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Abstract

White matter (WM) changes occur throughout the lifespan at a different rate for each devel-

opmental period. We aggregated 10879 structural MRIs and 6186 diffusion-weighted MRIs

from participants between 2 weeks to 100 years of age. Age-related changes in gray matter

and WM partial volumes and microstructural WM properties, both brain-wide and on 29

reconstructed tracts, were investigated as a function of biological sex and hemisphere,

when appropriate. We investigated the curve fit that would best explain age-related differ-

ences by fitting linear, cubic, quadratic, and exponential models to macro and microstruc-

tural WM properties. Following the first steep increase in WM volume during infancy and

childhood, the rate of development slows down in adulthood and decreases with aging. Sim-

ilarly, microstructural properties of WM, particularly fractional anisotropy (FA) and mean dif-

fusivity (MD), follow independent rates of change across the lifespan. The overall increase

in FA and decrease in MD are modulated by demographic factors, such as the participant’s

age, and show different hemispheric asymmetries in some association tracts reconstructed

via probabilistic tractography. All changes in WM macro and microstructure seem to follow

nonlinear trajectories, which also differ based on the considered metric. Exponential

changes occurred for the WM volume and FA and MD values in the first five years of life.

Collectively, these results provide novel insight into how changes in different metrics of WM

occur when a lifespan approach is considered.

1. Introduction

Magnetic resonance imaging (MRI) can be used to track in vivo developmental changes in

brain structure across the lifespan. Different head tissues mature following specific timelines

and have a different impact on behavioral and cognitive changes. Much research has been con-

ducted to detail the brain changes from childhood to adulthood. Recently, data collection pro-

tocols and acquisition sequences have been adapted to young infants and allowed us to obtain

important information on structural brain development in younger subjects. However, very

few studies have performed analyses considering a lifespan perspective in which structural

changes are investigated from early in life [1]. To the best of our knowledge no study has

implemented a lifespan approach to investigate macro and micro structural changes in white

matter (WM) through probabilistic tractography. The goal of the current study was to
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investigate the effect of age on structural brain changes with particular reference to the devel-

opment of WM. We used data from open-source MRI datasets and compared different model

fits to identify the development of the whole-brain and tract-based WM volume, fractional

anisotropy (FA), and mean diffusivity (MD). We tested whether the developmental changes

followed a different path in female and male participants and whether there were hemispheri-

cal differences in WM growth.

Much research has been conducted to investigate the development and role of gray matter

(GM), overlooking changing aspects of WM that may be critically involved in behavioral and

cognitive processes [2]. According to such a localizationist approach, cognitive functions are

identified in isolated cortical areas using one-to-one mapping principles and little consider-

ation for the underlying connectivity. A more recent framework identifies anatomo-functional

couplings that dynamically interact in the formation of specialized networks as the basis of

complex cognitive functions and behaviors [3]. Thus, the cortical organization is integrated

with information on the structural connectivity of WM fiber bundles. Diffusion tensor imag-

ing (DTI) provides an in vivo investigation of WM fiber bundles in a noninvasive fashion in

humans, allowing us to study the spatial organization of cerebral tissues [4]. The role of WM

bundles in sustaining and ensuring rapid and efficient neuronal interactions has been

described for perceptual (e.g., vision and sensorimotor processes) and cognitive processes

(e.g., memory and language) and with limited extension to social cognition [5]. Even fewer

studies investigated the relation between WM and cognition in early development as the

majority of evidence comes from studies of aging. Nonetheless, diffused WM injuries seem to

be linked to neurodevelopmental and pediatric neurocognitive disorders [6, 7], the incidence

of which is growing in recent years [8]. The organization of structural and functional networks

is interconnected, with structural networks influencing the dynamic properties of functional

networks at a faster pace than the reverse interaction [9]. Given these relationships, it seems

critical to detail the lifespan development of anatomical connectivity and changes in WM

properties.

Acquisition sequences and protocols have been adapted to participants with different ages

and characteristics to provide quantitative parameters of both typical and atypical neurodeve-

lopment. Despite variability in the methods, there are consistent findings about cerebral WM

development. Neurodevelopmental changes can be related to macrostructural and microstruc-

tural characteristics of WM. Macrostructural characteristics refers to volumetric changes in

WM that occur at a different rate and with different regional distributions across the lifespan.

A good quantification of WM volume can be obtained through structural MRI segmenting

procedures and investigated in relation to the development of cortical areas involved in both

sensory and association processes.

Microstructural characteristics of WM quantifies tissue properties and integrity using met-

rics that measure the apparent diffusion coefficient of water. Diffusion-weighted imaging

(DWI) sequences are designed to estimate axonal orientation in vivo by measuring the degree

of water diffusion along specific directions (i.e., anisotropy). Diffusion tensor (DT) models are

the simplest way to obtain information on the properties of WM, which are expressed with dif-

ferent metrics (e.g., mean diffusivity, MD, fractional anisotropy, FA). WM integrity is often

measured through FA, whereas MD, axial and radial diffusivity (AD, RD) are indicators of

WM maturation and dysfunction [10, 11]. DTI metrics can also be used to reconstruct specific

fiber bundles using tractography methods that allow the identification of the major WM tracts

and shorter connections between cortical areas. Microstructural WM properties could also be

investigated via multi-compartment models of structural MRI or specific quantitative MRI

methods, e.g., magnetization transfer [11, 12].
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A rapid increase in volume and WM metrics change occur in the first years of life and con-

tinues through the lifespan [13]. Morphometry studies based on structural MRI showed that

changes in brain volume during childhood and adolescence are as dramatic as the changes

occurring later in life. The increase in both GM (cortical and subcortical) and WM partial vol-

umes during childhood and early adulthood gives way to a decrease later in life. Developmen-

tal trajectories of GM and WM follow different timelines, with GM increasing more rapidly,

whereas WM changing gradually in the first two years of life [14]. The volume of frontal and

temporal lobes shows rapid changes in the first two years of life, possibly due to maturational

processes of neuronal pruning [15, 16]. Although most of the studies focused their investiga-

tion on developmental changes in the middle portion of the lifespan (i.e., childhood, adoles-

cence, and adulthood), important changes occur at both early and late developmental stages

[17–20]. Specifically, the developmental trajectory of brain growth in infancy seems to occur

along non-linear patterns that modify the quadratic trend usually used to describe later

changes [21, 22]. For this reason, and because the availability of structural MRI and DWI data-

sets has reached a consistent sample size only in recent years, a comprehensive lifespan investi-

gation remains poorly studied.

Changes in microstructural WM properties seem to dramatically increase in the first year

of life, slowly change during the second year of life, and stabilize after 24 months. It has been

estimated that FA increases by about 31% between the first and second and third years of life,

whereas only a 6% increase occurs later in childhood [23]. Almost all major WM bundles are

identifiable at birth and show to increase in size and FA over the ages. Specifically, FA values

in peripheral regions of the tracts are reported to be low and similar to GM until 3 months of

life, whereas higher FA values are identified in the core areas of fiber bundles early in life [24].

Projection, limbic, and callosal fibers can be identified in newborns. On the other hand, associ-

ation tracts, such as the superior longitudinal, inferior fronto-occipital, and inferior longitudi-

nal fasciculi are hard to detect in newborns but become visible within the first year of life [24].

The pattern of FA increase reaches its maximum in long projection first, then commissural,

and finally association fibers, which show age-related FA changes until adulthood [25, 26].

Several statistical models have been implemented to define the best fit to explain age-related

changes in different brain tissues. Such modeling approaches have been applied to variable

sample sizes of MRI acquisitions from different age ranges. Although non-linear models have

been proven to best explain brain changes, many studies had addressed the issue by utilizing

linear approaches (for a review, see [27]). A more recent approach uses generalized additive

models to define growth charts for brain changes. These analyses have provided detailed tra-

jectories of typical development and identified brain growth milestones specific for each brain

tissue. Total brain volume is reported to peak at 10–12 years of age and show biological sex dif-

ferences with males having larger age-adjusted total brain volumes than females, regardless of

participants’ body size [28]. Negative associations are found between cortical thickness and

age, with the highest thickness values identified during childhood for most of the cortical

regions, even though frontal and temporal areas showed the highest interindividual variability

[29]. Similarly, the volume of most subcortical regions peaks at 2–3 years of age and keeps

growing for some regions, such as the hippocampus, amygdala, and putamen [30]. The intro-

duction of standardized charts of brain change provides a useful tool to identify developmental

milestones and associate normative neurodevelopmental trajectories with neuropsychiatric

disorders [1].

In the current study, we investigated the WM changes in the lifespan by combining struc-

tural MRI and DWI acquisitions from participants ranging from 2 weeks to 100 years of age.

The goal of the study is to investigate the developmental trajectories of the WM volume and

fiber tracts and their microstructural properties, considering the entire lifespan. We applied
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different model fits (linear, quadratic, cubic, and exponential) to quantify the age-related

changes in WM partial volume and its microstructural properties (i.e., FA and MD). We fur-

ther investigate possible interactions between age and biological sex and hemisphere to the

same WM metrics. Lastly, we applied probabilistic tractography algorithms to reconstruct 16

WM bundles and tested the change in each WM metric as a function of age, biological sex,

and, when appropriate, hemisphere.

2. Materials and methods

2.1 Subjects

The MRI volumes for this study came from local scans and open-access sources as available in

January 2022. The Institutional Review Board of the University of South Carolina approved all

procedures, which were conducted according to the Declaration of Helsinki. Written informed

consent form was obtained from all subjects scanned at the University of South Carolina. The

open-access sources included deidentified data and volumes from the Human Connectome

Project (https://www.humanconnectome.org/): HCP [31], HCP-development [32], HCP-

aging [33], and BabyCP [34]. The USC-ABC [35] and other local scans acquired at the

McCausland Center for Brain Imaging (MCBI) used the HCP sequence. Other sources include

the infants from the IBIS [36, 37] and UNC-EBDS [38–40], children from PING [41], BAM-

BAM [42], and CMIHBN, and adults from OASIS [43], CMIHBN [44], and CAMCAN

[45, 46].

Structural MRI volumes were available for 10879 subjects, from 1 day to 100 years of age.

We excluded 366 participants because of missing information about their biological sex. The

remaining 10513 participants (n = 5569 females, n = 4944 males) were considered for further

analyses. Diffusion MRI volumes were available for a subset of 6189 participants, 3 of whom

were excluded because of missing information about their biological sex. Volumes from the

UNC-EBDS and volumes acquired with single-shell sequences were excluded (n = 782). A

total of 5407 participants (n = 2864 females, n = 2540 males), ranging from 30 days to 89 years,

were considered for further analyses.

Fig 1 summarizes the number of participants per database and Fig 2 the distribution of

female and male subjects in each database. Additional information can be found in S1 Table.

Deidentified data is available at https://www.nitrc.org/projects/neurodevdata.

2.2 Image acquisition protocols and preprocessing

Details on the acquisition protocols for the different open-source databases included in the

current sample can be found in the respective publications and are summarized in Table 1.

Image preprocessing was performed using FSL tools using the same procedures across all vol-

umes. All available T2-weighted volumes were registered to the T1-weighted images through

affine transformation and used to register DWI volumes to structural volumes for visualization

purposes. Transformation matrices of individual structural volumes and the age-appropriate

templates were obtained through FLIRT and ANTS. Skull stripping was performed utilizing

brain extraction steps included in FSL-VBM [47] and outputs were visually inspected for brain

extraction accuracy and manually corrected if needed. Volume segmentation was performed

with FSL-FAST [48]using the T1 image to obtain gray and white matter partial volumes. The

procedure was guided by the segmented volumes from the age-appropriate average templates

for subjects of 2 years and younger. Binary masks of the WM partial volume were also created

and used to restrict the analyses on the diffusion data (see Structural and Diffusion Measure-
ments for details).
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Diffusion data was preprocessed using the FMRIB’s Diffusion Toolbox (FDT) in FSL [49].

This procedure estimates and corrects for susceptibility-induced distortions using volumes

acquired with reversed-phase encoding directions (topup, [49, 50]), Eddy current, and motion

artifacts (eddy_cuda, [51]). Single-band reference (SBref) volumes are utilized to register EPI

images to the T1 volume. Eddy current and motion corrections were performed on uncor-

rected images when only one phase-encode blip was acquired. Diffusion tensor models were

calculated at each voxel to obtain FA and MD measures (ditfit).

2.3 Tractography

Thirteen lateralized (26 total) and three callosal tracts were reconstructed using probabilistic

tractography models. Distributions of diffusion parameters were calculated using BEDPOSTX
at each voxel [52]. Seed, target, and exclusion masks included in the tractography (XTRACT)

toolbox [53, 54] were first registered to the age-appropriate template selected from the Neuro-

developmental MRI Database [55] and then to the individual volume using FLIRT. This set of

masks was utilized to obtain connectivity matrices using the BEDPOSTX estimations via prob-

abilistic tractography (PROBTRACKX, [56, 57]. We set a relative threshold of 5% of the total

number of valid streamlines (waytotal) to generate a mask for each reconstructed tract [58],

which were then used to restrict the computations of the white matter properties of each tract

(see section below). Procedures resulting in zero waytotal values were not considered for fur-

ther the analyses.

2.4 Structural and diffusion measurements

We calculated average GM and WM volumes for the individuals with available structural MRI

data. All structural measures were based on T1 volumes. Tools in FSL were utilized to define

all segment types. We calculated normalized volumes by dividing the GM and WM partial vol-

umes by the total brain size of each subject. We reported results for the uncorrected and nor-

malized volumes.

Brain-wide FA and MD resulting from the diffusion tensor fitting (dtifit) of diffusion MRI

were masked with the WM volume before averaging. Similarly, average FA, MD, and density

values were obtained for each selected tract.

Table 1. T1-weighted and T2-weighted spatial resolutions and DWI b-values for each considered database. Further details on the acquisition protocols can be found

in the respective publications.

Database T1-w (spatial resolution in mm) T2-w (spatial resolution in mm) DWI non-zero b-values

HCP 1x1x1 1x1x1 500 to 10,000 s/mm2

HCP-development 0.8×0.8×0.8 0.8×0.8×0.8 1500 and 3000 s/mm2

HCP-aging 0.8×0.8×0.8 0.8×0.8×0.8 1500 and 3000 s/mm2

BabyCP 0.8×0.8×0.8 0.8×0.8×0.8 400, 1000, 2600 s/mm2

700, 1500, 3000 s/mm2

500, 1000, 1500, 2000, 2500, 3000 s/mm2

USC-ABC 1x1x1 0.9x0.9x0.9 2000 s/mm2

IBIS 1x1x1 1x1x1 maximum of 1,000 s/mm2

UNC-EBDS 1x1x1 1.25x1.25x1.50 na

PING 1x1x1 1x1x1 1000 s/mm2

BAMBAM 1x1x1 1.8×1.8×1.8 na

CMIHBN 1x1x1 0.9×0.9×5.0 1000, and 2000 s/mm2

OASIS 1x1x1 1x1x1 1000, and 2000 s/mm2

CAMCAN 1x1x1 1x1x1 1000, and 2000 s/mm2

https://doi.org/10.1371/journal.pone.0301520.t001
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2.5 Analytic strategy

Outliers were defined as the values above the 75th or below the 25th percentile of the distribu-

tion of each database and measure (GM: n = 120; WM: n = 78; FA: n = 136; MD: n = 266). All

analytical strategies were applied to the full sample and a subset of participants ranging from 0

to 5 years. The latter analyses would shed light on the differences across years that are usually

overlooked or underrepresented in studies investigating brain development in the lifespan.

Age-related changes of all structural and diffusion MRI measurements were analyzed using

mixed-effect models. A hierarchical approach was utilized to test the effect of age, biological

sex, and their interaction, considering the database as a random factor for all measures to

Fig 1. Number of structural scans per age group.

https://doi.org/10.1371/journal.pone.0301520.g001
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consider the variability generated by the different sets of acquisition parameters. We did not

do specific preprocessing harmonization across the different datasets, but instead used data-

base as a random factor in our analyses to account for inter-database variability (for a similar

approach, see [59–62]). Several novel pipelines for data harmonization have been recently

developed and successfully normalize data, retaining enough variation at the level of individual

scans (e.g., ComBat, [63]; ComBat-GAM, [64]; GAMLSS, [1, 65]). However, these pipelines

Fig 2. Distribution participant as a function of biological sex for each considered database.

https://doi.org/10.1371/journal.pone.0301520.g002
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require volume normalization to an adult template as a preparatory step. This approach would

introduce a bias in the registration process of volumes that are volumetrically different than

the target template, therefore introducing more noise at the extremes of the lifespan than in

volumes that are registered to an age-appropriate template. Harmonization procedure such as

ComBat-GAM showed to perform equally well to alternative harmonization methods (i.e., lin-

ear-mixed effect modeling, ComBat), after removing data from sites with participants younger

than 20 years and older than 70 years [66]. For all analyses we fitted models with and without

Database as random factor and found an improvement in the model fit when Database was

considered. Further information on this set of analyses can be found in the Supplementary

Materials (S2 Table, S1 Fig). All results reported here include Database as random factor to

control for unwanted variability introduced by technical differences across scanners. This

approach also avoids data normalization to a single, not age-appropriate, template. We intro-

duced the fixed effect of hemisphere in the tract analyses when appropriate (i.e., for all tracts

except the three sections of the corpus callosum).

In a separate set of analyses, we compared the null (i.e., with the intercept term only), linear,

quadratic, cubic, and exponential fits for all structural and diffusion MRI measures. The fol-

lowing equations were fit for the data: measure ~ 1 (1 | Dataset, participant); measure ~ Age +

(1 | Dataset, participant); measure ~ Age + Age2 + (1 | Dataset, participant); measure ~ Age

+ Age2 + Age3 + (1 | Dataset, participant); measure ~ Age + Age2 + Age3 + Age^ (1 | Dataset,

participant). ANOVAs were performed to compare the different model fits.

3. Results

3.1 Structural measures

The GM and WM volume changes across the lifespan are reported in Fig 3 as residual values of

the null model in which the database factor was accounted for. Both measures showed larger val-

ues for males than females in the uncorrected volumes. This difference did not occur when the

GM and WM were corrected for the participants’ total brain volumes. Results of the uncorrected

GM volume showed a relation to the interaction effect of Age and Sex (beta = .564, F(1,10226) =

53.43, p< .001), to the main effect of Age (beta = -1.742, F(1, 10226) = 398.56, p< .001), and Sex

(beta = 60.404, F(1, 10226) = 436.70, p< .001). After controlling for the total brain volume, the

corrected GM values were related to the interaction effect (beta = -0.0002, F(1,10226) = 50.07, p
< .001) and to the Age (beta = -0.0011, F(1,10226) = 587.23, p< .001). The relation between the

normalized GM values and Sex was nonsignificant (beta = -0.0004, F(1,10226) = .246, p = .62).

Similarly, the uncorrected WM volume was related to the interaction effect of Age and Sex

(beta = 0.737, F(1,10268) = 123.40, p< .001), to Age (beta = -0.48, F(1, 10268) = 10.35, p = .001),

and to Sex (beta = 49.48, F(1, 10268) = 395.50, p< .001). Results on the normalized WM vol-

umes showed that, after correcting for total brain volume, there were reduced differences

between female and male WM values (Sex: beta = -0.001, F(1, 10268) = 4.37, p = .037). White

matter volume declined over age (beta = -.0005, F(1, 10268) = 132.29, p< .001) and showed to

be related to the interaction effect (beta = .0001, F(1, 10268) = 31.65, p< .001).

We tested four model fits to describe the age changes in GM and WM across the lifespan.

Specifically, adjusted GM and WM values were tested for the linear, quadratic, cubic, and

exponential age patterns. The exponential model best described the development of the aver-

age GM and WM volumes (GM: AIC = 264285.5; beta = 6.153, F(1,10226) = 4810.85, p<
.0001; WM: AIC = 262525.5; beta = -0.524, F(1,10267) = 2924.89, p< .0001), with a significant

improvement than the linear (GM: AIC = 26887.9, p< .0001; WM: AIC = 266261.2, p<
.0001), quadratic, (GM: AIC = -268651.6, p< .0001; WM: AIC = 265800.5, p< .0001) and

cubic fits (GM: AIC = 268181.9, p< .0001; WM: AIC = 265094, p< .0001).
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Changes in GM and WM over the first 5 years of life (n = 1656; outliersGM = 14; outliersWM

= 7) are reported in Fig 4 for uncorrected and corrected volumes as a function of biological

sex. Results showed a relation between the GM change and both Age (beta = 95.02, F(1,1646)

= 228.37, p< .001) and Sex (beta = 41.78, F(1,1646) = 31.27, p< .001) factors but not their

interaction (p = .082). After correcting for brain volume, the GM change showed to be related

to the Age factor only (beta = 0.014, F(1,1646) = 19.50, p< .0001). In the first five years of life,

the GM volume increased for both female and male participants. Results on uncorrected WM

volumes showed a relation to the interaction effect of Age and Sex (beta = 12.57, F(1, 1652) =

25.82, p< .0001), to the main effects of Age (beta = 60.04, F(1, 1652) = 215.74, p< .001), and

Sex (beta = 25.93, F(1, 1652) = 28.73, p< .001). After adjusting for brain volume the WM

change was related to the Age factor only (beta = -0.0115, F(1, 1652) = 32.82, p< .001) and

showed an overall decrease in the first 5 years.

When tested over the four model fits the GM and WM development over the first 5 years of

life showed to be best described by the exponential model (GM: AIC = 46132.5; beta = 1.16, F

Fig 3. Uncorrected and normalized GM and WM volumes as a function of biological sex across the lifespan. Plotted values represent the residuals of a null

model for each measure.

https://doi.org/10.1371/journal.pone.0301520.g003
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(1,1646) = 8.900, p = .003; WM: AIC = 45341.67; beta = 5.11, F(1,1652) = 15.09, p = .0001),

with a significant improvement than the linear (GM: AIC = 46690.7, p< .0001; WM:

AIC = 45635.68, p< .0001), quadratic (GM: AIC = 46181.2, p< .0001; WM: AIC = 45384.57,

p< .0001), and cubic fits (GM: AIC = 46133.7, p< .0001; WM: AIC = 45354.71, p< .0001).

Changes across the lifespan and the first 5 years of life for the average GM and WM volumes

are depicted in S2–S4 Figs.

In summary, correcting for total brain volume reduced or leveled out the differences in GM

and WM between male and female participants. An overall decrease in both partial volumes

was found when a lifespan approach was implemented, whereas in the 0–5 age range the

increase in GM occurred with a decrease in WM. For all considered measures and age ranges

the exponential pattern best described the changes in GM and WM.

3.2 Diffusion measures

There was a change in the average FA values across WM voxels that was unrelated to the effect

of biological sex, whereas the MD change occurred at a different rate for male and female par-

ticipants. Fig 5 depicts the average FA and MD across the lifespan for the whole sample and as

Fig 4. Residual values of the null model for uncorrected and normalized GM and WM volumes as a function of biological sex for the first 5 years of life.

https://doi.org/10.1371/journal.pone.0301520.g004
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a function of the participant’s sex. There was a relation between the change in the FA value

and age (beta = -0.0005, F(1,5251) = 86.38, p< .001), regardless of participant’s biological sex

(beta = 0.0013, F(1,5251) = 1.62, p = .204) and its interaction with age (beta = 0.00003, F
(1,5251) = 1.48, p = .225). On the other hand, the MD values showed to be related to the inter-

action between age and sex (beta = -0.0000003, F(1,5121) = 46.07, p< .001), and to the effect

of sex (beta = 0.000008, F(1,5121) = 13.66, p = .002) and age (beta = 0.000002, F(1,5121) =

209.94, p< .001). These results indicate a decrease in the FA values and an increase in the MD

values across the lifespan. The MD changes occur at a different rate between male and female

participants, with a larger increase in MD for males at older ages.

We compared the model fits of null, linear, quadratic, cubic, and exponential models to the

age change for both average measures. The FA change was best described by the exponential

model (AIC = -26259.53; beta = 0.107, F(1,5251) = 485.86, p< .0001). The exponential model

provided a better fit than the cubic (AIC = -25796.55, p< .0001), quadratic (AIC = -25616.88,

p< .0001), and linear (AIC = -24848.24, p< .0001) models. Similarly, the best-fit model for

the change in MD was the exponential model (AIC = -83804.59; beta = -0.0002, F(1,5121) =

331.42, p< .0001), which described the data better than the remaining models (cubic model:

Fig 5. Average FA and MD for the whole sample (left) and as a function of biological sex (right) across the lifespan. Plotted values represent the residuals of a

null model for each measure.

https://doi.org/10.1371/journal.pone.0301520.g005
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AIC = -83485.87, p< .0001; quadratic model: AIC = -83484.17, p< .0001; linear model: AIC

= -82491.18, p< .0001).

FA and MD values were analyzed over the first 5 years of life. The distributions of residual

values are reported in Fig 6 for the whole sample and as a function of biological sex. Results for

the 0–5 age range showed a relation between the FA change and both Age (beta = 0.031, F
(1,416) = 116.37, p< .001) and Sex (beta = 0.006, F(1,416) = 10.63, p = .007) factors. After an

initial similar development, the change in FA for males is larger than the change for females

(Fig 5, top right panel). Results for the MD volumes showed a relation to the main effects of

Age (beta = -0.00005, F(1, 414) = 115.00, p< .001), but not to the main effect of Sex (beta =

-0.000004, F(1, 414) = 0.375, p = .541) not to the interaction effect of Age and Sex

(beta = 0.000004, F(1, 414) = 1.711, p = .192).

When tested over the four model fits the FA and MD development over the first five years

of life showed that FA was best described by the exponential model (AIC = -1962.49;

beta = 0.276, F(1,416) = 10.52, p = .0013), with a significant improvement than the linear (AIC

= -1843.00, p< .001), quadratic (AIC = -1925.00, p< .001), and cubic fits (AIC = -1953.99, p
= .001). The best fit for the MD change was described by the exponential model (AIC =

-6166.18; beta = -0.0007, F(1,416) = 21.27, p< .0001). The age-change described by the

Fig 6. Average FA and MD for the 0–5 age range. The volume changes are plotted for the whole sample (left) and as a function of biological sex (right) across

the lifespan.

https://doi.org/10.1371/journal.pone.0301520.g006
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exponential model was significantly different than the linear model (AIC = -6092.42, p< .001)

and quadratic (AIC = -6122.39, p< .001) models, and cubic model (AIC = -6147.27, p< .001).

Overall, these results speak in favor of a decrease in FA and increase in MD across the life-

span. A similar trend occurred when considering the first five years of life only, with an

increase in FA and with a lesser degree in MD. Biological sex differences showed an effect on

the white matter MD values, which larger in male than female only when the lifespan range

was considered. On the other hand, male participants showed larger FA values than female

subjects only in the first five years of life, suggesting that early differences in the rate of change

of microstructural WM properties are visible when focusing only on young participants.

Lastly, all measure were characterized by an exponential change except for the MD change in

the 0–5 age range, when the exponential model did not show significant improvement from

the cubic model. This result confirms that a more complete picture of the changes that charac-

terize early stages of development can be obtained by including analyses on the first five years

of life. It is worth noting that the overall decrease of FA and increase of MD indicated by statis-

tical models may hide more complex patterns of development that are visible from a visual

inspection of the data distributions. Our results may inform future studies aiming at identify-

ing specific developmental landmarks for changes in WM volume and its properties [67].

3.3 Tractography

In Fig 7 are displayed the reconstructed tract for this study on a young-adult average template.

Additional volumes from representative subjects of the infant and adult groups are displayed

in S5 Fig included in the supplementary material. We reconstructed 13 tracts per hemisphere

and additional three callosal tracts of fiber bundles crossing the two hemispheres.

The FA change was related to the age factor (beta = -0.0004, F(1,148579) = 36.69, p< .0001)

and the interaction between age and sex (beta = 0.00008, F(1,148579) = 4.14, p = .042). FA val-

ues decreased across the lifespan for all tracts, with males showing higher FA values than

females. No other factor nor interaction was significantly related to the FA change across tracts.

Hemisphere was added as a fixed factor to the model explaining the change in FA for the

lateralized tracts. There was a relation between the FA change and the factors age (beta =

Fig 7. WM tracts defined via probabilistic tractography and displayed on a young-adult template.

https://doi.org/10.1371/journal.pone.0301520.g007
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-0.0004, F(1,132548) = 18.59, p< .0001), tract (beta = 0.0015, F(1,132548) = 14.26, p = .0002),

and hemisphere (beta = -0.0835, F(1,132548) = 93.86, p< .0001). The change in FA values was

also related to the interactions between tract and hemisphere (beta = 0.0028, F(1,132548) =

25.16, p< .0001). Figs 8 and 9 report the FA values across the lifespan as a function of sex and

hemisphere separately for each tract and across tracts.

The average FA decreased quicker for female participants (beta = -0.00044) than for male

participants (beta = -0.00041). Moreover, the effect of the hemisphere was significant for all

tracts except for the uncinate fasciculus, in which the FA change was similar for the left and

right hemispheres (Table 2).

Null, linear, quadratic, cubic, and exponential models to the age change in FA values were

fitted for all 29 tracts. The age change in FA for all tracts was better described by the exponen-

tial model (all ps< .001). The corresponding AIC values for each tract and model fit are

reported in Table 3.

The same analytical strategy was applied to the investigation of MD changes in the selected

tracts. We found a significant interaction between tract and sex (beta = 0.0000003, F(1,24793)

= 9.06, p = .003). MD values for males and females changed at a different rate for the various

tracts and showed larger MD values in female (M = 0.00063, SE = 0.000002) rather than the

male (M = 0.00060, SE = 0.000001) participants. No other factor nor interactions were signifi-

cantly related to the MD change across tracts. There was not a significant age change in MD

for the considered tracts.

There were no significant main effects nor interactions when the Hemisphere was added as

a fixed factor to the model explaining the change in MD for the lateralized tracts (ps> 0.06).

Figs 10 and 11 report the distribution of residual values for the MD measure across the lifespan

as a function of sex and hemisphere separately for each tract and across tracts.

Null, linear, quadratic, cubic, and exponential models to the age change in MD values were

fitted for all 29 tracts. The age change in MD for all tracts was better described by the exponen-

tial model (all ps< .001). The corresponding AIC values for each tract and model-fit are

reported in Table 4.

Density values were analyzed as a function of the participant’s age, biological sex, white

matter tract, and interaction factors. Changes in density were related to the age

(beta = 0.00002, F(1,139005) = 27.41, p< .0001) and tract (beta = -0.00008, F(1,139005) =

111.09, p< .0001) factors, as well as their interaction (beta = -0.000002, F(1,139005) = 190.76,

p< .0001). Age-related changes in the variation of tract density were investigated separately

for each considered tract. Results are summarized in Table 5. The inferior fronto-occipital fas-

ciculi, superior longitudinal fasciculi (II), and the splenium of the corpus callosum did not

show a significant change in their density values across ages. Bilateral changes occurred for the

temporal cingula, inferior longitudinal fasciculi, superior longitudinal fasciculi (sections I and

III), uncinate fasciculi, and optic radiations. Density changes occurred on the left hemisphere

for the anterior thalamic radiation, dorsal cingulum, peri-genual cingulum, and fornix, with a

density decrease over age for dorsal cingulum and fornix tracts and an increase for the remain-

ing tracts. The right cortico-spinal tract and the body of the corpus callosum showed to signifi-

cantly decrease across ages, whereas density increased in the genu of the corpus callosum.

When hemisphere was included as a factor for the lateralized tracts, the density change

showed to significantly be related to tract type (beta = 0.0002, F(1, 122881) = 17.84, p< .0001)

and its interaction with hemisphere (beta = -0.00007, F(1, 122881) = 4.016, p = .045). Overall,

greater density values characterized the tracts on the left (M = .079 SE = .0002) rather than

right (M = .077 SE = .0002) hemisphere (Fig 12).

Null, linear, quadratic, cubic, and exponential models were fitted for all 29 tracts to define

the age change in tract density. A cubic change showed to describe the density values across
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ages for the body of the corpus callosum, bilateral anterior thalamic radiation, dorsal cingu-

lum, and left superior longitudinal fasciculus and fornix. For all remaining tracts, the best

model fit was the exponential model. The corresponding AIC values for each tract and model

fit are reported in Table 6.

Fig 8. Distributions of residual values for the average FA for each reconstructed tract (top) and across tracts (bottom) as a function of participant’s biological

sex.

https://doi.org/10.1371/journal.pone.0301520.g008
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Overall, an exponential change occurred for most tracts and considered measures (i.e., FA,

MD, and density). Only density changes in the dorsal and peri-genual cingula (left hemi-

sphere), and the uncinate fasciculus, dorsal cingulum, and fornix (right hemisphere) were bet-

ter described by the cubic fit. These results confirm that model fit outputs for most of the

individual tracts mirror the nonlinear fits obtained across the brain, and suggest a differential

fit (i.e., cubic) for density measures in tracts of the cingulate cortex (i.e., left and right CBD

Fig 9. Distributions of residual values for the average FA for each reconstructed tract (top) and across tracts (bottom) as a

function of hemisphere.

https://doi.org/10.1371/journal.pone.0301520.g009
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and left CBP), the right fornix and uncinate fasciculus. Changes in MD showed to be related to

the sex factor with a larger increase in MD across all tracts in female than male participants.

Similarly, females showed a greater decrease in FA than males, regardless of the considered

tract. Hemispheric asymmetries occurred in both FA and tract density for all tracts except for

the uncinate fasciculus. Both measures showed increased leftward asymmetry irrespective of

the tract under investigation. Further studies are needed to investigate whether such asymme-

try is driven by or linked to functional brain responses.

4. Discussion

In the current study, we investigated the lifespan change in WM partial volume and its proper-

ties by combining structural MRI and DWI volumes from several datasets of subjects 0–100

years. The availability a dataset that covers a wide age range allowed us to investigate the

Table 2. Hemisphere effect results for each lateralized tract under investigation.

Tract beta F p Left Right

ATR -0.009 1024.9 < .0001 0.4334 0.4241

CBD -0.039 6342.2 < .0001 0.5116 0.4728

CBP -0.047 2898.6 < .0001 0.4357 0.3892

CBT 0.0022 14.712 0.0001 0.3457 0.3480

CST -0.009 392.14 < .0001 0.5899 0.5791

FX -0.010 232.04 < .0001 0.3759 0.3643

IFO -0.004 172.97 < .0001 0.5153 0.5105

ILF 0.004 40.666 < .0001 0.4501 0.4538

OR -0.004 101.19 < .0001 0.5285 0.5247

SLF1 -0.009 448.92 < .0001 0.4856 0.4768

SLF2 0.0114 1102.5 < .0001 0.4455 0.4570

SLF3 0.0106 858.15 < .0001 0.4592 0.4697

UF 0.0005 1.6399 0.200 0.4159 0.4165

https://doi.org/10.1371/journal.pone.0301520.t002

Table 3. AIC values of each model fit for the FA analyses on all considered tracts.

Tract AIC null AIC linear AIC quadratic AIC cubic AIC exponential

Left Right Left Right Left Right Left Right Left Right

ATR -19084 -19168 -19120 -19249 -19190 -19454 -19198 -19544 -19402 -19964

CBD -17543 -21164 -17547 -21193 -17596 -21483 -17637 -21607 -17764 -21914

CBP -14677 -18731 -14909 -18775 -15034 -19128 -15039 -19262 -15196 -19609

CBT -19044 -15940 -19130 -16055 -19527 -16213 -19672 -16254 -20145 -16441

CCB -20798.38 (not lateralized) -20830.36 (not lateralized) -21191.78 (not lateralized) -21314.82 (not lateralized) -21620.78 (not lateralized)

CCG -18154.48 (not lateralized) -18190.40 (not lateralized) -18603.66 (not lateralized) -18739.98 (not lateralized) -19120.04 (not lateralized)

CCS -14358.21 (not lateralized) -14412.59 (not lateralized) -14681.08 (not lateralized) -14729.06 (not lateralized) -14884.40 (not lateralized)

CST -16940 -20583 -16995 -20648 -17105 -20924 -17121 -21095 -17337 -21787

FX -19168 -20006 -19197 -20073 -19514 -20486 -19670 -20714 -20016 -21461

IFO -19528 -19651 -19638 -19759 -20081 -19977 -20228 -20050 -20696 -20481

ILF -19132 -18326 -19195 -18337 -19668 -18402 -19798 -18405 -20491 -18562

OR -20581 -19281 -20648 -19289 -20918 -19427 -21044 -19502 -21809 -19659

SLF1 -17545 -20255 -17594 -20378 -17755 -20920 -17785 -21017 -18104 -21364

SLF2 -18860 -20508 -18903 -20642 -19307 -20934 -19456 -21046 -19745 -21607

SLF3 -18882 -16491 -18949 -16551 -19339 -17134 -19440 -17228 -20050 -17461

UF -19811 -15367 -19888 -15478 -20223 -15536 -20373 -15550 -21055 -15690

https://doi.org/10.1371/journal.pone.0301520.t003
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trajectories of brain development across the lifespan and to extend the current knowledge

coming from studies focusing on each developmental stage separately. We tested different

curve fits to assess which model best explained the age changes in WM and assessed individual

differences in terms of biological sex and hemispheric pattern of development and aging.

These changes were investigated both brain-wide and for 16 major associative and callosal

WM fiber bundles reconstructed through probabilistic tractography.

Fig 10. Average MD for each reconstructed tract (top) and across tracts (bottom) as a function of participant’s biological

sex.

https://doi.org/10.1371/journal.pone.0301520.g010
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Results on the total volume change showed sex differences between male and female partici-

pants only on uncorrected GM and WM volumes. When correcting for participants’ brain vol-

ume size, the overall sex differences were nonsignificant. However, the interaction between

participants’ age and biological sex suggested that the effect of sex varies across the lifespan.

Specifically, it seems that GM changes are greater for females than males, whereas WM

changes follow the opposite pattern starting in young adulthood. When considering the first

Fig 11. Average MD for each reconstructed tract (top) and across tracts (bottom) as a function of hemisphere.

https://doi.org/10.1371/journal.pone.0301520.g011
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five years of life only, the development of GM and WM partial volumes occurs at the same rate

for female and male participants.

These results are in line with previous evidence suggesting greater integrity of WM in male

than female youths and greater GM decrease in males than females [68]. Biological sex differ-

ences early in life are reported to be limited to the caudate and cerebellar vermis when consid-

ering normalized brain volumes [69]. It is possible that hormonal changes occurring during

puberty contribute to the differential trajectories in GM and WM between males and females.

This investigation was behind the scope of the current work and should be further examined

in future studies. There is evidence of sex-related differences in both cortical and subcortical

development [70] that is not always replicated [71]. Several confounding factors (e.g., sampling

strategy, acquisition protocols) and individual variabilities, which have been found to be

greater in boys [72], may be responsible for the variations in findings between studies.

Lifespan changes in brain development and aging can be investigated in terms of total and

partial brain volumes and in relation to the microstructural properties of GM and WM,

although the most significant changes in these metrics have been explored almost exclusively

for WM. Here, we tested whether sex-related differences interact with participants’ age to

explain the changes of two major WM properties, i.e., FA and MD, across the lifespan. Results

suggest that both brain-wide WM metrics show a change across the lifespan, with an overall

increase in FA and decrease in MD. This latter metric also showed differential trajectories

between males and females, with larger MD values reported for boys than girls, starting from

the second half of the age period considered in the current study.

FA and MD refer to complementary properties of water diffusion: high values of FA are

indicative of a preferential diffusion along one main direction (i.e., anisotropic diffusion),

whereas high MD values are indicative of isotropic diffusion [73]. Despite their complemen-

tary nature, the reciprocal development of FA and MD does not seem to follow an inverse rela-

tionship. This may be partially due to the limited ability of tensor-based methods (i.e., DTI) in

accurately modeling the anisotropy of crossing fibers, thus overestimating MD values. Our

results suggest that sex-related differences occur for MD but not for FA. MD values in the

Table 4. AIC values of each model fit for the MD analyses on all considered tracts.

Tract AIC null AIC linear AIC quadratic AIC cubic AIC exponential

Left Right Left Right Left Right Left Right Left Right

ATR -14685 -14903 -14683 -14903 -14799 -15032 -14815 -15050 -15092 -15401

CBD -13885 -14973 -13883 -14972 -14030 -15049 -14052 -15067 -14342 -15297

CBP -13956 -15426 -13956 -15424 -14014 -15571 -14020 -15595 -14274 -15975

CBT -14332 -14474 -14331 -14472 -14415 -14629 -14420 -14659 -14574 -15060

CCB -14629.60 (not lateralized) -14627.87 (not lateralized) -14750.97 (not lateralized) -14771.96 (not lateralized) -14977.95 (not lateralized)

CCG -14843.95 (not lateralized) -14842.29 (not lateralized) -14972.14 (not lateralized) -15004.88 (not lateralized) -15496.59 (not lateralized)

CCS -14870.36 (not lateralized) -14868.91 (not lateralized) -14932.39 (not lateralized) -14934.48 (not lateralized) -15137.15 (not lateralized)

CST -10848 -14257 -11170 -14256 -10879 -14388 -10847 -14418 -10894 -14661

FX -14630 -14605 -14628 -14603 -14751 -14730 -14772 -14755 -14978 -15240

IFO -15021 -14714 -15021 -14713 -15238 -14875 -15278 -14907 -15652 -15198

ILF -14332 -14190 -14331 -14188 -14415 -14300 -14420 -14328 -14574 -14737

OR -15605 -13973 -15606 -13972 -15734 -14154 -15767 -14182 -16080 -14401

SLF1 -14844 -14860 -14842 -14859 -14972 -14951 -15005 -14963 -15497 -15197

SLF2 -9492.8 -14342 -9490.8 -14340 -9530.8 -14447 -9545.9 -14477 -9819.2 -14727

SLF3 -15244 -14203 -15242 -14201 -15389 -14324 -15420 -14353 -15642 -14690

UF -14721 -15315 -14719 -15314 -14849 -15401 -14874 -15419 -15241 -15801

https://doi.org/10.1371/journal.pone.0301520.t004
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whole brain are similar for females and males in the first years of life, whereas MD shows a

larger increase for boys than girls in adulthood and late adulthood. There is mixing evidence

for age-related changes in FA; cross-sectional studies report either no differences [74] or

higher FA in females than males in adolescence [75], whereas a longitudinal study showed sex-

related differences in childhood and early adulthood, but not during adolescence [76].

Although MD changes are less investigated, Hsu and colleagues (2008) showed a greater MD

increase in males than females between 30 and 80 years of age [77].

When considering only young participants, both FA and MD followed the same changing

rate between sexes during the first years of life and started to diverge at about 2 years for FA

and 3 years for MD, with boys showing higher values in both metrics than girls. These results

speak in favor of a differential pattern of development of FA and MD for the two sexes, in

which boys seem to show bigger changes than girls. To the best of our knowledge, no study

explored sex-related differences in brain-wide WM properties in typically developing infants

and children. The very few studies with young pediatric samples reported an overall increase

in FA and a decrease in MD [23]. It is important to note that in our study the number of avail-

able DWI volumes between 2 and 5 years of life was lower than the available sample at younger

ages. This unbalance may be due to the difficulties in acquiring imaging volumes with children

Table 5. Summary of the results on the age-related differences in tract density.

Tract b F p
ATR Left * 0.000100 22.3965 < .0001

ATR Right -0.000069 1.63601 0.200933

CBD Left * -0.000194 5.51553 0.018927

CBD Right 0.000074 1.91457 0.166518

CBP Left * 0.000097 5.74502 0.016575

CBP Right -0.000001 7.3E-05 0.993196

CBT Left * 0.000089 6.4388 0.011196

CBT Right * -0.000262 52.1363 < .0001

CST Left 0.000023 1.00649 0.315792

CST Right * -0.000223 25.8972 < .0001

FX Left * -0.000136 9.88289 0.001678

FX Right 0.000003 0.01016 0.919711

ILF Left * -0.000115 8.89996 0.002865

ILF Right * 0.000069 13.0373 0.000308

IFO Left -0.000047 1.33146 0.248601

IFO Right -0.000080 1.0893 0.296722

SLF1 Left * 0.000149 7.27857 0.007002

SLF1 Right * 0.000107 7.71946 0.005484

SLF2 Left -0.000104 2.57202 0.108878

SLF2 Right 0.000053 2.5538 0.110091

SLF3 Left * -0.000274 69.1339 < .0001

SLF3 Right * 0.000081 10.0997 0.001491

UF Left * -0.000150 10.7622 0.001043

UF Right * -0.000078 4.23448 0.039662

OR Left * -0.000104 11.9296 0.000557

OR Right * -0.000193 23.5206 < .0001

CCB * -0.000003 13.2637 0.000273

CCG * 0.000010 50.9419 < .0001

CCS -0.000001 0.17307 0.677414

https://doi.org/10.1371/journal.pone.0301520.t005
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Fig 12. WM density values for each lateralized tract (top) and across tracts (bottom) as a function of hemisphere (right panels). Plotted values represent

the residuals of the null model.

https://doi.org/10.1371/journal.pone.0301520.g012
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between 1 and 3 years of age [78] an age in which there is a higher number of data loss and

greater variability in the acquisition protocols (i.e., asleep vs awake acquisitions). The investi-

gation of typical developmental trajectories of FA and MD in young children would benefit

from further studies focusing on brain-based sex differences since several neurodevelopmental

disorders show different phenotypic profiles in boys and girls [7].

A similar picture is depicted when considering lifespan FA and MD changes for the major

WM tracts we reconstructed through probabilistic tractography. Specifically, sex- and age-

related changes occurred across all tracts and were only marginally significant for FA (p =
.042) with a larger decrease for females only in late adulthood. MD values for males and

females changed at a different rate for the various tracts under investigation, but none of these

effects were also related to the participant’s age. Hemispherical differences in associative tracts

were significant only for the FA metric. All tracts except for the uncinate fasciculus showed a

lateralization effect, the direction of which varied as a function of the considered tract. Larger

FA values were found in the right vs. left tracts for the superior longitudinal fasciculi (sections

2 and 3), inferior longitudinal fasciculus, and temporal cingulum. The strongest left lateraliza-

tion was evident for the dorsal and the peri-genual cingula (CBD and CBP) but also occurred

for all remaining tracts. Most of these differences may be due to the development of functional

cognitive processes, however, they should be interpreted with caution given their small magni-

tude. Two limbic fiber bundles showed the biggest lateralization effect, i.e., CBD and CBP,

with larger FA changes for the left hemisphere. These two fibers are part of the more complex

cingulum bundle, a WM tract that runs through frontal, parietal, and medial temporal sites

and also links subcortical nuclei to the cingulate gyrus. Our results are in line with previous

evidence of leftward FA asymmetry in the cingulum bundle in adults [79–81] and extend this

evidence to younger ages. Further studies are needed to investigate the role of tract asymmetry

in the development of cognitive functions. For instance, the left-over-right FA values have

been linked to attention orienting processes in young adults [82] and may benefit from a life-

span approach to clarify the development of this structural-functional relationship.

The last goal of the current study was to model different curve fits to explain the age

changes in WM volume and its microstructural properties. Results suggested that age changes

Table 6. AIC values of each model fit for the analyses on the density values of all considered tracts.

Tract AIC null AIC linear AIC quadratic AIC cubic AIC exponential

Left Right Left Right Left Right Left Right Left Right

ATR -28770 -6481.7 -28772.3 -6486.4 -28790 -6484.5 -28821.6 -6489.3 -28821 -6487.3

CBD -20511 -34670 -20510.33 -34676 -20509 -34689 -20518.2 -34694 -20516 -34692

CBP -79825 -30149 -79857.71 -30154 -80008 -30249 -80043.8 -30359 -80060 -30386

CBT -26271 -28440 -26273.12 -28442 -26281 -28469 -26287.7 -28483 -26297 -28483

CCB -49752.84 (non lateralized) -49755.8 (non lateralized) -49804.82 (non lateralized) -49815.94 (non lateralized) -49814.85 (non lateralized)

CCG -29705.81 (non lateralized) -29720.78 (non lateralized) -29767.16 (non lateralized) -29831.16 (non lateralized) -29857.38 (non lateralized)

CCS -4458.11 (non lateralized) -4462.712 (non lateralized) -4461.502 (non lateralized) -4462.217 (non lateralized) -4464.566 (non lateralized)

CST -29528 -29935 -29526.89 -29947 -29552 -29954 -29570.1 -29980 -29579 -29984

FX -35324 -28372 -35331.45 -28374 -35341 -28374 -35380.6 -28400 -35394 -28398

IFO -29688 -28717 -29696.2 -28734 -29724 -28765 -29772.9 -28769 -29785 -28781

ILF -31010 -33112 -31008.07 -33138 -31012 -33143 -31040.3 -33188 -31042 -33191

OR -50382 -36174 -50380.39 -36173 -50409 -36182 -50414.6 -36186 -50418 -36186

SLF1 -76314 -26249 -76312.19 -26247 -76465 -26259 -76487.8 -26271 -76513 -26275

SLF2 -24985 -82561 -24984.91 -82568 -25002 -82657 -25012.8 -82657 -25027 -82722

SLF3 -30313 -13257 -30325.78 -13258 -30388 -13266 -30496.8 -13271 -30522 -13270

UF -8327.6 -26100 -8335.583 -26100 -8342.8 -26116 -8377.8 -26122 -8426.1 -26142

https://doi.org/10.1371/journal.pone.0301520.t006
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in WM and GM volumes are exponential both when considering the lifespan and 0–5 age

ranges. The exponential increase also characterized the development of the FA and MD met-

rics of WM, regardless of the age range considered. Most individual studies applied linear fits

over narrowed age ranges and/or variable sample sizes (for a review, see [27]). However, non-

linear changes are reported when wider age ranges are considered. More studies are needed to

draw definitive conclusions on these brain changes. The changes occurring on individual

tracts showed similar patterns for both FA and MD values, indicating an exponential change

in FA and a quadratic trend for MD.

It is worth highlighting that our results come from the use of specific algorithms to estimate

and reconstruct WM fiber bundles, and that different approaches to deal with crossing fibers

may lead to different conclusions [83]. Similarly, our results are informative on the patterns of

WM development and its properties across the entire lifespan. However, more complex pat-

terns may emerge from curve fitting models that breakdown the changes in smaller age ranges.

This question may be better addressed from the use of longitudinal datasets with more equal

volume numbers across ages. Lastly, additional knowledge on the patterns of WM develop-

ment may be gained from implementing algorithms that consider the complexity of WM

microstructural properties that are neglected by diffusion tensor algorithms [48]. Overall, our

results suggested that different patterns of change occur for the WM metrics under investiga-

tion. All sex-related differences seemed to be leveled out when WM partial volumes were cor-

rected for the participant’s volume size, although the rate of change differed between males

and females in late adulthood. Microstructural properties of WM showed a general increase in

FA and decrease in MD, with sex-related differences only in MD. Hemispheric asymmetries in

FA occurred in all reconstructed tracts, except for the uncinate fasciculus, whereas changes in

MD values did not differ between left and right hemispheres. The exponential fit was the best

curve model to explain the WM changes in partial volume, FA (both brain-wide and at the

individual tract levels), and brain-wide MD. A quadratic trend was instead the best fit for the

MD changes occurring in infancy and childhood and the lifespan changes of each individual

tract. These results suggest that specific trajectories may be identified when the whole lifespan

is considered over investigations focusing on individual developmental stages. WM changes

occur throughout the lifespan following nonlinear pathways that should be further investigated

in relation to the functional changes that characterize the various domains of cognition [84].
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26. Hüppi P. S. and Dubois J., ‘Diffusion tensor imaging of brain development’, Semin Fetal Neonatal Med,

vol. 11, no. 6, pp. 489–497, Dec. 2006, https://doi.org/10.1016/J.SINY.2006.07.006 PMID: 16962837

27. Lebel C., Treit S., and Beaulieu C., ‘A review of diffusion MRI of typical white matter development from

early childhood to young adulthood’, NMR in Biomedicine, vol. 32, no. 4. 2019. https://doi.org/10.1002/

nbm.3778 PMID: 28886240

28. Peterson M. R. et al., ‘Normal childhood brain growth and a universal sex and anthropomorphic relation-

ship to cerebrospinal fluid’, J Neurosurg Pediatr, vol. 28, no. 4, pp. 458–468, Jul. 2021, https://doi.org/

10.3171/2021.2.PEDS201006 PMID: 34243147

PLOS ONE Brain white matter changes across lifespan

PLOS ONE | https://doi.org/10.1371/journal.pone.0301520 May 17, 2024 26 / 29

https://doi.org/10.1001/archpedi.161.2.193
http://www.ncbi.nlm.nih.gov/pubmed/17283306
https://doi.org/10.1038/nrn2575
http://www.ncbi.nlm.nih.gov/pubmed/19190637
https://doi.org/10.1016/j.nurt.2007.05.011
http://www.ncbi.nlm.nih.gov/pubmed/17599699
https://doi.org/10.1089/brain.2011.0071
https://doi.org/10.1089/brain.2011.0071
http://www.ncbi.nlm.nih.gov/pubmed/22432902
https://doi.org/10.1038/nn.4134
http://www.ncbi.nlm.nih.gov/pubmed/26505566
https://doi.org/10.1523/JNEUROSCI.3479-08.2008
https://doi.org/10.1523/JNEUROSCI.3479-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/19020011
https://doi.org/10.1038/nrn.2018.1
http://www.ncbi.nlm.nih.gov/pubmed/29449712
https://doi.org/10.1093/cercor/11.4.335
https://doi.org/10.1093/cercor/11.4.335
http://www.ncbi.nlm.nih.gov/pubmed/11278196
https://doi.org/10.1016/j.neuroimage.2020.117441
http://www.ncbi.nlm.nih.gov/pubmed/33039618
https://doi.org/10.1523/JNEUROSCI.5302-10.2011
https://doi.org/10.1523/JNEUROSCI.5302-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21795544
https://doi.org/10.1016/j.neuroimage.2022.118872
http://www.ncbi.nlm.nih.gov/pubmed/34999202
https://doi.org/10.1038/ncomms5932
https://doi.org/10.1038/ncomms5932
http://www.ncbi.nlm.nih.gov/pubmed/25230200
https://doi.org/10.1016/j.neurobiolaging.2005.05.016
https://doi.org/10.1016/j.neurobiolaging.2005.05.016
http://www.ncbi.nlm.nih.gov/pubmed/16006011
https://doi.org/10.1007/s11065-010-9148-4
http://www.ncbi.nlm.nih.gov/pubmed/21042938
http://www.ajronline.org
https://doi.org/10.2214/ajr.179.6.1791515
https://doi.org/10.2214/ajr.179.6.1791515
http://www.ncbi.nlm.nih.gov/pubmed/12438047
https://doi.org/10.1016/j.neuroimage.2005.08.017
https://doi.org/10.1016/j.neuroimage.2005.08.017
http://www.ncbi.nlm.nih.gov/pubmed/16194615
https://doi.org/10.1097/01.chi.0000246064.93200.e8
https://doi.org/10.1097/01.chi.0000246064.93200.e8
http://www.ncbi.nlm.nih.gov/pubmed/17242625
https://doi.org/10.1016/J.SINY.2006.07.006
http://www.ncbi.nlm.nih.gov/pubmed/16962837
https://doi.org/10.1002/nbm.3778
https://doi.org/10.1002/nbm.3778
http://www.ncbi.nlm.nih.gov/pubmed/28886240
https://doi.org/10.3171/2021.2.PEDS201006
https://doi.org/10.3171/2021.2.PEDS201006
http://www.ncbi.nlm.nih.gov/pubmed/34243147
https://doi.org/10.1371/journal.pone.0301520


29. Frangou S. et al., ‘Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged

3–90 years’, Hum Brain Mapp, vol. 43, no. 1, pp. 431–451, Jan. 2022, https://doi.org/10.1002/HBM.

25364 PMID: 33595143

30. Zhang H. et al., ‘Growth charts of brain morphometry for preschool children’, Neuroimage, vol. 255, Jul.

2022, https://doi.org/10.1016/j.neuroimage.2022.119178 PMID: 35430358

31. Van Essen D. C. et al., ‘The Human Connectome Project: A data acquisition perspective’, Neuroimage,

vol. 62, no. 4, pp. 2222–2231, Oct. 2012, https://doi.org/10.1016/j.neuroimage.2012.02.018 PMID:

22366334

32. Somerville L. H. et al., ‘The Lifespan Human Connectome Project in Development: A large-scale study

of brain connectivity development in 5–21 year olds’, Neuroimage, vol. 183, pp. 456–468, Dec. 2018,

https://doi.org/10.1016/J.NEUROIMAGE.2018.08.050 PMID: 30142446

33. Bookheimer S. Y. et al., ‘The Lifespan Human Connectome Project in Aging: An overview’, Neuro-

image, vol. 185, pp. 335–348, Jan. 2019, https://doi.org/10.1016/j.neuroimage.2018.10.009 PMID:

30332613

34. Howell B. R. et al., ‘The UNC/UMN Baby Connectome Project (BCP): An overview of the study design

and protocol development’, Neuroimage, vol. 185, no. October 2017, pp. 891–905, 2019, https://doi.

org/10.1016/j.neuroimage.2018.03.049 PMID: 29578031

35. Newman-Norlund R. D. et al., ‘The Aging Brain Cohort (ABC) repository: The University of South Caroli-

na’s multimodal lifespan database for studying the relationship between the brain, cognition, genetics

and behavior in healthy aging’, Neuroimage: Reports, vol. 1, no. 1, p. 100008, Mar. 2021, https://doi.

org/10.1016/J.YNIRP.2021.100008

36. Hazlett H. C. et al., ‘Brain volume findings in 6-month-old infants at high familial risk for autism’, Ameri-

can Journal of Psychiatry, vol. 169, no. 6, pp. 601–608, Jun. 2012, https://doi.org/10.1176/appi.ajp.

2012.11091425 PMID: 22684595

37. Hazlett H. C. et al., ‘Early brain development in infants at high risk for autism spectrum disorder’, Nature,

vol. 542, no. 7641, pp. 348–351, 2017, https://doi.org/10.1038/nature21369 PMID: 28202961

38. Gilmore J. H. et al., ‘Genetic and environmental contributions to neonatal brain structure: A twin study’,

Hum Brain Mapp, vol. 31, no. 8, pp. 1174–1182, Aug. 2010, https://doi.org/10.1002/HBM.20926 PMID:

20063301

39. Gilmore J. H. et al., ‘Longitudinal Development of Cortical and Subcortical Gray Matter from Birth to 2

Years’, Cerebral Cortex, vol. 22, no. 11, pp. 2478–2485, Nov. 2012, https://doi.org/10.1093/cercor/

bhr327 PMID: 22109543

40. Shi F. et al., ‘Infant Brain Atlases from Neonates to 1- and 2-Year-Olds’, PLoS One, vol. 6, no. 4, p.

e18746, 2011, https://doi.org/10.1371/JOURNAL.PONE.0018746 PMID: 21533194

41. Jernigan T. L. et al., ‘The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository’,

Neuroimage, vol. 124, pp. 1149–1154, Jan. 2016, https://doi.org/10.1016/J.NEUROIMAGE.2015.04.

057 PMID: 25937488

42. Deoni S. C. L., Dean D. C., O’Muircheartaigh J., Dirks H., and Jerskey B. A., ‘Investigating white matter

development in infancy and early childhood using myelin water faction and relaxation time mapping’,

Neuroimage, vol. 63, no. 3, pp. 1038–1053, 2012, https://doi.org/10.1016/j.neuroimage.2012.07.037

PMID: 22884937

43. Lamontagne P. J. et al., ‘OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Nor-

mal Aging and Alzheimer Disease’, https://doi.org/10.1101/2019.12.13.19014902

44. Alexander L. M. et al., ‘14 Division of Child and Adolescent Psychiatric Research’, 2017, https://doi.org/

10.1038/sdata.2017.181 PMID: 29257126

45. Shafto M. A. et al., ‘The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: A

cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing’, BMC Neurol, vol.

14, no. 1, pp. 1–25, Oct. 2014, https://doi.org/10.1186/S12883-014-0204-1/TABLES/5

46. Taylor J. R. et al., ‘The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository:

Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample’,

Neuroimage, vol. 144, pp. 262–269, Jan. 2017, https://doi.org/10.1016/j.neuroimage.2015.09.018

PMID: 26375206

47. Douaud G. et al., ‘Anatomically related grey and white matter abnormalities in adolescent-onset schizo-

phrenia’, Brain, vol. 130, no. 9, pp. 2375–2386, Sep. 2007, https://doi.org/10.1093/brain/awm184

PMID: 17698497

48. Zhang Y., Brady M., and Smith S., ‘Segmentation of brain MR images through a hidden Markov random

field model and the expectation-maximization algorithm’, IEEE Trans Med Imaging, vol. 20, no. 1, pp.

45–57, Jan. 2001, https://doi.org/10.1109/42.906424 PMID: 11293691

PLOS ONE Brain white matter changes across lifespan

PLOS ONE | https://doi.org/10.1371/journal.pone.0301520 May 17, 2024 27 / 29

https://doi.org/10.1002/HBM.25364
https://doi.org/10.1002/HBM.25364
http://www.ncbi.nlm.nih.gov/pubmed/33595143
https://doi.org/10.1016/j.neuroimage.2022.119178
http://www.ncbi.nlm.nih.gov/pubmed/35430358
https://doi.org/10.1016/j.neuroimage.2012.02.018
http://www.ncbi.nlm.nih.gov/pubmed/22366334
https://doi.org/10.1016/J.NEUROIMAGE.2018.08.050
http://www.ncbi.nlm.nih.gov/pubmed/30142446
https://doi.org/10.1016/j.neuroimage.2018.10.009
http://www.ncbi.nlm.nih.gov/pubmed/30332613
https://doi.org/10.1016/j.neuroimage.2018.03.049
https://doi.org/10.1016/j.neuroimage.2018.03.049
http://www.ncbi.nlm.nih.gov/pubmed/29578031
https://doi.org/10.1016/J.YNIRP.2021.100008
https://doi.org/10.1016/J.YNIRP.2021.100008
https://doi.org/10.1176/appi.ajp.2012.11091425
https://doi.org/10.1176/appi.ajp.2012.11091425
http://www.ncbi.nlm.nih.gov/pubmed/22684595
https://doi.org/10.1038/nature21369
http://www.ncbi.nlm.nih.gov/pubmed/28202961
https://doi.org/10.1002/HBM.20926
http://www.ncbi.nlm.nih.gov/pubmed/20063301
https://doi.org/10.1093/cercor/bhr327
https://doi.org/10.1093/cercor/bhr327
http://www.ncbi.nlm.nih.gov/pubmed/22109543
https://doi.org/10.1371/JOURNAL.PONE.0018746
http://www.ncbi.nlm.nih.gov/pubmed/21533194
https://doi.org/10.1016/J.NEUROIMAGE.2015.04.057
https://doi.org/10.1016/J.NEUROIMAGE.2015.04.057
http://www.ncbi.nlm.nih.gov/pubmed/25937488
https://doi.org/10.1016/j.neuroimage.2012.07.037
http://www.ncbi.nlm.nih.gov/pubmed/22884937
https://doi.org/10.1101/2019.12.13.19014902
https://doi.org/10.1038/sdata.2017.181
https://doi.org/10.1038/sdata.2017.181
http://www.ncbi.nlm.nih.gov/pubmed/29257126
https://doi.org/10.1186/S12883-014-0204-1/TABLES/5
https://doi.org/10.1016/j.neuroimage.2015.09.018
http://www.ncbi.nlm.nih.gov/pubmed/26375206
https://doi.org/10.1093/brain/awm184
http://www.ncbi.nlm.nih.gov/pubmed/17698497
https://doi.org/10.1109/42.906424
http://www.ncbi.nlm.nih.gov/pubmed/11293691
https://doi.org/10.1371/journal.pone.0301520


49. Smith S. M. et al., ‘Advances in functional and structural MR image analysis and implementation as

FSL’, Neuroimage, vol. 23, pp. S208–S219, 2004, https://doi.org/10.1016/j.neuroimage.2004.07.051

PMID: 15501092

50. Andersson J. L. R., Skare S., and Ashburner J., ‘How to correct susceptibility distortions in spin-echo

echo-planar images: application to diffusion tensor imaging’, Neuroimage, vol. 20, no. 2, pp. 870–888,

2003, https://doi.org/10.1016/S1053-8119(03)00336-7 PMID: 14568458

51. Andersson J. L. R. and Sotiropoulos S. N., ‘An integrated approach to correction for off-resonance

effects and subject movement in diffusion MR imaging’, Neuroimage, vol. 125, pp. 1063–1078, 2016,

https://doi.org/10.1016/j.neuroimage.2015.10.019 PMID: 26481672

52. Hernández M. et al., ‘Correction: Accelerating Fibre Orientation Estimation from Diffusion Weighted

Magnetic Resonance Imaging Using GPUs’, PLoS One, vol. 10, no. 6, Jun. 2015, https://doi.org/10.

1371/journal.pone.0130915 PMID: 26066039

53. De Groot M. et al., ‘Improving alignment in Tract-based spatial statistics: Evaluation and optimization of

image registration’, Neuroimage, vol. 76, pp. 400–411, Aug. 2013, https://doi.org/10.1016/j.

neuroimage.2013.03.015 PMID: 23523807

54. Warrington S. et al., ‘XTRACT—Standardised protocols for automated tractography in the human and

macaque brain’, Neuroimage, vol. 217, p. 116923, Aug. 2020, https://doi.org/10.1016/j.neuroimage.

2020.116923 PMID: 32407993

55. Richards J. E. and Xie W., ‘Brains for All the Ages: Structural Neurodevelopment in Infants and Children

from a Life-Span Perspective’, in Advances in Child Development and Behavior, vol. 48, Academic

Press Inc., 2015, pp. 1–52. https://doi.org/10.1016/bs.acdb.2014.11.001 PMID: 25735940

56. Behrens T. E. J. et al., ‘Characterization and propagation of uncertainty in diffusion-weighted MR imag-

ing’, Magn Reson Med, vol. 50, no. 5, pp. 1077–1088, 2003, https://doi.org/10.1002/mrm.10609 PMID:

14587019

57. Behrens T. E. J., Berg H. J., Jbabdi S., Rushworth M. F. S., and Woolrich M. W., ‘Probabilistic diffusion

tractography with multiple fibre orientations: What can we gain?’, Neuroimage, vol. 34, no. 1, pp. 144–

155, Jan. 2007, https://doi.org/10.1016/J.NEUROIMAGE.2006.09.018 PMID: 17070705

58. Vydrova R. et al., ‘Structural alterations of the language connectome in children with specific language

impairment’, Brain Lang, vol. 151, pp. 35–41, Dec. 2015, https://doi.org/10.1016/j.bandl.2015.10.003

PMID: 26609941

59. Fennema-Notestine C. et al., ‘Feasibility of multi-site clinical structural neuroimaging studies of aging

using legacy data’, Neuroinformatics, vol. 5, no. 4, pp. 235–245, Dec. 2007, https://doi.org/10.1007/

s12021-007-9003-9 PMID: 17999200

60. Pardoe H., Pell G. S., Abbott D. F., Berg A. T., and Jackson G. D., ‘Multi-site voxel-based morphometry:

Methods and a feasibility demonstration with childhood absence epilepsy’, Neuroimage, vol. 42, no.

2, pp. 611–616, Aug. 2008, https://doi.org/10.1016/j.neuroimage.2008.05.007 PMID: 18585930

61. Rozycki M. et al., ‘Multisite machine learning analysis provides a robust structural imaging signature of

schizophrenia detectable across diverse patient populations and within individuals’, Schizophr Bull, vol.

44, no. 5, pp. 1035–1044, Aug. 2018, https://doi.org/10.1093/schbul/sbx137 PMID: 29186619

62. Stonnington C. M. et al., ‘Interpreting scan data acquired from multiple scanners: A study with Alzhei-

mer’s disease’, Neuroimage, vol. 39, no. 3, pp. 1180–1185, Feb. 2008, https://doi.org/10.1016/J.

NEUROIMAGE.2007.09.066 PMID: 18032068

63. Johnson W. E., Li C., and Rabinovic A., ‘Adjusting batch effects in microarray expression data using

empirical Bayes methods’, Biostatistics, vol. 8, no. 1, pp. 118–127, Jan. 2007, https://doi.org/10.1093/

biostatistics/kxj037 PMID: 16632515

64. Pomponio R. et al., ‘Harmonization of large MRI datasets for the analysis of brain imaging patterns

throughout the lifespan’, Neuroimage, vol. 208, p. 116450, Mar. 2020, https://doi.org/10.1016/J.

NEUROIMAGE.2019.116450 PMID: 31821869

65. Shinohara R. T. et al., ‘Statistical normalization techniques for magnetic resonance imaging’, Neuro-

image Clin, vol. 6, pp. 9–19, Jan. 2014, https://doi.org/10.1016/j.nicl.2014.08.008 PMID: 25379412

66. Sun D. et al., ‘A comparison of methods to harmonize cortical thickness measurements across scan-

ners and sites’, Neuroimage, vol. 261, p. 119509, Nov. 2022, https://doi.org/10.1016/j.neuroimage.

2022.119509 PMID: 35917919

67. Westlye L. T. et al., ‘Life-Span Changes of the Human Brain White Matter: Diffusion Tensor Imaging

(DTI) and Volumetry’, Cerebral Cortex, vol. 20, no. 9, pp. 2055–2068, Sep. 2010, https://doi.org/10.

1093/CERCOR/BHP280 PMID: 20032062

68. De Bellis M. D. et al., ‘Sex Differences in Brain Maturation during Childhood and Adolescence’, Cerebral

Cortex, vol. 11, no. 6, pp. 552–557, Jun. 2001, https://doi.org/10.1093/cercor/11.6.552 PMID:

11375916

PLOS ONE Brain white matter changes across lifespan

PLOS ONE | https://doi.org/10.1371/journal.pone.0301520 May 17, 2024 28 / 29

https://doi.org/10.1016/j.neuroimage.2004.07.051
http://www.ncbi.nlm.nih.gov/pubmed/15501092
https://doi.org/10.1016/S1053-8119%2803%2900336-7
http://www.ncbi.nlm.nih.gov/pubmed/14568458
https://doi.org/10.1016/j.neuroimage.2015.10.019
http://www.ncbi.nlm.nih.gov/pubmed/26481672
https://doi.org/10.1371/journal.pone.0130915
https://doi.org/10.1371/journal.pone.0130915
http://www.ncbi.nlm.nih.gov/pubmed/26066039
https://doi.org/10.1016/j.neuroimage.2013.03.015
https://doi.org/10.1016/j.neuroimage.2013.03.015
http://www.ncbi.nlm.nih.gov/pubmed/23523807
https://doi.org/10.1016/j.neuroimage.2020.116923
https://doi.org/10.1016/j.neuroimage.2020.116923
http://www.ncbi.nlm.nih.gov/pubmed/32407993
https://doi.org/10.1016/bs.acdb.2014.11.001
http://www.ncbi.nlm.nih.gov/pubmed/25735940
https://doi.org/10.1002/mrm.10609
http://www.ncbi.nlm.nih.gov/pubmed/14587019
https://doi.org/10.1016/J.NEUROIMAGE.2006.09.018
http://www.ncbi.nlm.nih.gov/pubmed/17070705
https://doi.org/10.1016/j.bandl.2015.10.003
http://www.ncbi.nlm.nih.gov/pubmed/26609941
https://doi.org/10.1007/s12021-007-9003-9
https://doi.org/10.1007/s12021-007-9003-9
http://www.ncbi.nlm.nih.gov/pubmed/17999200
https://doi.org/10.1016/j.neuroimage.2008.05.007
http://www.ncbi.nlm.nih.gov/pubmed/18585930
https://doi.org/10.1093/schbul/sbx137
http://www.ncbi.nlm.nih.gov/pubmed/29186619
https://doi.org/10.1016/J.NEUROIMAGE.2007.09.066
https://doi.org/10.1016/J.NEUROIMAGE.2007.09.066
http://www.ncbi.nlm.nih.gov/pubmed/18032068
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/biostatistics/kxj037
http://www.ncbi.nlm.nih.gov/pubmed/16632515
https://doi.org/10.1016/J.NEUROIMAGE.2019.116450
https://doi.org/10.1016/J.NEUROIMAGE.2019.116450
http://www.ncbi.nlm.nih.gov/pubmed/31821869
https://doi.org/10.1016/j.nicl.2014.08.008
http://www.ncbi.nlm.nih.gov/pubmed/25379412
https://doi.org/10.1016/j.neuroimage.2022.119509
https://doi.org/10.1016/j.neuroimage.2022.119509
http://www.ncbi.nlm.nih.gov/pubmed/35917919
https://doi.org/10.1093/CERCOR/BHP280
https://doi.org/10.1093/CERCOR/BHP280
http://www.ncbi.nlm.nih.gov/pubmed/20032062
https://doi.org/10.1093/cercor/11.6.552
http://www.ncbi.nlm.nih.gov/pubmed/11375916
https://doi.org/10.1371/journal.pone.0301520


69. Choe M. S. et al., ‘Regional Infant Brain Development: An MRI-Based Morphometric Analysis in 3 to 13

Month Olds’, Cerebral Cortex, vol. 23, no. 9, pp. 2100–2117, Sep. 2013, https://doi.org/10.1093/cercor/

bhs197 PMID: 22772652

70. Dennison M. et al., ‘Mapping subcortical brain maturation during adolescence: evidence of hemisphere-

and sex-specific longitudinal changes’, Dev Sci, vol. 16, no. 5, pp. 772–791, Sep. 2013, https://doi.org/

10.1111/DESC.12057 PMID: 24033581

71. Narvacan K., Treit S., Camicioli R., Martin W., and Beaulieu C., ‘Evolution of deep gray matter volume

across the human lifespan’, Hum Brain Mapp, vol. 38, no. 8, pp. 3771–3790, Aug. 2017, https://doi.org/

10.1002/hbm.23604 PMID: 28548250

72. Wierenga L. M., Sexton J. A., Laake P., Giedd J. N., and Tamnes C. K., ‘A Key Characteristic of Sex Dif-

ferences in the Developing Brain: Greater Variability in Brain Structure of Boys than Girls’, Cerebral Cor-

tex, vol. 28, no. 8, pp. 2741–2751, Aug. 2018, https://doi.org/10.1093/cercor/bhx154 PMID: 28981610

73. Beaulieu C., ‘The basis of anisotropic water diffusion in the nervous system–a technical review’, NMR

Biomed, vol. 15, no. 7–8, pp. 435–455, Nov. 2002, https://doi.org/10.1002/nbm.782 PMID: 12489094

74. Eluvathingal T. J., Hasan K. M., Kramer L., Fletcher J. M., and Ewing-Cobbs L., ‘Quantitative Diffusion

Tensor Tractography of Association and Projection Fibers in Normally Developing Children and Adoles-

cents’, Cerebral Cortex, vol. 17, no. 12, pp. 2760–2768, Dec. 2007, https://doi.org/10.1093/cercor/

bhm003 PMID: 17307759

75. Bava S. et al., ‘Sex differences in adolescent white matter architecture’, Brain Res, vol. 1375, pp. 41–

48, Feb. 2011, https://doi.org/10.1016/j.brainres.2010.12.051 PMID: 21172320

76. Simmonds D. J., Hallquist M. N., Asato M., and Luna B., ‘Developmental stages and sex differences of

white matter and behavioral development through adolescence: A longitudinal diffusion tensor imaging

(DTI) study’, Neuroimage, vol. 92, pp. 356–368, May 2014, https://doi.org/10.1016/J.NEUROIMAGE.

2013.12.044 PMID: 24384150

77. Hsu J. L. et al., ‘Gender differences and age-related white matter changes of the human brain: A diffu-

sion tensor imaging study’, Neuroimage, vol. 39, no. 2, pp. 566–577, Jan. 2008, https://doi.org/10.

1016/J.NEUROIMAGE.2007.09.017 PMID: 17951075

78. Hendrix C. L. and Thomason M. E., ‘A survey of protocols from 54 infant and toddler neuroimaging

research labs’, Dev Cogn Neurosci, vol. 54, p. 101060, Apr. 2022, https://doi.org/10.1016/j.dcn.2022.

101060 PMID: 35033971

79. Gong G. et al., ‘Asymmetry analysis of cingulum based on scale-invariant parameterization by diffusion

tensor imaging’, Hum Brain Mapp, vol. 24, no. 2, pp. 92–98, Feb. 2005, https://doi.org/10.1002/hbm.

20072 PMID: 15455461

80. Takao H., Hayashi N., and Ohtomo K., ‘White matter asymmetry in healthy individuals: a diffusion ten-

sor imaging study using tract-based spatial statistics’, Neuroscience, vol. 193, pp. 291–299, Oct. 2011,

https://doi.org/10.1016/j.neuroscience.2011.07.041 PMID: 21824507

81. Yin X. et al., ‘Inferior frontal white matter asymmetry correlates with executive control of attention’, Hum

Brain Mapp, vol. 34, no. 4, pp. 796–813, Apr. 2013, https://doi.org/10.1002/hbm.21477 PMID:

22110013

82. Nestor P. G., Kubicki M., Spencer K. M., Niznikiewicz M., McCarley R. W., and Shenton M. E., ‘Atten-

tional networks and cingulum bundle in chronic schizophrenia’, Schizophr Res, vol. 90, no. 1–3, pp.

308–315, Feb. 2007, https://doi.org/10.1016/j.schres.2006.10.005 PMID: 17150337

83. Bastiani M., Shah N. J., Goebel R., and Roebroeck A., ‘Human cortical connectome reconstruction from

diffusion weighted MRI: The effect of tractography algorithm’, 2012, https://doi.org/10.1016/j.

neuroimage.2012.06.002 PMID: 22699045

84. De Mooij S. M. M., Richard X., Henson N. A., Waldorp L. J., Rogier X., and Kievit A., ‘Behavioral/Cogni-

tive Age Differentiation within Gray Matter, White Matter, and between Memory and White Matter in an

Adult Life Span Cohort’, 2018, https://doi.org/10.1523/JNEUROSCI.1627-17.2018 PMID: 29848485

PLOS ONE Brain white matter changes across lifespan

PLOS ONE | https://doi.org/10.1371/journal.pone.0301520 May 17, 2024 29 / 29

https://doi.org/10.1093/cercor/bhs197
https://doi.org/10.1093/cercor/bhs197
http://www.ncbi.nlm.nih.gov/pubmed/22772652
https://doi.org/10.1111/DESC.12057
https://doi.org/10.1111/DESC.12057
http://www.ncbi.nlm.nih.gov/pubmed/24033581
https://doi.org/10.1002/hbm.23604
https://doi.org/10.1002/hbm.23604
http://www.ncbi.nlm.nih.gov/pubmed/28548250
https://doi.org/10.1093/cercor/bhx154
http://www.ncbi.nlm.nih.gov/pubmed/28981610
https://doi.org/10.1002/nbm.782
http://www.ncbi.nlm.nih.gov/pubmed/12489094
https://doi.org/10.1093/cercor/bhm003
https://doi.org/10.1093/cercor/bhm003
http://www.ncbi.nlm.nih.gov/pubmed/17307759
https://doi.org/10.1016/j.brainres.2010.12.051
http://www.ncbi.nlm.nih.gov/pubmed/21172320
https://doi.org/10.1016/J.NEUROIMAGE.2013.12.044
https://doi.org/10.1016/J.NEUROIMAGE.2013.12.044
http://www.ncbi.nlm.nih.gov/pubmed/24384150
https://doi.org/10.1016/J.NEUROIMAGE.2007.09.017
https://doi.org/10.1016/J.NEUROIMAGE.2007.09.017
http://www.ncbi.nlm.nih.gov/pubmed/17951075
https://doi.org/10.1016/j.dcn.2022.101060
https://doi.org/10.1016/j.dcn.2022.101060
http://www.ncbi.nlm.nih.gov/pubmed/35033971
https://doi.org/10.1002/hbm.20072
https://doi.org/10.1002/hbm.20072
http://www.ncbi.nlm.nih.gov/pubmed/15455461
https://doi.org/10.1016/j.neuroscience.2011.07.041
http://www.ncbi.nlm.nih.gov/pubmed/21824507
https://doi.org/10.1002/hbm.21477
http://www.ncbi.nlm.nih.gov/pubmed/22110013
https://doi.org/10.1016/j.schres.2006.10.005
http://www.ncbi.nlm.nih.gov/pubmed/17150337
https://doi.org/10.1016/j.neuroimage.2012.06.002
https://doi.org/10.1016/j.neuroimage.2012.06.002
http://www.ncbi.nlm.nih.gov/pubmed/22699045
https://doi.org/10.1523/JNEUROSCI.1627-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/29848485
https://doi.org/10.1371/journal.pone.0301520

