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Abstract
In this paper we consider the nonlinear Schrödinger (NLS) equation with power
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paper, Murphy and Nakanishi (2021 Discrete Contin. Dyn. Syst. 41 1507–17)
consider the NLS equation with potentials and measures, singular enough to
include the δ-potential in dimension one and they show analogous properties.
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of the linear part of the interaction, due the qualitatively different and stronger
character of the singularity involved.
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1. Introduction

We consider the nonlinear Schrödinger equation

i∂tψ =Hαψ +F(ψ), (1.1)

where Hα is the family of self-adjoint operators known as point interactions (see later) and
F(ψ) =±|ψ|p−1ψ . This equation has been recently considered, in dimension two and three,
by several authors as regards its well posedness in different functional frameworks ([8, 14]),
existence and stability of standing waves ([1, 2]) and blow-up ([13]). When α=+∞ the oper-
ator Hα coincides with the Laplacian and (1.1) is the standard nonlinear Schrödinger (NLS)
equation. In this case it is well known that scattering to the free dynamics is impossible for
low power nonlinearity, in the sense that no non trivial initial state behaves asymptotically as
a solution of the free equation (‘absence of scattering’). The nonlinearities with this property
are called long range nonlinearities, because in a sense they mimic the effect of a long range
potential in the linear equation. They are given by the condition 1< p⩽ 1+ 2

n , correspond-
ing to 1< p⩽ 2 for n= 2 and 1< p⩽ 5

3 for n= 3. Absence of scattering in this framework
has been well known since a long time, starting with the original papers [7, 15, 23]; see also
[10], theorem 7.5.2. Quite recently the subject has been reconsidered by several authors. In
particular, a wide generalization of the classical quoted results has been obtained by Murphy
and Nakanishi in [19]. In the cited paper the authors generalize the absence of scattering for
long range nonlinearities in two directions. They replace the Laplacian with a Schrödinger
operator with quite general external potentials, including measures; and when the dynamics
allows the existence of space localized solutions globally bounded in time (such as, e.g. stand-
ing waves), they also exclude the occurrence of scattering around these solutions. Among the
models included, the authors stress the case of the NLS equation with a delta potential in one
dimension, a quite well studied model in the last decades, with many results ranging from well
posedness, to scattering and orbital and asymptotic stability of standing waves (see the bibli-
ography in [19]). Further extensions of the result for the NLS equation with a delta potential
have also been given in the (still one dimensional) case of the NLS equation on star graphs
[5, 6]. In particular it is implicit in [5] the case of a line with a general point interaction, not
restricted to delta potentials. Concerning the scattering problem for NLS equation on graphs,
we also point out the recent paper [17] in which the authors analyse the scattering vs. blow-
up dichotomy in the supercritical regime (p> 5) for the NLS equation on a star-graph. In the
present paper we consider the higher dimensional versions of a delta potential, the so called
point interactions. As it is well known, in dimension higher than one there is no possibility
to properly define a (−∆+ δ)-like operator, at least if one wishes to give to the delta distri-
bution the usual meaning. The way out is to define a self-adjoint operator corresponding to a
perturbation of the Laplacian concentrated at a point. A natural way to do this is to consider
the symmetric operator−∆with domainD(−∆) := C∞

0 (Rn\{0}) and to build its self-adjoint
extensions. A nontrivial result of this procedure (i.e. not coinciding with the Laplacian) only
exists if n⩽ 3, and for the case of our interest (n= 2,3), it constitutes a 1-parameter family of
self-adjoint operators Hα where α ∈ R∗ is the parameter that fixes the self-adjoint extension;
as already mentioned, for α=+∞ one hasHα =−∆ (see [4] and section 2 for more details).

With this premise, equation (1.1) is meaningful, as an abstract Schrödinger equation with
a well-defined linear part and as recalled, several well posedness results exist, see, e.g. [8, 14]
and, for abstract results, [10, chapter 3.3] and [20]. Concerning the behavior of its solutions,
our main result is the following.
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Theorem 1.1. Suppose that a solution ψ(t) of equation (1.1) exists in L2, conserves the L2-
norm, it is global in the future and that it admits the asymptotic decomposition

ψ(t) = ei t∆ψ+ + l(t)+ o(1) in L2(Rn) as t→+∞, (1.2)

with ψ+ ∈ L2(Rn) and l ∈ L∞(R+;L2(Rn)∩Lq(Rn)) for some 1< q< 2.
Then, if n= 2 and 1< p<2, or n= 3 and 1< p< 4/3, one has ψ+ ≡ 0.

We add some remarks on the statement and on the proof.
The meaning of (1.2) is that ∥ψ(t)− ei t∆ψ+ − l(t)∥2 −→ 0 as t→+∞. As already men-

tioned, well posedness of (1.1) was treated in [8, 14], but for the validity of the main result,
general existence theorems are not needed once the hypotheses are satisfied.

We also remark that the main result could be stated with e−iHαt in the place of ei∆t thanks
to scattering theory for the couple (Hα,−∆) (see the proof of theorem 1.1 in section 3).

Notice also that the value or sign of α plays no role in the statement of the result.
Put in an informal way, theorem 1.1 states that for the NLS equation with a point interaction

and a long range power nonlinearity, asymptotically free states (l≡ 0) do not exist, nor do exist
states that are asymptotic to some kind of localized structure (l ̸= 0) up to a free evolution.
As recalled at the beginning, for this model standing waves exist (at least in the focusing
case F(ψ) =−|ψ|p−1ψ), so that the presence of the l(t) component in the decomposition is
essential. Other kind of localized solutions could also exist (for example in the one dimensional
case breathing solutions do exist) but the analysis of models with point interactions in higher
dimension is at its beginnings and nothing else is known.

Concerning the proof, its skeleton is the same as in the original Glassey’s paper [15], after
taking into account the improvement of [19]. However, differently from [19], point interactions
in dimensions two and three cannot be treated perturbatively. As a main consequence, one has
the limitation to 1< p< 4/3 if n= 3 (in contrast to 1< p⩽ 5/3 as in [19]). At a technical
level the issue arises from the boundedness of the wave operators in Lp(R3) only for 1< p< 3
for point interactions in dimension three (see remark 3.3 for details). In the light of these
considerations, a possible extension to higher powers of the nonlinearity requires an entirely
different analysis.

Notice finally that the analogous result holds true when t→−∞, with the same proof repla-
cing the wave operator W+ with W−. However, to avoid irrelevant complications in the nota-
tion, we will denote the wave operator withW without any superscript, we only give the proof
of the theorem as it is stated, for t→+∞, and in the analysis it is understood W=W+. The
structure of the paper is as follows. In section 2 firstly definition and properties of point inter-
actions are very briefly recalled; the rest of the section is devoted to discuss some scattering
properties of the couple (Hα,−∆). While the material is simple, to the knowledge of the
authors it is not stated elsewhere, so it is here included with some detail. Section 3 is devoted
to the proof of theorem 1.1.

2. Preliminaries

In this section we fix the notation, give the main definitions and prove several technical results
that will be used in what follows.

2.1. Notations

We denote by x, k and so on, points in Rn, n= 2,3.
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We denote by f̂ or F f the Fourier transform of f, defined to be unitary in L2(Rn):

f̂(k) :=
1

(2π)n/2

ˆ
Rn

dxe−ik·xf(x) k ∈ Rn.

We denote by ∥ · ∥ the L2(Rn)-norm associated with the inner product ⟨·, ·⟩ and with ∥ · ∥p
the Lp(Rn)-norm while we use ∥ · ∥Hs for the norm in the Sobolev spaces Hs(Rn), s ∈ R. The
set of bounded operators between two Banach space X and Y is denoted by B(X,Y).

For allλ> 0we denote byGλ the L2 solution of the distributional equation (−∆+λ2)Gλ =
δ0, where δ0 is the Dirac-delta distribution centred in x= 0. Explicitly we have:

Gλ(x) =


1
2π

K0(λ |x|) n= 2;

e−λ |x|

4π |x|
n= 3,

where K0 is the Macdonald function of order zero. We recall the relation 1
2πK0(z) = i

4H
(1)
0 (iz),

whereH(1)
0 (z) is the Hankel function of first kind and order zero (also known as zero-th Bessel

function of the third kind), see, e.g. [25] equation (8) p 78). For real arguments, we will also

need the relation H(1)
0 (−|k||x|) =−H(1)

0 (|k||x|) [25].
Given q ∈ [1,+∞], q

′
denotes the conjugate exponent, i.e. q−1 + q ′−1

= 1.
For a given real number q, we write q± to denote q± ε for some sufficiently small ε> 0.
We denote by o(Lq) any term whose norm in Lq(Rn) converges to 0 as t→∞.
We use c and C to denote generic positive constants whose dependence on the parameters

of the problem is irrelevant and it is understood that their value may change from line to line.

2.2. Point interactions

We denote by Hα the self-adjoint operator in L2(Rn), n= 2,3, given by the Laplacian with a
delta interaction of ‘strength’ α placed in x= 0.

We recall that, see [4], both for n= 2 and n= 3 the structure of the domain of Hα is the
same:

D(Hα) =
{
ψ ∈ L2(Rn)| ψ = ϕλ + qGλ, ϕλ ∈ H2(Rn), q ∈ C, q= Γα(λ)ϕ

λ(0)
}

(2.1)

with

Γα(λ) =


2π

2πα+ γ+ ln(λ/2)
n= 2,

1

α+ λ
4π

n= 3;
α ∈ R.

Here λ can be taken in R+, possibly excluded one point which we denote by |Eα|1/2, where
Eα is the negative eigenvalue ofHα, see below for the details. Even though λ enters the right
hand side in the definition of the operator domain D(Hα), since Gλ −Gλ̃ ∈ H2(Rn) for any
λ, λ̃ > 0, the domain does not depend on λ, see, e.g. [14, p 261]. Moreover, q is determined
only by the behaviour of ψ as |x| → 0 and does not depend on λ. Explicitly,

q=− lim
|x|→0

2π
ln(|x|)

ψ(x) for n= 2,

and

q= lim
|x|→0

4π |x|ψ(x) for n= 3.
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For n= 2, γ is the Euler–Mascheroni constant (for a comparison with [4], we recall that γ
is related to the digamma function Ψ by γ =−Ψ(1)). The constant α is real and it paramet-
rizes the family of operators through the relation q= Γα(λ)ϕ

λ(0), which plays the role of a
boundary condition at the singularity. For both n= 2 and n= 3 the free dynamics is recovered
in the limit α→+∞. Taking into account the decomposition ψ = ϕλ + qGλ in the definition
of the operator domain, the action of the operator is given by

Hαψ =−∆ϕλ −λ2qGλ ∀ψ ∈ D(Hα). (2.2)

The spectrum of the Hamiltonian σc(Hα) = σac(Hα) = [0,∞) and σsc(Hα) = ∅; for n= 2,
Hα has a simple negative eigenvalue {Eα} for any α ∈ R; for n= 3, if α⩾ 0 there is no point
spectrum, while forα< 0 there is a simple negative eigenvalue {Eα}.Whenever the eigenvalue
Eα exists, we denote by Φα the corresponding normalized eigenvector. We will not need the
explicit form of eigenvalues (see [4] for details), while eigenvectors are given by

Φα(x) =


NαK0(2e

−(2πα+γ)|x|) n= 2, α ∈ R;√
2|α|e

4πα |x|

|x|
n= 3, α < 0,

where Nα is a normalization constant whose explicit value is irrelevant for our analysis.
To simplify the notation, and since α is regarded as a fixed parameter, we omit the suffix α

from objects that may depend on it and from now on we simply write, for example,H≡Hα.

2.3. Generalized Fourier Transform

In this section we prove several results regarding the generalized Fourier Transform associated
with the continuous spectrum ofH.

We start with the well-known Dollard decomposition of the free Schrödinger dynamics

ei t∆ =MtDtFMt, (2.3)

where the unitary operators Mt and Dt are given by

Mt f(x) = ei
|x|2
4t f(x), Dt f(x) =

1
(i2t)n/2

f
( x
2t

)
. (2.4)

Formula (2.3) in particular implies that

lim
t→+∞

∥(ei t∆ −MtDtF)f∥= 0 ∀f ∈ L2(Rn), (2.5)

by the unitarity ofMtDtF and dominated convergence. We extend formula (2.5) to more gen-
eral situations. We present the following result which extends formula (2.5) to an abstract
setting and may have an interest on its own. We recall that for an Hilbert space H , V ∈ B(H )
is a partial isometry if it is an isometry on the orthogonal complement of its kernel.

Proposition 2.1. Let H, H0 be self-adjoint operators in an Hilbert space H . Assume that
there exist a unitary operator F and a partial isometry F ♯ such that

lim
t→+∞

∥ei tHe−i tH0 f −F ♯∗F f∥= 0 ∀f ∈ H . (2.6)

If there exist a unitary operator Vt, such that
lim

t→+∞
∥e−i tH0 f −VtF f∥= 0 ∀f ∈ H , (2.7)

then

lim
t→+∞

∥e−i tHf −VtF ♯f∥= 0 ∀f ∈ Ran(F ♯∗). (2.8)
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Proof. Let g ∈ H , then equation (2.6) is equivalent to

lim
t→+∞

∥ei tHe−i tH0F∗g−F ♯∗g∥= 0, (2.9)

and

lim
t→+∞

∥e−i tH0F∗g− e−i tHF ♯∗g∥= 0. (2.10)

By (2.7) we have

lim
t→+∞

∥Vtg− e−i tHF ♯∗g∥= 0. (2.11)

Setting f = F ♯∗g we arrive at (2.8).

In concrete cases one has H = L2(Rn), H0 =−∆, H=−∆+V, and F is the Fourier
transform. Taking into account (2.5) we can set Vt =MtDt. The role of F ♯ is played by the
generalized Fourier transform. Let Φ(k,x) be the generalized eigenfunctions of H (see e.g.
[21] section XI.6), and let

F ♯f(k) =
ˆ
Rn

Φ(k,x)f(x)dx k ∈ Rn. (2.12)

Assuming enough regularity forV, see [3, 18, 21] for different sets of hypothesis, it is known
that Φ(k,x) are well defined, equation (2.12) defines a partial isometry on L2(Rn), and that
Ran(F ♯∗) = Pac(H)L2(Rn). Moreover the wave operators W exist, they are complete and

Wf = lim
t→+∞

ei tHe−i tH0 f = F ♯∗F f.

In such cases all the hypothesis of proposition 2.1 are satisfied and for any f ∈ Pac(H)L2(Rn)
one has

lim
t→+∞

∥e−itHf −MtDtF ♯f∥= 0.

In what follows we will often use the notation F ♯f = f ♯.
Proposition 2.1 applies also when H=H, n= 2,3, a situation not immediately included in

[3, 18, 21], thanks to the fact that in these cases the generalized eigenfunctions and the wave
operators have an explicit expression. The generalized eigenfunctions are given by

Φ(k,x) =
eik·x

(2π)n/2
+R(k,x), (2.13)

with

R(k,x) =


i
4

1
2πα+ γ+ ln(−|k|/2i)

H(1)
0 (−|k||x|) for n= 2

1
(2π)3/2

1
4πα+ i|k|

e−i|k||x|

|x|
for n= 3,

, (2.14)

where the logarithm has to be understood as its principal value: ln(|k|/2i) = ln(|k|/2)− iπ/2,
see [4, chapter I.1.4—equation (1.4.11) and chapter I.5—equation (5.37)]. The generalized
Fourier transform defined via (2.12) is a partial isometry on L2(Rn) such that Ran(F ♯∗) =
Pac(H)L2(Rn). From [4, appendix E] there follows that the wave operators W exist, they are
complete and can be written as:

W= I+Ω,
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where Ω is the operator (mapping to radial functions)

Ωf(x) = Ωf(|x|) =


1
iπ

´∞
0 G−λ(x)

2πλ

2πα+ ln
(
λ
2

)
+π i

2 + γ

(´
S1 F f(λω)dω

)
dλ n= 2

1
i(2π)2

´∞
0 G−λ(x)

λ

α+ i λ4π

´
R e

iλrr
(´

S2 f(rω)dω
)
drdλ n= 3

,

and we denoted

Gλ(x) =

H
(1)
0 (λ|x|) n= 2
eiλ|x|

|x|
n= 3

. (2.15)

Finally, we have W= F ♯∗F . See also [11, equation (98)] and [12, equation (3.6)].
Therefore, thanks to proposition 2.1 for any f ∈ Pac(H)L2(Rn) there holds

lim
t→+∞

∥e−i tHf −MtDtF ♯f∥= 0, (2.16)

where F ♯ denotes the generalized Fourier transform defined by equations (2.12) and (2.13).
We conclude this section of preliminaries with the following proposition, showing that F ♯

satisfies a Hausdorff-Young type inequality.

Proposition 2.2. Let F ♯ be defined by equations (2.12) and (2.13). Then, for any q ∈ [2,∞)
if n= 2 and for any q ∈ [2,3) if n= 3 there holds true

∥F ♯f∥q ⩽ c∥ f∥q ′ . (2.17)

Proof. We start fromW= F ♯∗F whereW is the wave operator. Hence,F ♯∗ =WF∗ andF ♯ =
FW∗. It is known, see [11, 12], that W : L2(Rn)→ L2(Rn) extends to a bounded operator
W : Lr(Rn)→ Lr(Rn) for r ∈ (1,∞) if n= 2 and for r ∈ (1,3) if n= 3. Hence,W∗ : Lr

′
(Rn)→

Lr
′
(Rn) for r ′ ∈ (1,∞) if n= 2 and for r ′ ∈ (3/2,∞) if n= 3. Then (2.17) follows from the

Hausdorff-Young inequality

∥F ♯f∥q = ∥FW∗f∥q ⩽ ∥W∗f∥q′ q⩾ 2.

3. Proof of theorem 1.1

First we prove a technical lemma.

Lemma 3.1. Let φ0 ∈ C∞
0 (Rn \ {0}), set φ := φ0 −Φα⟨Φα,φ0⟩ (φ := φ0 if H has no point

spectrum) and define w̃(t) := D∗
t M

∗
t e

−i tHφ. Then:

(i) for q⩾ 2 if n= 2;
(ii) for 2⩽ q< 3 if n= 3;

there holds

w̃(t) = φ♯ + o(Lq) as t→+∞, (3.1)

where we recall that φ♯ = F ♯φ.

Proof. We start by noticing that φ = Pac(H)φ by definition. Using the intertwining property
of the wave operator, i.e. e−iHtPac(H) =Wei∆tW∗, and (2.3), we have
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w̃(t) = D∗
t M

∗
t e

−iHtPac(H)φ

= D∗
t M

∗
t We

i∆tW∗φ

= D∗
t M

∗
t WMtDtFMtW

∗φ

= D∗
t M

∗
t (I+Ω)MtDtFMtW

∗φ

= FMtW
∗φ +D∗

t M
∗
t ΩMtDtFMtW

∗φ. (3.2)

Now let us first consider the two dimensional case.
Notice that for 2⩽ q<∞ we have

lim
t→+∞

∥F(Mt− 1)W∗φ∥q = lim
t→∞

∥(Mt− 1)W∗φ∥q′ = 0,

thanks to φ ∈ Lq ′
(R2),W∗ ∈ B(Lr(R2),Lr(R2)) for r ∈ (1,∞) (see [11]) and dominated con-

vergence theorem. Therefore, keeping into account that FW∗ = F ♯, we can write:

FMtW
∗φ = FW∗φ +F(Mt− 1)W∗φ

= φ♯ + o(Lq). (3.3)

For q= 2, from (3.2) and (3.3) and taking into account that from (2.16) it follows w̃(t) =
φ♯ + o(L2) , we conclude that

D∗
t M

∗
t ΩMtDtFMtW

∗φ = o(L2). (3.4)

Next we prove that ∥D∗
t M

∗
t ΩMtDtFMtW∗φ∥r ⩽ c∥φ∥r ′ , for any r such that q< r<∞,

where c does not depend on t. To this aim we need some detailed properties of the operators
Ω. In facts, see [11],Ω can be written as a composition of two operators:Ωf = Km(|D|)fwhere

Kf(|x|) = 1
iπ

ˆ ∞

0
G−λ(x)λ

(ˆ
S1
F f(λω)dω

)
dλ,

and

m(|D|)f(x) = 1
2π

ˆ
R2

eix·km(|k|)F f(k)dk , m(|k|) = 2π

2πα+ ln
(

|k|
2

)
+π i

2 + γ
.

Both the operators belongs to B(Lr(R2),Lr(R2)) for r ∈ (1,∞). We derive now a commut-
ation property of Ω. Using the explicit form of generalized eigenfunctions (2.15), we have

D∗
t Ωf(|x|) =

t
iπ

ˆ ∞

0
G−λ(tx)

2πλ

2πα+ ln
(
λ
2

)
+π i

2 + γ

(ˆ
S1
F f(λω)dω

)
dλ

=
1
itπ

ˆ ∞

0
G−λ(x)

2πλ

2πα+ ln
(
λ
2t

)
+π i

2 + γ

(ˆ
S1
F f

(
λω

t

)
dω

)
dλ

=
1
iπ

ˆ ∞

0
G−λ(x)

2πλ

2πα+ ln
(
λ
2t

)
+π i

2 + γ

(ˆ
S1
FD∗

t f(λω)dω

)
dλ

= Kmt(|D|)D∗
t f(|x|), (3.5)

where we introduced the operator

mt(|D|)f(x) =
1
2π

ˆ
R2

eix·kmt(|k|)F f(k)dk , mt(|k|) =
2π

2πα+ ln
(

|k|
2

)
− ln(t)+π i

2 + γ
.
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Notice that mt → 0 pointwise but not uniformly, so limt→∞ ∥mt(|D|)∥B(Lq(R2),Lq(R2)) = 0
fails. However, exploiting Mikhlin’s multiplier theorem, the operator mt(|D|) is bounded in
Lq(R2) ∀q ∈ (1,∞):

∥mt(|D|)∥B(Lq(R2),Lq(R2)) ⩽ c , (3.6)

where the constant c is uniform in t (see [11] for a similar analysis and more details, in partic-
ular lemma 4.3 and section 4.4). Fix now q< r<∞. One has

∥D∗
t M

∗
t ΩMtDtFMtW

∗φ∥r = ∥Kmt(|D|)D∗
t MtDtFMtW

∗φ∥r
= ∥Kmt(|D|)M1/tFMtW

∗φ∥r
⩽ c∥FMtW

∗φ∥r
⩽ c∥W∗φ∥r ′
⩽ c∥φ∥r ′ . (3.7)

We conclude thatD∗
t M

∗
t ΩMtDtFMtW∗φ = o(Lq) by (3.4), (3.7) and interpolation. Giving this

and taking into account (3.2) and (3.3) the thesis (3.1) finally follows for the two dimensional
case.

The argument can be repeated in the three dimensional case with minor modifications. We
claim that Ωf = Km(|D|)f where

Kf(|x|) = i
(2π)2

ˆ ∞

0
G−λ(x)

ˆ
R
e−iλrrAf(r)drdλ , Af(r) =

ˆ
S2
f(rω)dω,

and

m(|D|)f(x) = 1
(2π)3/2

ˆ
R3

eix·km(|k|)F f(k)dk , m(|k|) = |k|
α+ i |k|

4π

.

To check that this is indeed the case we start by pointing out the following identities which
can be proved by a straightforward calculation:

AF f(r) =− 1
i r(2π)1/2

ˆ
R
e−irssAf(s)ds ; AF−1f(r) =

1
i r(2π)1/2

ˆ
R
eirssAf(s)ds.

We also point out the trivial identity AF f(r) = AF−1f(r), even though we will not use it. Next
we compute

rAm(|D|)f(r) = 1
i(2π)1/2

ˆ
R
eirssm(s)AF f(s)ds= 1

2π

ˆ
R
eirsm(s)

ˆ
R
e−iss′s′Af(s′)ds′ds,

where in the first identity we used the fact that the function m is spherically symmetric, hence
Am(·)F f(s) = m(s)AF f(s). The decompositionΩf = Km(|D|)f follows from the inversion for-
mula for the one dimensional Fourier transform.

The operator m(|D|) is bounded in Lr(R3) for r ∈ (1,∞) again by Mikhlin’s multiplier
theorem. Following and adapting [12], the operator K belongs to B(Lr(R3),Lr(R3)) for r ∈
(1,3) and consequently Ω belongs to B(Lr(R3),Lr(R3)) for r ∈ (1,3). Here we give a brief
proof of K ∈ B(Lr(R3),Lr(R3)) when r ∈ (1,3), for the reader’s sake and because of slight
differences from the treatment in [12]. By the change of variable r→−r, the operator K can
be written as

Kf(|x|) =− i
(2π)2

1
|x|

ˆ ∞

0
e−iλ|x|

ˆ
R
eiλrrAf(r)drdλ.
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Hence, by the properties of the (one dimensional) Fourier transform and after straightfor-
ward computations, it can be rearranged as

Kf(|x|) =− 1
(2π)2|x|

(L ∗ rAf)(|x|) , L(x) =
1

x− i0
,

where we introduced the distributional Calderon–Zygmund kernel L (see [22], section 3.1). It
is well known thatˆ

R
|(L ∗ g)(x)|p ρ(x)dx⩽

ˆ
R
|g(x)|p ρ(x)dx,

when ρ belongs to the Muckenhoupt class of Ap-weights (see [16], theorem 7.4.6). In our case
ra ∈ Ap for −1< a< p− 1 (see [16], example 7.1.7). For p ∈ (3/2,3) we have

∥Kf∥pp = c
ˆ ∞

0
r2−p|L ∗ rAf(r)|pdr⩽ c

ˆ ∞

0
r2−p|rAf(r)|pdr= c

ˆ ∞

0
r2|Af(r)|pdr= c∥ f∥pp.

Integrating by parts, we also have

Kf(|x|) =− 1
(2π)2|x|2

(
L ∗ r2Af

)
(|x|),

and repeating the above argument it follows that for p ∈ (1,3/2) we have

∥Kf∥pp = c
ˆ ∞

0
r2−2p|L ∗ r2Af(r)|pdr⩽ c

ˆ ∞

0
r2−2p|r2Af(r)|pdr= c

ˆ ∞

0
r2|Af(r)|pdr= c∥ f∥pp.

The case p= 3/2 follows by interpolation. When commuting with dilations, we obtain

D∗
t Km(|D|) = Kmt(|D|)D∗

t ,

where

mt(|D|)f(x) =
1

(2π)3/2

ˆ
R3

eix·kmt(|k|)F f(k)dk , mt(|k|) =
|k|

αt+ i |k|
4π

.

Since mt(|D|) is bounded uniformly in t, we can repeat the previous argument choosing
2< q< r< 3. The proof of the lemma is complete.

Remark 3.2. As it is well known, the point interaction in dimension three admits a zero energy
resonance for α= 0. We notice that this fact does not affect the previous proof of lemma 3.1.

Proof of theorem 1.1. First notice that (see, e.g. [4, appendix E]) by the linear scattering the-
ory for H, for any ψ+ ∈ L2(Rn) there exists v+ ∈ Pac(H)L2(Rn) such that

lim
t→+∞

∥ei t∆ψ+ − e−i tHv+∥= 0.

Therefore it is sufficient to prove that ∄v+ ∈ Pac(H)L2(Rn), v+ ̸= 0 such that

ψ (t) = e−itHv+ + l(t)+ o(L2), (3.8)

as t→+∞with l ∈ L∞(R+;L2(Rn)∩L2−(Rn)).We follow a variant of the classical argument
of Glassey [15], due to [19]; see also [7, 23]. We proceed by contradiction and assume that
∃v+ ∈ Pac(H)L2(Rn) such that (3.8) holds. Let us consider

B(t) = Im⟨ψ(t),w(t)⟩ (3.9)
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with w(t) = e−i tHφ, where φ is a function that satisfies the assumptions of lemma 3.1 and that
will be fixed later on. Using (1.1) we have

B(t) = B(1)+
ˆ t

1

d
ds

Im⟨ψ(s),w(s)⟩ds

= B(1)+
ˆ t

1
Re⟨F(ψ(s)),w(s)⟩ds. (3.10)

Let us define ψ̃(s) = D∗
sM

∗
sψ(s) and w̃(s) = D∗

sM
∗
sw(s). Since F is a power-type nonlinear-

ity, we immediately obtain

⟨F(ψ(s)),w(s)⟩= 1

s
n
2 (p−1)

⟨F(ψ̃(s)), w̃(s)⟩. (3.11)

Notice that B(t) is a bounded function since we have |B(t)|⩽ ∥ψ(t)∥∥w(t)∥= ∥ψ0∥∥φ∥
by Cauchy–Schwartz inequality and conservation of mass. Since 1/s

n
2 (p−1) is not integ-

rable at infinity for n= 2, p ∈ (1,2] and for n= 3, p ∈ (1,5/3], if we prove that
lims→∞Re⟨F(ψ̃(s)), w̃(s)⟩> 0 we obtain a contradiction and the proof is complete. However,
as we will see, a further condition will be needed for n= 3. Indeed, we shall prove that

lim
s→+∞

⟨F(ψ̃(s)), w̃(s)⟩= ⟨F(v♯+),φ♯⟩, (3.12)

and then we will show that one can choose φ such that Re⟨F(v♯+),φ♯⟩> 0. In order to
prove (3.12) it is sufficient to prove that

F(ψ̃(s)) = F(v♯+)+ o(L
2
p +L

2
p−) (3.13)

w̃(s) = φ♯ + o(L
2

2−p ∩L
2

2−p+). (3.14)

The asymptotics (3.14) follows from lemma 3.1, since the constraint 2
2−p < 3, needed

for n= 3, is satisfied for p ∈ (1,4/3). Next we prove (3.13). Define l̃(s) := D∗
sM

∗
s l(s). Since

we assumed that ψ (t)− e−itHv+ − l(t) = o(L2), then ψ̃ (t)−D∗
t M

∗
t e

−itHv+ − l̃(t) = o(L2).
Taking into account (2.16), we obtain ψ̃ (t)− v♯+ − l̃(t) = o(L2). Moreover, one has

∥̃l(s)∥qq = ∥D∗
sM

∗
s l(s)∥qq =

1

s
n
2 (2−q)

∥l(s)∥qq,

and therefore l̃(s) = o(L2−). Using Hölder estimate, the conservation of mass and the proper-
ties of F ♯, we obtain

∥ f(ψ̃(s))−F(v♯+)∥L2/p+L2/p− ⩽ c∥(|ψ̃ (s)|p−1 + |v♯+|p−1)(|ψ̃ (s)− v♯+ − l̃(s)|+ |̃l(s)|)∥L2/p+L2/p−

⩽ c(∥ψ̃ (s)∥p−1 + ∥v♯+∥p−1)(∥ψ̃ (s)− v♯+ − l̃(s)∥+ ∥̃l(s)∥2−)

⩽ c(∥ψ̃ (s)− v♯+ − l̃(s)∥+ ∥̃l(s)∥2−), (3.15)

from which follows the asymptotics (3.13).
The last point is to choose φ such that Re⟨F(v♯+),φ♯⟩> 0. Since v♯+ ̸= 0, then F(v♯+) ̸= 0

and one can take f ∈ C∞
0 (Rn \ {0}) such that Re⟨F(v♯+), f⟩> 0. Set g := F ♯∗f, by construc-

tion g ∈ Pac(H) and ⟨Φα,g⟩= 0 (whenever H has non empty point spectrum). Choose φ0 ∈
C∞
0 (Rn \ {0}) such that ∥φ0 − g∥ 2

p
< ε and set φ := φ0 −Φα⟨Φα,φ0⟩, so that φ satisfies the

assumptions of lemma 3.1. By noticing that

|⟨Φα,φ0⟩|= |⟨Φα,(φ0 − g)⟩|⩽ ∥Φα∥ 2
2−p

∥φ0 − g∥ 2
p
< ε∥Φα∥ 2

2−p
,
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one infers

∥φ − g∥ 2
p
⩽ ∥φ0 − g∥ 2

p
+ |⟨Φα,φ0⟩|∥Φα∥ 2

p
⩽ ε(1+ ∥Φα∥ 2

2−p
∥Φα∥ 2

p
).

Then ∥φ♯ − f∥ 2
2−p

⩽ cε by (2.17) andRe⟨F(v♯+),φ♯⟩> 0 if ε is small enough sinceF(v♯+) ∈

L
2
p (Rn).

Remark 3.3. Notice that the condition 2
2−p ∈ [2,3) needed to apply (2.17) forces p ∈ [1,4/3)

for n= 3, while no further condition beside p ∈ (1,2) is needed for n= 2. Indeed, for n= 3 the
boundedness of the wave operators, used crucially in the proofs of equations (2.17) and (3.1),
is known to fail for q⩾ 3 (see [12]). For a comparison, the simple estimate (18) in [19] is
not available for the full range of exponents; this is due to the fact that the Hausdorff-Young
inequality must be replaced by (2.17). We remark also that, due to the singularity of Gλ, ele-
ments of D(H) in general do not belong to Lq(R3) for q⩾ 3. Since the unitary group e−itH

leaves invariant D(H), w̃(t) /∈ Lq(R3) for q⩾ 3 and (3.1) cannot hold true in this case.
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