CAPPOZZO, ANDREA
CAPPOZZO, ANDREA
DIPARTIMENTO DI STATISTICA E METODI QUANTITATIVI
Variational inference for semiparametric Bayesian novelty detection in large datasets
2024 Benedetti, L; Boniardi, E; Chiani, L; Ghirri, J; Mastropietro, M; Cappozzo, A; Denti, F
A general framework for penalized mixed-effects multitask learning with applications on DNA methylation surrogate biomarkers creation
2023 Cappozzo, A; Ieva, F; Fiorito, G
Graphical and computational tools to guide parameter choice for the cluster weighted robust model
2023 Cappozzo, A; García-Escudero, L; Greselin, F; Mayo-Iscar, A
Correction to: A two-stage Bayesian semiparametricmodel for novelty detection with robust prior information (Statistics and Computing, (2021), 31, 4, (42), 10.1007/s11222-021-10017-7)
2022 Denti, F; Cappozzo, A; Greselin, F
Monitoring Hyperparameter Choice for Robust Cluster Weighted Model
2022 Cappozzo, A; García-Escudero, L; Greselin, F; Mayo-Iscar, A
Outlier and Novelty Detection for Functional Data: a Semiparametric BayesianApproach
2022 Denti, F; Cappozzo, A; Greselin, F
A two-stage Bayesian semiparametric model for novelty detection with robust prior information
2021 Denti, F; Cappozzo, A; Greselin, F
Exploring solutions via monitoring for cluster weighted robust models
2021 Cappozzo, A; Garcìa-Escudero, L; Greselin, F; Mayo-Iscar, A
Monitoring tools for Cluster Weighted Robust Models
2021 Cappozzo, A; Greselin, F
Parameter Choice, Stability and Validity for Robust Cluster Weighted Modeling
2021 Cappozzo, A; Garcia Escudero, L; Greselin, F; Mayo-Iscar, A
Robust classification of spectroscopic data in agri-food: first analysis on the stability of results
2021 Cappozzo, A; Duponchel, L; Greselin, F; Murphy Thomas, B
Robust Model-Based Learning to Discover New Wheat Varieties and Discriminate Adulterated Kernels in X-Ray Images
2021 Cappozzo, A; Greselin, F; Murphy, T
Robust variable selection for model-based learning in presence of adulteration
2021 Cappozzo, A; Greselin, F; Murphy, T
Robust variable selection in the framework of classification with label noise and outliers: Applications to spectroscopic data in agri-food
2021 Cappozzo, A; Duponchel, L; Greselin, F; Murphy, T
A robust approach to model-based classification based on trimming and constraints: Semi-supervised learning in presence of outliers and label noise
2020 Cappozzo, A; Greselin, F; Murphy, T
Anomaly and Novelty detection for robust semi-supervised learning
2020 Cappozzo, A; Greselin, F; Murphy, T
Bayesian nonparametric adaptive classification with robust prior information
2020 Denti, F; Cappozzo, A; Greselin, F
Robust model-based classification and clustering: advances in learning from contaminated datasets
2020 Cappozzo, A
Variable selection for robust model-based learning from contaminated data
2020 Cappozzo, A; Greselin, F; Murphy, B
Detecting wine adulterations employing robust mixture of factor analyzers
2019 Cappozzo, A; Greselin, F