3 = aU we deduce that û2 is harmonic
on B. We are going to prove that aV ≡ aU . This will conclude the proof, indeed it will imply that
also v̂2 is harmonic, with the same boundary data, and thus û2 ≡ v̂2; but they have exactly three
nodal regions, therefore they correspond to the same triple in S.

Assume by contradiction that aV 6= aU . Then aU is a point of multiplicity 2 for V , belonging to
the common boundary of {v1 > 0} and {v3 > 0}. As a consequence, we can find a neighborhood
N of aU such that v2 vanishes on N . On the other hand, by definition of multiplicity, {u2 > 0}
intersects N . We infer the existence of x̄ ∈ N such that u2(x̄) > 0 and v1(x̄) + v3(x̄) > 0. Now,
we have {

−∆v̂2 ≥ 0 in B
v̂2 = ϕ̂2 on ∂B and

{
−∆û2 = 0 in B
û2 = ϕ̂2 on ∂B.

It follows that v̂2 − û2 is superharmonic on B and (continuously) zero on ∂B, and then it is non
negative in B. But

(v̂2 − û2)(x̄) = −v1(x̄)− v3(x̄)− u2(x̄) < 0,

a contradiction. �

It remains to prove the uniqueness of the element when its triple point is in the interior of B. To
this aim we are not able to proceed directly as in the previous arguments. We will start providing
a sort of local uniqueness.

3.2 Interior triple point: local uniqueness

Let U ∈ S be given, with trace (ϕ1, ϕ2, ϕ3) and triple point a = aU . We want to provide a local
dependence between the trace and the triple point. The key point is that, if we know the triple
point, we can construct an harmonic function strictly related to U : roughly speaking, the idea is
to move the triple point of U to the origin via a Moebius transformation, and then to double the
angle in order to obtain an even number of nodal region (compatible with an alternate sign rule).
We introduce the transformation (using the complex notation: the reader will easily distinguish
the index i and the imaginary unit ı, that appears, by the way, only at exponent)

Ta : B −→ B, Ta(z) =
z + a
āz + 1

.

It is well known that Ta is a conformal map, such that Ta(∂B) = ∂B and Ta(0) = a. Also the map
z → z2 is conformal. We obtain that, if r = |z| and ϑ = arg z, the map Ta(z2) given in coordinates
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by

z = (r, ϑ) → (r2, 2ϑ) →
(
< r2e2ıϑ + a

ār2e2ıϑ + 1
,= r2e2ıϑ + a

ār2e2ıϑ + 1

)
= (x1, x2) = x (5)

is a conformal mapping. For every ωi, the set {z : z2 ∈ ωi} is made up of two open connected
components, symmetric with respect to 0. We want to define a new harmonic function, having
opposite sign on the two components, for every i. We set1

w(z) = σ(z)ui(Ta(z2)) if z ∈ B, Ta(z2) ∈ ωi

=
3∑
i=1

σ(z)ui(Ta(z2)) if z ∈ B
(6)

where σ is ±1 in such a way that w has alternate sign on the adjacent nodal regions. Then w has
6 nodal regions, it is of class C1 (by Theorem 2.1(b) and (e))) and

w(−z) = −w(z).

Theorem 2.1 also implies that w is harmonic. We obtain that{
∆w = 0 in B
w = γa on ∂B (7)

where

γa(z) =
3∑
i=1

σ(ϑ)ϕi

(
e2ıϑ + a
āe2ıϑ + 1

)
(8)

Clearly, also γa(−z) = −γa(z). Observe that, given (ϕ1, ϕ2, ϕ3) and a, (7) defines an unique w.

With standard calculation we obtain

arg
(
e2ıϑ + a
āe2ıϑ + 1

)
= arg

(
e2ıϑ + a
āe2ıϑ + 1

·
e−2ıϑ

(
e2ıϑ + a

)
ae−2ıϑ + 1

)
=

= arg
(
e−2ıϑ

(
e2ıϑ + a

)2) = −2ϑ+ 2 arg
(
e2ıϑ + a

)
Thus, if we set

Θa(ϑ) = 2 arg
(
e2ıϑ + a

)
− 2ϑ (9)

we can write, with the usual abuse of notation,

γa(ϑ) =
3∑
i=1

σ(ϑ)ϕi (Θa(ϑ)) . (10)

Remark 3.1 Let U, V ∈ S be such that aU = aV . Then U ≡ V . Indeed, two different triple with
the same triple point should generate two different w in (7) with the same boundary condition.

The above construction allows to know wether a point in B can be the triple point of a segregated
state or not. We have

Lemma 3.2 Let (ϕ1, ϕ2, ϕ3) be an admissible boundary datum, and a ∈ B. a is the triple point
of an element of S (with datum ϕi) if and only if

∇w(0) = 0, (11)

where w is defined by (7), (8).
1We will keep writing ui(x) = ui(reıϑ) = ui(r, ϑ), ϕi(x) = ϕi(ϑ), and so on.
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Proof: if a = aU we have that w satisfies (6). By conformality and Theorem 2.1,(e), we obtain
∇w(0) = 0.

On the other hand, let w be defined by (7) and let ∇w(0) = 0. We can write the Fourier expansion
of γa

γa(ϑ) =
A0

2
+

+∞∑
n=1

[An cosnϑ+Bn sinnϑ] ,

and, since γa is odd (by (8)), we immediately obtain A2m = B2m = 0. By standard separation of
variables we infer w =

∑+∞
m=0 [A2m+1 cos ((2m+ 1)ϑ) +B2m+1 sin ((2m+ 1)ϑ)] r2m+1. Finally, by

(11), we obtain A1 = B1 = 0 and

w(r, ϑ) =
+∞∑
n=1

[A2n+1 cos ((2n+ 1)ϑ) +B2n+1 sin ((2n+ 1)ϑ)] r2n+1.

Moreover, we have that
A2

3 +B2
3 6= 0; (12)

indeed, if not there would be 2k arcs (where k is the index of the first non zero Fourier component),
starting from 0, on which w vanishes. Since an harmonic function can not admit closed level lines,
this contradicts the fact that γa has exactly six zeroes (remember (8), and the fact that (ϕ1, ϕ2, ϕ3)
is an admissible datum). Now, w is odd, so |w| is even. Therefore we can invert the conformal
map (5) on the half ball, obtaining a non negative function with exactly three nodal region. It
is not difficult, now, to prove that this function generates an element of S, with datum (ϕi) and
triple point a. �

Now that we have characterized, for a given datum, the possible triple points, we can state the
local dependence of these points from the data.

Proposition 3.2 Let (ϕ1, ϕ2, ϕ3) be an admissible boundary datum, and aϕ ∈ B, in such a way
that (11) holds. Then there exist ε > 0, δ > 0 such that, for every (ψ1, ψ2, ψ3) admissible datum
with ‖ϕi − ψi‖W 1,∞ < ε there exists exactly one aψ satisfying (11) with datum (ψi) and such that
|aψ − aϕ| < δ.

Proof: without loss of generality (using the continuity of the fixed transformation Taϕ
) we can

assume that aϕ ≡ 0.

We want to apply the implicit function theorem to the map(
W 1,∞(B)

)3 ×B −→ R2

(ϕ1, ϕ2, ϕ3,a) 7−→ ∇w(0)

in order to locally solve equation (11) for a (recall that the dependence of w from (ϕ1, ϕ2, ϕ3) and
a is given by (7), (8)). To this aim, the only non trivial thing to show is that

the 2× 2 jacobian matrix ∂(a1,a2)∇w(0)
∣∣
a=0

is invertible.

Using the Poisson’s formula we can write

w(x) =
1− |x|2

2π

∫
∂B

γa(y)
|y − x|2

dys

that implies

∇w(x) = −x
π

∫
∂B

γa(y)
|y − x|2

dys+
1− |x|2

π

∫
∂B

y − x
|y − x|4

γa(y) dys
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and
∇w(0) =

1
π

∫
∂B

y γa(y) dys.

We choose the parametrization y = (cosϑ, sinϑ). Taking into account (10) we obtain

∇w(0) =
1
π

(∫ 2π

0

3∑
i=1

σ(ϑ)ϕi (Θa(ϑ)) cosϑ dϑ ,
∫ 2π

0

3∑
i=1

σ(ϑ)ϕi (Θa(ϑ)) sinϑ dϑ

)
.

Now, differentiating (9) we infer that

∇aΘa(ϑ)|a=0 = (−2 sin 2ϑ, 2 cos 2ϑ) .

Since Θ0(ϑ) = 2ϑ, we obtain that ∂(a1,a2)∇w(0)
∣∣
a=0

is equal to

2
π


−
∫ 2π

0

3∑
i=1

σ(ϑ)ϕ′i (2ϑ) sin 2ϑ cosϑ dϑ
∫ 2π

0

3∑
i=1

σ(ϑ)ϕ′i (2ϑ) cos 2ϑ cosϑ dϑ

−
∫ 2π

0

3∑
i=1

σ(ϑ)ϕ′i (2ϑ) sin 2ϑ sinϑ dϑ
∫ 2π

0

3∑
i=1

σ(ϑ)ϕ′i (2ϑ) cos 2ϑ sinϑ dϑ

 . (13)

Let us compute (10) and the Fourier expansion in the proof of Lemma 3.2 when a = 0. We have

3∑
i=1

σ(ϑ)ϕi (2ϑ) = γ0(ϑ) =
+∞∑
n=1

[A2n+1 cos ((2n+ 1)ϑ) +B2n+1 sin ((2n+ 1)ϑ)]

that implies

3∑
i=1

σ(ϑ)ϕ′i (2ϑ) =
1
2

+∞∑
n=1

(2n+ 1) [−A2n+1 sin ((2n+ 1)ϑ) +B2n+1 cos ((2n+ 1)ϑ)] .

This (and Werner formulas) allows to compute the first term of (13):∫ 2π

0

3∑
i=1

σ(ϑ)ϕ′i (2ϑ) sin 2ϑ cosϑ dϑ =

=
1
4

∫ 2π

0

+∞∑
n=1

(2n+ 1) [−A2n+1 sin (2n+ 1)ϑ+B2n+1 cos (2n+ 1)ϑ] [sin 3ϑ− sinϑ] dϑ =

=
1
4

∫ 2π

0

−3A3 sin2 3ϑ dϑ = −3π
4
A3.

Analogous calculations provide

∂(a1,a2)∇w(0)
∣∣
a=0

=
3
2

(
A3 B3

−B3 A3

)
.

But we know (see (12)) that A2
3 +B2

3 6= 0. Therefore we have that the jacobian matrix is invertible,
concluding the proof. �
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3.3 Interior triple point: global uniqueness

Proof of Theorem 1.3: by Theorem 1.2 we know that at least one element M in S exists.
Assume by contradiction that there exists another element U ∈ S with U 6= M (that is, U is not
the minimal one). By Proposition 3.1 we have that aU ∈ B. Again, without loss of generality
(using the transformation TaU

) we can assume that aU ≡ 0. For r > 0 we define

Ut(x) =
1
t3/2

U(tx),

and we observe that

Ut ∈ St :=

{
V = (v1, v2, v3) :

vi ≥ 0, vi · vj = 0, −∆vi ≤ 0, −∆v̂i ≥ 0

vi(x) =
1
t3/2

ui(tx) for |x| = 1

}
.

Now, it is possible to show that Ut has limit as t→ 0. Indeed, by Theorem 2.1,(e) we can write

U(r, ϑ) = Cr3/2
∣∣∣∣cos

(
3
2
ϑ+ ϑ0

)∣∣∣∣+ o(r3/2) as r → 0,

and hence

Ut(r, ϑ) =
1
t3/2

U(tr, ϑ) = Cr3/2
∣∣∣∣cos

(
3
2
ϑ+ ϑ0

)∣∣∣∣+ o(t3/2r3/2)
t3/2

tends to

U0(r, ϑ) = Cr3/2
∣∣∣∣cos

(
3
2
ϑ+ ϑ0

)∣∣∣∣ .
Again U0 belongs to

S0 :=

V = (v1, v2, v3) :
vi ≥ 0, vi · vj = 0, −∆vi ≤ 0, −∆v̂i ≥ 0

vi(1, ϑ) =
∣∣∣∣cos

(
3
2
ϑ+ ϑ0

)∣∣∣∣ , 2i
3
π ≤ ϑ ≤ 2(i+ 1)

3
π

 .

So we have a continuous path Ut in W 1,∞(B) connecting U and U0. Let us denote with Mt

the minimal of E in St. While U 6≡ M by assumption, it is worthwhile noticing that U0 ≡ M0

is minimal. Indeed, the datum of S0 is symmetric and hence, by uniqueness of the minimal
(Theorem 1.2,(a)), its triple point must be the origin; this implies (Remark 3.1) that U0 is the
minimal solution. Let

t̄ = sup{t∗ ≥ 0 : Ut ≡Mt for every t ∈ [0, t∗]}.

By continuity of E we immediately see that Ut∗ ≡Mt∗ . On the other hand, we can find a sequence
εn > 0 such that

Ut∗+εn 6≡Mt∗+εn .

By Theorem 1.2,(c), we have that

Mt∗+εn →Mt∗ a.e., that implies aMt∗+εn
→ aMt∗ .

On the other hand, since Ut∗ ≡Mt∗ , we have by construction that

Ut∗+εn →Mt∗ in W 1,∞, that implies aUt∗+εn
→ aMt∗ .

We infer that both Ut∗+εn and Mt∗+εn belong to St∗+εn , and the distance between aUt∗+εn
and

aMt∗+εn
is arbitrary small. This contradicts Proposition 3.2, and concludes the proof. �
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