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Abstract
We propose a model to address the overlooked problem
of node clustering in simple hypergraphs. Simple hyper-
graphs are suitable when a node may not appear
multiple times in the same hyperedge, such as in
co-authorship datasets. Our model generalizes the
stochastic blockmodel for graphs and assumes the
existence of latent node groups and hyperedges are
conditionally independent given these groups. We
first establish the generic identifiability of the model
parameters. We then develop a variational approxima-
tion Expectation-Maximization algorithm for parameter
inference and node clustering, and derive a statistical
criterion for model selection. To illustrate the perfor-
mance of our R package HyperSBM, we compare it with
other node clustering methods using synthetic data gen-
erated from the model, as well as from a line clustering
experiment and a co-authorship dataset.
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2 BRUSA and MATIAS

1 INTRODUCTION

Over the past two decades, a wide range of models has been developed to capture pairwise
interactions represented in graphs. However, modern applications in various fields have high-
lighted the necessity to consider high-order interactions, which involve groups of three or more
nodes. Simple examples include triadic and larger group interactions in social networks (whose
importance has been recognized early on, see Wolff, 1950), scientific co-authorship (Estrada &
Rodríguez-Velázquez, 2006), interactions among more than two species in ecological systems
(Muyinda et al., 2020; Singh & Baruah, 2021), or high-order correlations between neurons in
brain networks (Chelaru et al., 2021). To formalize these high-order interactions, hypergraphs
provide the most general framework. Similar to a graph, a hypergraph consists of a set of nodes
and a set of hyperedges, where each hyperedge is a subset of nodes involved in an interaction. In
this context, it is important to distinguish simple hypergraphs from multiset hypergraphs, where
hyperedges can contain repeated nodes. Multisets are a generalization of sets, allowing elements
to appear with varying multiplicities. Recent reviews on high-order interactions can be found in
the works of Battiston et al. (2020), Bick et al. (2023), and Torres et al. (2021).

Despite the increasing interest in high-order interactions, the statistical literature on this topic
remains limited. Some graph-based statistics, such as centrality or clustering coefficient, have
been extended to hypergraphs to aid in understanding the structure and extracting information
from the data (Estrada & Rodríguez-Velázquez, 2006). However, these statistics do not fulfill the
need for random hypergraph models. Early analyses of hypergraphs have relied on their embed-
ding into the space of bipartite graphs (see, e.g., Battiston et al., 2020). Hypergraphs with self-loops
and multiple hyperedges (weighted hyperedges with integer-valued weights) are equivalent to
bipartite graphs. However, bipartite graph models were not specifically designed for hypergraphs
and may introduce artifacts; we refer to Section A in the Appendix S1 for more details.

Generalizing Erdős-Rényi’s model of random graphs leads to uniformly random hypergraphs.
This model involves drawing uniformly at random from the set of all m-uniform hypergraphs
(hypergraphs with hyperedges of fixed cardinality m) over a set of n nodes. However, similar to
Erdős–Rényi’s model for graphs, this hypergraph model is too simplistic and homogeneous to be
used for statistical analysis of real-world datasets. In the configuration model for random graphs,
the graphs are generated by drawing uniformly at random from the set of all possible graphs over a
set of n nodes, while satisfying a given prescribed degree sequence. In the context of hypergraphs,
configuration models were proposed in Ghoshal et al. (2009), focusing on tripartite and 3-uniform
hypergraphs. Later, Chodrow (2020) extended the configuration model to a more general hyper-
graph setup. In these references, both the node degrees and the hyperedge sizes are kept fixed
(a consequence of the fact that they rely on bipartite representations of hypergraphs). The configu-
ration model is useful for sampling (hyper)graphs with the same degree sequence (and hyperedge
sizes) as an observed dataset through shuffling algorithms. Therefore, it is often employed as a null
model in statistical analyses. However, sampling exactly (rather than approximately) from this
model poses challenges, particularly in the case of hypergraphs. For a comprehensive discussion
on this issue, we refer readers to Sect. 4 in Chodrow (2020).

Another popular approach for extracting information from heterogeneous data is clustering.
In the context of graphs, stochastic blockmodels (SBMs) were introduced in the early eighties
(Frank & Harary, 1982; Holland et al., 1983) and have since evolved in various directions. These
models assume that nodes are grouped into clusters, and the probabilities of connections between
nodes are determined by their cluster memberships. Variants of SBMs have been developed to
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BRUSA and MATIAS 3

handle weighted graphs and degree-corrected versions, among others. In the context of hyper-
graphs, Ghoshdastidar and Dukkipati (2017) studied a spectral clustering approach based on a
hypergraph Laplacian, and obtained its weak consistency under a Hypergraph SBM (HSBM) with
certain restrictions on the model parameters. More recently, Deng et al. (2024) established the
strong consistency of the basic spectral clustering under the degree-corrected HSBM (DCHSBM)
in the sparse regime where the maximum expected hyperdegree might be of order Ω(log n) and
n is the number of nodes. By introducing hypergraphons, Balasubramanian (2021) extended the
ideas of hypergraph SBMs to a nonparametric setting. In a parallel vein, Turnbull et al. (2023)
proposed a latent space model for hypergraphs, generalizing random geometric graphs to hyper-
graphs, although it was not specifically designed to capture clustering. An approach linked to
SBMs is presented in Vazquez (2009), where nodes belong to latent groups and participate in a
hyperedge with a probability that depends on both their group and the specific hyperedge.

Modularity is a widely used criterion for clustering entities in the context of interaction data.
It aims to identify specific clusters, known as communities, characterized by high within-group
connection probabilities and low between-group connection probabilities (Ghoshdastidar &
Dukkipati, 2014). However, in the hypergraph context, the definition of modularity is not unique.
In particular, Kamiński et al. (2019) introduced a “strict” modularity criterion, where only hyper-
edges with all their nodes belonging to the same group contribute to an increase in modularity.
Their criterion measures the deviation of the number of these homogeneous hyperedges from a
new null model called the configuration-like model for hypergraphs, where the average values
of the degrees are fixed. Building upon this, Chodrow et al. (2021) proposed a degree-corrected
hypergraph SBM and introduced two new modularity criteria. Similar to Kamiński et al. (2019),
one of these criteria utilizes an “all-or-nothing” affinity function that distinguishes whether a
given hyperedge is entirely contained within a single cluster or not. In this setup, they estab-
lished a connection between approximate maximum likelihood estimation and their modularity
criterion. This work is reminiscent of the work of Newman (2016) in the graph context. However,
the estimators proposed by Chodrow et al. (2021) do not guarantee maximum likelihood esti-
mation, as the parameter space is constrained by assuming a symmetric affinity function.
We refer to Poda and Matias (2024) for an empirical comparison of these modularity-based
methods.

It is important to highlight that the developments presented in Kamiński et al. (2019) and
Chodrow et al. (2021) are specifically conducted in the context of multiset hypergraphs, where
hyperedges can contain repeated nodes with certain multiplicities. The use of multiset hyper-
graphs simplifies some of the challenges associated with computing modularity. However, to the
best of our knowledge, modularity approaches still lack instantiation in the case of simple hyper-
graphs where each node can only appear once in a hyperedge. More specifically, the null model
used in hypergraph modularity criteria relies on a model for multiset hypergraphs, similar to how
the null model used in classical graph modularity is based on graphs with self-loops. While it is
known in the case of graphs that this assumption is inadequate, as it induces a stronger devia-
tion than expected and affects sparse networks as well (Cafieri et al., 2010; Massen & Doye, 2005;
Squartini & Garlaschelli, 2011), the assumption of multisets has not yet been discussed in the
context of hypergraph modularity.

In the context of community detection, random walk approaches have also been utilized for
hypergraph clustering (Swan & Zhan, 2021). Additionally, low-rank tensor decompositions have
been explored (Ke et al., 2020). The misclassification rate for the community detection problem
in hypergraphs and its limits have been analyzed in various contexts (see, for instance, Ahn
et al., 2018; Chien et al., 2019; Cole & Zhu, 2020). It is worth mentioning that a recent approach
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4 BRUSA and MATIAS

has been proposed to cluster hyperedges instead of nodes (Ng & Murphy, 2022). However, our
focus in this work is on clustering nodes.

The literature on high-order interactions often discusses simplicial complexes alongside
hypergraphs (Battiston et al., 2020). However, the unique characteristic of simplicial complexes,
where each subset of an occurring interaction should also occur, places them outside the scope
of this introduction, which is specifically focused on hypergraphs.

In this article, our focus is on model-based clustering for simple hypergraphs, specifically
studying stochastic hypergraph blockmodels. We formulate a general stochastic blockmodel
for simple hypergraphs, along with various submodels (Section 2.1). We provide the first
result on the generic identifiability of parameters in a hypergraph stochastic blockmodel
(Section 2.2). Parameter inference and node clustering are performed using a variational
Expectation-Maximization (VEM) algorithm (Section 2.3) that approximates the maximum likeli-
hood estimator. Model selection for the number of groups is based on an integrated classification
likelihood (ICL) criterion (Section 2.4). To illustrate the performance of our method, we conduct
experiments on synthetic sparse hypergraphs, including a comparison with hypergraph spectral
clustering (HSC) and modularity approaches (Section 3). Notably, the line clustering experiment
(Section 3.4) highlights the significant differences between our approach and the one proposed
by Chodrow et al. (2021). We also analyze a co-authorship dataset, presenting conclusions that
differ from spectral clustering and bipartite stochastic blockmodels (Section 4). We discuss
(Section 5) our approach, its advantages, current limitations and possible extensions. An R pack-
age, HyperSBM, which implements our method in efficient C++ code, as well as all associated
scripts, are available in Appendix S1. This manuscript is accompanied by a Appendix S1 that
contains additional information and experiments, as well as the proofs of all theoretical results.

2 A STOCHASTIC BLOCKMODEL FOR HYPERGRAPHS

2.1 Model formulation

Let  = ( , ) represent a binary hypergraph, where  = {1,…,n} is a set of n nodes and  is the
set of hyperedges. In this context, a hyperedge of size m ≥ 2 is defined as a collection of m distinct
nodes from . We do not allow for hyperedges to be multisets or self-loops. Let M = max

e∈
|e| denote

the largest possible size of hyperedges in  , with M ≥ 2 (for graphs, M = 2). We define the sets of
(unordered) node subsets, (ordered) node tuples, and hyperedges of size m as

 (m) = {{i1,…, im} ∶ i1,…, im ∈  are all distinct} ,
m = {(i1,…, im) ∶ i1,…, im ∈  are all distinct} ,
 (m) =

{
{i1,…, im} ∈  (m) ∶ {i1,…, im} ∈ 

}
,

respectively. Obviously =
⋃M

m=2
(m)⊆

⋃M
m=2

(m). For each node subset {i1,…, im} ∈  (m), we
define the indicator variable:

Yi1,…,im = 1{i1,…,im}∈ =

{
1 if {i1,…, im} ∈  ,

0 if {i1,…, im} ∉  .

We represent a random hypergraph as Y = (Yi1,…,im )i1,…,im∈ (m),2≤m≤M .

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12754 by L

uca B
rusa - U

niversita M
ilano B

icocca , W
iley O

nline L
ibrary on [24/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BRUSA and MATIAS 5

Similar to the formulation of the stochastic blockmodel (SBM) for graphs, we assume that
the nodes in the hypergraph belong to Q unobserved groups. We use Z1,…,Zn to denote n
independent and identically distributed latent variables, where Zi follows a prior distribution
𝜋q = P(Zi = q) for each q = 1,…,Q. The values 𝜋q satisfy 𝜋q ≥ 0 and

∑Q
q=1𝜋q = 1. To simplify

notation, we sometimes represent Zi as a binary vector Zi = (Zi1,…,ZiQ) ∈ {0, 1}Q, where only
one element, Ziq, equals 1. We also define Z = (Z1,…,Zn). Every m-subset of nodes {i1,…, im}
in  (m) is associated to a latent configuration, namely a set {Zi1 ,…,Zim} = {q1,…, qm} of latent
groups to which these nodes belong. The values of the latent groups within a configuration may
be repeated, so that each {q1,…, qm} is a multiset. Now, given the latent variables Z, all indicator
variables Yi1,…,im are assumed to be independent and to follow a Bernoulli distribution whose
parameter depends on the latent configuration:

Yi1,…,im |{Zi1 = q1,…,Zim = qm} ∼ (Bq1,…,qm ), for any {i1,…, im} ∈  (m).

Here Bq1,…,qm = B(m,n)
q1,…,qm

represents the probability that m unordered nodes, with latent configu-
ration {q1,…, qm}, are connected into a hyperedge. To simplify notation, we drop the superscript
(m,n). However, the model may account for two possible sparse settings. First, as the number
of nodes n increases, it is natural to assume that the probability of a hyperedge may decrease;
otherwise, we would only observe dense hypergraphs. Second, it is likely that real data contain
fewer hyperedges of larger size m. Each B is a fully symmetric tensor of rank m, namely

Bq1,…,qm = Bq𝜎(1),…,q𝜎(m) , ∀q1,…, qm and ∀𝜎 permutation of {1,…,m}. (1)

We denote the parameter vector as 𝜃 = (𝜋q,Bq1,…,qm )q,m,q1≤…≤qm and the corresponding probability
distribution and expectation as P𝜃,E𝜃 , respectively.

Lemma 1. The number of different parameters in each tensor B =
(Bq1,…,qm )1≤q1≤…≤qm≤Q is

(
Q+m−1

m

)
.

As a result, the total number of parameters in our hypergraph stochastic blockmodel (HSBM)
is given by:

(Q − 1) +
M∑

m=2

(Q + m − 1
m

)
.

As shown in Table 1, the number of Bq1,…,qm parameters increases rapidly as the values of Q and m
grow. Note that the number of parameters (of the order O(MQM + Q)) remains small compared to
the number of observations

(∑M
m=2

(
n
m

)
= O(nM)

)
. So we do have enough statistical information

to estimate all parameters. Nonetheless, to reduce the complexity of the model, we introduce
submodels by assuming equality of certain conditional probabilities Bq1,…,qm . In particular, we
consider two affiliation submodels given by

Bq1,…,qm =

{
𝛼(m) if q1 = · · · = qm,

𝛽(m) if there exist at least qi ≠ qj for i ≠ j,
(Aff-m)
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6 BRUSA and MATIAS

T A B L E 1 Number
(

Q+m−1
m

)
of connectivity parameters Bq1 ,…,qm

of the full hypergraph stochastic
blockmodel for given values of Q (number of latent groups) and m (hyperedge size).

Q

m 2 3 4 5 6 7
3 4 10 20 35 56 84

4 5 15 35 70 126 210

5 6 21 56 126 252 462

6 7 28 84 210 462 924

7 8 36 120 330 792 1716

and

Bq1,…,qm =

{
𝛼 if q1 = · · · = qm

𝛽 if there exist at least qi ≠ qj for i ≠ j
∀m = 2,…,M. (Aff)

The number of parameters is dropped to (Q − 1) + 2(M − 1) and to (Q − 1) + 2 under Assump-
tions (Aff-m) and (Aff), respectively. These submodels align with the concepts discussed in
Kamiński et al. (2019) and Chodrow et al. (2021), where they propose that only hyperedges
with nodes belonging to the same group should contribute to the increase in modularity. Addi-
tionally, when 𝛼(m) > 𝛽(m) (resp. 𝛼 > 𝛽) these submodels correspond to the scenarios in which
Ghoshdastidar and Dukkipati (2014, 2017) obtained their results.

A summary of the manuscript notation is given in Table 2.

2.2 Parameter identifiability

We first establish the generic identifiability of the parameter in a HSBM that is restricted to sim-
ple m-uniform hypergraphs for any m ≥ 2. In a parametric context, generic identifiability implies
that the distribution P𝜃 of a hypergraph over a set of n nodes uniquely defines the parameter 𝜃,
except possibly for some parameters in a subset of dimension strictly smaller than the full param-
eter space. In other words, if we randomly select a parameter 𝜃 ∈ Θ according to the Lebesgue
measure, the distribution P𝜃 uniquely characterizes the parameter 𝜃, for a large enough number
of nodes n. Identifiability is established up to label switching on the node groups, as is common
in discrete latent variable models. For the case of m = 2, the identifiability result corresponds to
Thm. 2 in Allman et al. (2011). Our proof follows similar principles, building upon a key result by
Kruskal (1977). In our case, we crucially additionally rely on a sufficient condition for a sequence
of nonnegative integers to represent the degree sequence of a simple m-uniform hypergraph, as
established by Behrens et al. (2013).

Theorem 1. For any m ≥ 2 and any integer Q, the parameter 𝜃 =
(𝜋q,Bq1,…,qm )1≤q≤Q,1≤q1≤…≤qm≤Q of the HSBM restricted to m-uniform simple hyper-
graphs over n nodes, is generically identifiable, up to label switching on the node groups,
as soon as n ≥ Q2(m!Qm + m − 1)2∕(m−1). Moreover, the result remains valid when the
group proportions 𝜋q are fixed.
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BRUSA and MATIAS 7

T A B L E 2 Notation summary.

 = ( , ) Hypergraph with  = {1,…,n} set of nodes and  collection of
(simple) hyperedges

M,Q Largest hyperedge size and number of clusters

 (m) Node subsets (unordered) of size 2 ≤ m ≤ M

m Node tuples (ordered) of size 2 ≤ m ≤ M

 (m) Hyperedges of size 2 ≤ m ≤ M

Y = (Yi1 ,…,im
){i1 ,…,im}∈ (m) ,2≤m≤M Observations (presence/absence of a hyperedge at each node subset)

Z = (Z1,…,Zn) Latent configurations (latent clusters), each Zi ∈ {1,…,Q}

𝜋q = P(Zi = q) ∈ [0, 1] Clusters proportions, such that
∑Q

q=1𝜋q = 1

Bq1 ,…,qm
∈ [0, 1] Probability of a hyperedge at a size-m node subset with latent

configuration {q1,…, qm}, for 1 ≤ q1 ≤…≤ qm ≤ Q

𝜃 = (𝜋q,Bq1 ,…,qm
)q,m,q1≤…≤qm

Model parameter

𝛼(m), 𝛽(m) (resp. 𝛼, 𝛽) Within-clusters and between-clusters probabilities in the affiliation
sub-model (Aff-m) (resp. (Aff))

Q𝜏 (⋅) Variational distribution on the latent configurations Z

𝜏iq ∈ [0, 1] Variational probability that node i belongs to cluster q, such that∑Q
q=1𝜏iq = 1 for all i ∈ {1,…,n}

f (y, b) Bernoulli density at y with parameter b

 (𝜃, 𝜏) Evidence lower bound (ELBO)

(⋅),KL(⋅||⋅) Entropy and Kullback–Leibler divergence

This result does not provide specific insights into the identifiability in the affiliation cases
(Aff-m) and (Aff). Indeed, it does not explicitly characterize the subspace of the parameter space
where identifiability may not hold, although we know that its dimension is smaller than that of
the full parameter space (and that the possible restrictions apply only on the part of the parameter
space concerning the probabilities of connection Bq1,…,qm ).

The result we have established for m-uniform hypergraphs also implies a similar result for
non-uniform simple hypergraphs, as shown in the following corollary.

Corollary 1. For any integer Q, the parameter 𝜃 = (𝜋q,Bq1,…,qm )1≤q≤Q,1≤q1≤…≤qm≤Q,2≤m≤M
of the HSBM for simple hypergraphs over n nodes is generically identifiable, up to label
switching on the node groups, as soon as n ≥ Q2(M!QM + M − 1)2∕(M−1).

Our proof of Corollary 1 relies on the assumption that all the 𝜋q’s are distinct, which is a
generic condition. This condition is not explicitly stated in the corollary, but it is required for the
proof to hold. Consequently, the result of generic identifiability does not bring any insight in cases
where the group proportions are equal, as it is not sufficient to identify the parameters separately
for each value of m.

Additional technical work is thus needed to establish whether a HSBM with equal group
proportions, or whether the affiliation submodels have identifiable parameters.

As a final note, we mention that there is no direct link between parameter identifiability and
detectability thresholds for clusters recovery (Dumitriu et al., 2022; Stephan & Zhu, 2022). While
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8 BRUSA and MATIAS

clusters recovery is an asymptotic result with guarantees when the sample size increases, param-
eter identifiability is a theoretical result stating that the distribution of the observations (for a
minimal sample size) fully characterizes the parameter. It is theoretical in the sense that it does
not deal with inference, though the property has consequences on inference results. Parameter
identifiability is a basic requirement for consistency results of maximum likelihood estimators to
hold in parametric settings and it is also required for proofs of clusters exact recovery.

2.3 Parameter estimation via variational expectation-maximization

The likelihood of the model is given as a marginal distribution

P𝜃(Y) =
Q∑

q1=1
…

Q∑
qn=1

P𝜃(Y,Z = (q1,…, qn))

=
Q∑

q1=1
…

Q∑
qn=1

( n∏
i=1

P𝜃(Zi = qi)

) M∏
m=2

∏
{i1,…,im}∈ (m)

P𝜃(Yi1,…,im |Zi1 = qi1 ,…,Zim = qim)

=
Q∑

q1=1
…

Q∑
qn=1

( n∏
i=1

𝜋qi

) M∏
m=2

∏
{i1,…,im}∈ (m)

(Bqi1 ,…,qim
)Yi1 ,…,im (1 − Bqi1 ,…,qim

)1−Yi1 ,…,im . (2)

The computation of the model likelihood is generally intractable. Equation (2) involves a sum-
mation over all possible Qn different latent configurations of the nodes, which becomes com-
putationally prohibitive when n and Q are large. In the context of latent variable models, the
Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is commonly used to address
this issue. However, the EM algorithm cannot be directly applied to SBMs. This is because the
E-step, which involves computing the conditional posterior distribution of the latent variables
P(Z|Y), is itself intractable in SBMs (see, e.g., Matias & Robin, 2014). One possible solution is to
employ variational approximations of the EM algorithm, known as Variational EM (VEM, Jordan
et al., 1999). Below, we recall the classical approach for the VEM algorithm.

We denote the density of the Bernoulli distribution with parameter b as

∀y ∈ {0, 1}, f (y, b) ∶= y log b + (1 − y) log(1 − b). (3)

Then, the complete data log-likelihood is

𝓁c
n(𝜃) = log P𝜃(Y,Z) = log P𝜃(Z) + log P𝜃(Y|Z)

=
Q∑

q=1

n∑
i=1

Ziq log 𝜋q +
M∑

m=2

Q∑
q1=1

…
Q∑

qm=1

∑
{i1,…,im}∈ (m)

Zi1q1 · · ·Zimqm f (Yi1…im ,Bq1,…,qm )

=
Q∑

q=1

n∑
i=1

Ziq log 𝜋q +
M∑

m=2

∑
q1≤q2≤…≤qm

∑
(i1,…,im)∈m

Zi1q1 · · ·Zimqm f (Yi1…im ,Bq1,…,qm ). (4)

Note that the final equality ensures that each parameter value appears only once. The key princi-
ple underlying the variational method is to adopt the same iterative two-step structure as the EM
algorithm but replace the intractable posterior distribution P𝜃(Z|Y) with the best approximation,
in terms of Kullback–Leibler divergence, from a class of simpler distributions, often factorized.
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BRUSA and MATIAS 9

We introduce a class of probability distributions Q𝜏 over Z = (Z1,…,Zn) that factorize over the set
of nodes, thus given by

Q𝜏(Z) =
n∏

i=1
Q𝜏(Zi) =

n∏
i=1

Q∏
q=1

𝜏
Ziq

iq ,

where the variational parameter 𝜏iq = Q𝜏(Zi = q) ∈ [0, 1] satisfies
∑Q

q=1𝜏iq = 1 for any i = 1,…,n.
The expectation under distribution Q𝜏 is denoted as EQ𝜏

, and (Q𝜏) represents the entropy of
Q𝜏 . Now we define the evidence lower bound (ELBO):

 (𝜃, 𝜏) = EQ𝜏
[log P𝜃(Y,Z)] +(Q𝜏)

= EQ𝜏
[log P𝜃(Y,Z)] − EQ𝜏

[log Q𝜏(Z)]

=
Q∑

q=1

n∑
i=1

𝜏iq log
𝜋q

𝜏iq
+

M∑
m=2

∑
q1≤q2≤…≤qm

∑
(i1,…,im)∈m

𝜏i1q1 · · · 𝜏imqm f (Yi1…im ,Bq1,…,qm ). (5)

It can be observed that  (𝜃, 𝜏) satisfies the following relation:

 (𝜃, 𝜏) = log P𝜃(Y) − KL(Q𝜏(Z)||P𝜃(Z|Y)), (6)

where KL(⋅||⋅) denotes the Kullback–Leibler divergence. Equation (6) is at the core of the EM
algorithm and its variational approximation. In the classical EM approach, at the tth iteration
of the algorithm, the variational distribution Q𝜏 is chosen as the distribution P𝜃(t) (Z|Y) of the
latent variables given the observations at the current parameter value 𝜃(t). This cancels the
Kullback–Leibler term and the ELBO equals the log-likelihood. When the distribution P𝜃(Z|Y)
is not factorized, such a choice would prevent from an efficient computation of the expectation
EQ𝜏

[log P𝜃(Y,Z)] of the complete log-likelihood under Q𝜏 appearing in Equation (5). Thus, the
variational approximation searches for the best approximation of the true P𝜃(Z|Y) in a class of sim-
plified (in general, factorized) variational distributions. As a consequence, the Kullback–Leibler
divergence term in (6) is nonnull in general and the ELBO  serves as a lower bound for the
model log-likelihood log P𝜃(Y). The VEM algorithm iterates between the following two steps until
a suitable convergence criterion is met:

• VE-Step maximizes  (𝜃, 𝜏) with respect to 𝜏

𝜏 (t) = arg max
𝜏

 (𝜃(t−1), 𝜏), s.t.
Q∑

q=1
𝜏
(t)
iq = 1 ∀i = 1,…,n. (7)

This step involves finding the best approximation of the conditional distribution P𝜃(Z|Y) by
minimizing the Kullback–Leibler divergence term in (6).

• M-Step maximizes  (𝜃, 𝜏) with respect to 𝜃

𝜃(t) = arg max
𝜃

 (𝜃, 𝜏 (t−1)), s.t.
Q∑

q=1
𝜋
(t)
q = 1. (8)

This step updates the values of the model parameters 𝜋q and Bq1,…,qm .
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10 BRUSA and MATIAS

In the following we provide the solutions of the two maximization problems in Equations (7)
and (8).

Proposition 1 (VE-Step). Given the current model parameters 𝜃 =
(𝜋q,Bq1,…,qm )q,m,q1≤…≤qm at any iteration of the VEM algorithm, the corresponding opti-
mal values of the variational parameters (𝜏iq)i,q defined in Equation (7) satisfy the fixed
point equation:

log 𝜏iq = log 𝜋q +
M−1∑
m=1

∑
1≤q1≤…≤qm≤Q

∑
(i1 ,…,im )∈m

s.t.{i,i1 ,…,im}∈(m+1)

𝜏i1q1 · · · 𝜏imqm f
(

Yii1…im ,B(m+1,n)
qq1…qm

)
+ ci, (9)

for any 1 ≤ i ≤ n and 1 ≤ q ≤ Q and where ci are normalizing constants such that∑
q 𝜏iq = 1.

Equation (9) relates the variational probability 𝜏iq that a node i belongs to a cluster q to the
other variational parameters (as well as the observations and current parameter value 𝜃). The sum
starts at m = 1 and deals with (m + 1)-tuples of nodes {i, i1,…, im} that contain node i and whose
latent configuration is given by some multiset {q, q1,…, qm}.

Remark 1. From Proposition 1, the 𝜏i’s are obtained using a fixed point algorithm.
Although in all the situations we experienced, the algorithm converged in a reason-
able number of iterations, we have no guarantee about existence nor uniqueness of a
solution to (9).

Proposition 2 (M-Step). Given the variational parameters (𝜏iq)i,q at any iteration
of the VEM algorithm, the corresponding optimal values of the model parameters
(𝜋q, B̂q1…qm )q,m,q1≤…≤qm defined in Equation (8) are given by

𝜋q = 1
n

n∑
i=1

𝜏iq and B̂q1…qm =
∑

(i1,…,im)∈m 𝜏i1q1…𝜏imqm Yi1…im∑
(i1,…,im)∈m 𝜏i1q1…𝜏imqm

.

We now express the solutions of the M-Step under the submodels given by (Aff-m) and (Aff).
Note that the VE-Step is unchanged under these settings.

Proposition 3 (M-Step, affiliation setups). In the particular affiliation submodels
given by (Aff-m) and (Aff), respectively, given variational parameters (𝜏iq)i,q, at any
iteration of the VEM algorithm, the corresponding optimal values of (𝛼(m), 𝛽(m))m and
𝛼, 𝛽 maximizing  as in Equation (8) are given by

• Under Assumption (Aff-m),

𝛼(m) =
∑Q

q=1
∑

i1<···<im
𝜏i1q…𝜏imqYi1…im∑Q

q=1
∑

i1<···<im
𝜏i1q…𝜏imq

,

𝛽(m) =

∑
q1≤…≤qm|{q1 ,…,qm}|≥2

∑
(i1,…,im)∈m 𝜏i1q1…𝜏imqm Yi1…im∑

q1≤…≤qm|{q1 ,…,qm}|≥2

∑
(i1,…,im)∈m 𝜏i1q1…𝜏imqm

.
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BRUSA and MATIAS 11

• Under Assumption (Aff),

𝛼 =
∑M

m=2
∑Q

q=1
∑

i1<···<im
𝜏i1q…𝜏imqYi1…im∑M

m=2
∑Q

q=1
∑

i1<···<im
𝜏i1q…𝜏imq

,

𝛽 =

∑M
m=2

∑
q1≤…≤qm|{q1 ,…,qm}|≥2

∑
(i1,…,im)∈m 𝜏i1q1…𝜏imqm Yi1…im∑M

m=2
∑

q1≤…≤qm|{q1 ,…,qm}|≥2

∑
(i1,…,im)∈m 𝜏i1q1…𝜏imqm

.

2.3.1 Algorithm initialization

We choose to begin the algorithm with its M-step, which requires an initial value for 𝝉 . This allows
us to leverage smart initialization strategies based on a preliminary clustering of the nodes. Specif-
ically, we employ three different initialization strategies and select the best result that maximizes
the ELBO criterion  :

Random initialization
This naive method involves drawing each (𝜏iq)1≤q≤Q uniformly from (0, 1) for every node i and
normalizing the vector 𝜏i.

“Soft” spectral clustering
We utilize Alg. 1 from Ghoshdastidar and Dukkipati (2017) combined with soft k-means. In this
approach, we compute a hypergraph Laplacian and construct the column matrix X consisting of
its leading Q orthonormal eigenvectors. The rows of X are then normalized to have unit norm
(following steps 1–3 in Alg. 1 from Ghoshdastidar & Dukkipati, 2017). We subsequently perform a
soft k-means algorithm on the rows of X to obtain 𝜏iq, which represents the posterior probability
of node i belonging to cluster q.

Graph-component absolute spectral clustering
This strategy focuses on edges in the hypergraph (m = 2) and the corresponding adjacency matrix.
We apply the absolute spectral clustering method (Rohe et al., 2011) to this adjacency matrix. The
absolute spectral clustering method introduces a graph Laplacian with both positive and negative
eigenvalues and focuses on the ones with largest magnitude, thus capturing both communities
and dis-assortative structures. It should be noted that this initialization only uses information
from hyperedges of size m = 2, excluding hyperedges with larger sizes. However, absolute spectral
clustering is considered superior to spectral clustering as it captures disassortative groups.

In Section F.2 from the Appendix S1, we include a comparison of different initialization
strategies. In general, there would not be an initialization strategy that is always superior, so we
recommend always using different strategies and selecting the best criteria.

2.3.2 Fixed point

The VE-Step is achieved through a fixed-point algorithm. In practice, at iteration t of the VEM
algorithm, starting from the previous values of the variational and model parameters 𝜏

(t−1)
iq

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12754 by L

uca B
rusa - U

niversita M
ilano B

icocca , W
iley O

nline L
ibrary on [24/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 BRUSA and MATIAS

and 𝜃(t−1), respectively, we iterate over some index u to compute the values of 𝜏 (t,u)iq according
to Equation (9). This generates a sequence of values 𝜏

(t,u)
iq . We terminate these iterations either

when we reach the maximum number of fixed-point iterations (u > Umax) or when the variational
parameters have converged (max

iq
|𝜏 (t,u−1)

iq − 𝜏
(t,u)
iq | ≤ 𝜀), where 𝜀 is a small tolerance threshold.

2.3.3 Stopping criteria

The iterations of the VEM algorithm should be terminated when the ELBO  and the sequence
of model parameter vectors 𝜃(t) = (𝜃(t)s )s have converged. However, in practice, we have observed
that sometimes the algorithm stops prematurely when theVE-Step still requires a few iterations to
reach a fixed point. In such cases, continuing with the VEM iterations often leads to higher values
of the ELBO function and better parameter estimates. To address this, we enforce the condition
that the fixed point in the VE-Step is reached in its first iteration. This reduces the chance of con-
verging to local maxima of  . If these convergence conditions are not met, we stop the algorithm
if the maximum number of iterations has been reached. To summarize, we stop the algorithm
whenever:{| (𝜃(t−1)) −  (𝜃(t))|| (𝜃(t))| ≤ 𝜀 and max

s
|𝜃(t−1)

s − 𝜃
(t)
s | ≤ 𝜀 and max

iq
|𝜏 (t,0)iq − 𝜏

(t,1)
iq | ≤ 𝜀

}
or {t > Tmax}.

Section E in Appendix S1 contains additional details about the algorithm’s implementation.

2.3.4 Algorithm complexity and choice of M

The complexity of our algorithm is of the order O
(

nQM
(

n
M

))
, which can be quite prohibitive

for large datasets, especially when M becomes large. It is important to emphasize that when
analyzing a dataset, the value of M is not necessarily the maximum observed size of the hyper-
edges, but rather a modeling choice. Indeed, while an occurring hyperedge Yi1,…,im with node
clusters {q1,…, qm} contributes log Bq1,…,qm to the likelihood, a non occurring one contributes
log(1 − Bq1,…,qm ) and the statistical information that they bring to the parameter is the same (see
Equations (3) and (4)). Now let’s consider for, for example, a co-authorship dataset where we
observe n authors and at most 3 co-authors per paper. The absence of hyperedges of size 4 pro-
vides as much information for a HSBM as if all possible size-4 hyperedges were present. Similarly,
the information contained in a dataset with all but five possible size-4 hyperedges present is the
same as the information contained in a dataset with only five occurring size-4 hyperedges. In
other words, 0 and 1 values play a symmetric role.

As a consequence, the choice of M is left to the discretion of the statistician, depending on the
characteristics of the dataset and the available computational resources. In particular, if there are
hyperedges with very large sizes M, the statistician may decide not to consider them, just as it is
justified not to take into account the absence of hyperedges of size M + 1, where M is the largest
observed size. It is important to note that choosing M > 2 already represents an improvement in
terms of considering more information compared to a graph analysis of the data.
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BRUSA and MATIAS 13

Therefore, for large datasets, we recommend limiting the analysis to smaller values of M, such
as M = 3 or M = 4, to reduce computational burden and improve efficiency.

2.4 Model selection

While Ghoshdastidar and Dukkipati (2017) propose a method for selecting the number of groups
based on the spectral gap, our approach relies on a statistical framework to construct a model
selection criterion.

After obtaining the estimated parameters 𝜃̂ and (𝜏 i)i from the VEM algorithm, we assign each
node i to its estimated group Ẑi = arg maxq 𝜏 iq. We then define the Integrated Classification Like-
lihood (ICL, Biernacki et al., 2000) for the full model and the submodels (Aff-m) and (Aff) as
follows:

ICLfull(q) = log P𝜃̂(Y, Ẑ) − 1
2
(q − 1) log n − 1

2

M∑
m=2

(q + m − 1
m

)
log

( n
m

)
,

ICLaff-m(q) = log P𝜃̂(Y, Ẑ) − 1
2
(q − 1) log n − (M − 1)

M∑
m=2

log
( n

m

)
,

ICLaff(q) = log P𝜃̂(Y, Ẑ) − 1
2
(q − 1) log n −

M∑
m=2

log
( n

m

)
.

These criteria are constructed as the complete log-likelihood (computed at the estimated parame-
ter values and clusters), penalized by a BIC-like term that accounts for the number of parameters
and the corresponding “effective” sample size (n for the parameters related to the nodes and

(
n
m

)
for the size-m interaction parameters Bq1,…,qm ). ICL criteria have been widely used in the context
of SBMs. Their theoretical properties have never been established, though they exhibit very good
empirical results on synthetic SBMs datasets (e.g. Daudin et al., 2008). Recently, Cerqueira and
Leonardi (2020) obtained a first consistency result for a related criterion in the graph SBM, relying
on a penalized version of the exact ICL (Côme & Latouche, 2015), also known in the information
theory literature as Krichevsky–Trofimov (KT) estimator. While the literature of order estimation
focuses on minimal penalties as these will lead to minimum underestimation probability (see for
e.g. van Handel, 2011), these KT penalties are generally heavier than what is thought to be suffi-
cient to consistently estimate the number of groups. We determine the number of groups q̂ as the
value that maximizes the corresponding ICL criterion: q̂ = arg maxq ICL(q).

3 SYNTHETIC EXPERIMENTS

3.1 Synthetic data

We conducted a simulation study to evaluate the performance of the HyperSBM package. We
generated hypergraphs under the HSBM with two or three latent groups (Q = 2 or Q = 3). The
group proportions were non-uniform, with 𝜋 = (0.6, 0.4) for Q = 2 and 𝜋 = (0.4, 0.3, 0.3) for
Q = 3. We set the largest hyperedge size M to 3, and we considered different numbers of nodes,
n ∈ {50, 100, 150, 200}.
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14 BRUSA and MATIAS

To simplify the latent structure, we assumed the (Aff-m) submodel, and we parametrized
the model through the ratios 𝜌(m) of within-group size-m hyperedges over between-groups size-m
hyperedges (assumed constant with n, see Section F.1 in Appendix S1 for details). We analyzed
two different scenarios:

A. Communities: in this scenario, we focus on community detection and consider the case of
more within-group than between-groups size-m hyperedges 𝜌(m) > 1 for m = 2, 3.

B. Disassortative: in this scenario, we focus on disassortative behaviour and consider the case of
less within-group than between-groups size-m hyperedges 𝜌(m) < 1 for m = 2, 3.

Each setting is a combination of a scenario (X = A,B) and number of groups (Q = 2, 3) and is
denoted XQ. In each setting, values of 𝛼(m) = 𝛼(m,n) and 𝛽(m) = 𝛼(m,n) (we here emphasize the
dependence on the number of nodes n) decrease with increasing n so as to maintaining constant
the quantities n𝛼(2,n) and n𝛽(2,n) as well as n2𝛼(3,n) and n2𝛽(3,n). This implies that the number of
size-m hyperedges (both within and between groups) grows linearly with n. We have explored a
total of 5 different settings, denoted by A2, A3, B2, B3, and A3’ and we present below the most
striking results. In the case of scenarios A (communities) with Q = 3 groups, we pushed the lim-
its and explore two different settings (namely settings A3 and A3’), with setting A3 being highly
sparse, that is, sparser than the already sparse setting A3’. Details of the parametrization, specific
parameter values and number of hyperedges are fully given in Section F.1 in Appendix S1, while
Section F.2 in Appendix S1 contains additional results.

For each setting and each value of n, we randomly draw 50 different hypergraphs. We estimate
the parameters using the full HSBM formulation with our VEM algorithm, relying on soft spectral
clustering (for Scenario A) and graph-component absolute spectral clustering (for Scenario B)
initializations (see paragraph “Algorithm initialization” above).

3.2 Clustering and estimation under HSBM with a fixed number
of groups

In this part, we focus on clustering and parameter estimation with a known number of groups.
The performance of HyperSBM is evaluated based on its ability to accurately recover the true
clustering and estimate the original parameters. We also compare our results with hypergraph
spectral clustering, relying on Alg. 1 from Ghoshdastidar and Dukkipati (2017), denoted HSC
below.

3.2.1 Clustering results

The performance of correct classification is evaluated using the Adjusted Rand Index (ARI,
Hubert & Arabie, 1985). The ARI measures the similarity between the true node cluster-
ing and the estimated clustering. It is upper bounded by 1, where a value of 1 indicates
perfect agreement between the clusterings, and negative values indicate less agreement than
expected by chance.

Figure 1 displays the boxplot values of the ARI for settings A2 to B3. It is evident that our
HyperSBM consistently outperforms HSC, obtaining higher ARI values overall and significantly
lower variances in most cases, except for setting B3, where HyperSBM exhibits a larger variance
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BRUSA and MATIAS 15

F I G U R E 1 Boxplots of adjusted Rand indexes for different settings XQ (where X = A,B is the scenario and
Q = 2, 3 is the number of groups), number of nodes n (along x-axis) and two methods: our HyperSBM (left
boxplot) and HSC (right boxplot). First row (resp. first column) shows scenario A with communities (resp. Q = 2)
while second row (resp. second column) shows scenario B with disassortative behavior (resp. Q = 3).

but still yields substantially better results compared to HSC. We also observe that increasing the
number of nodes n does not appear to significantly enhance the clustering results of HyperSBM.
This behavior could be attributed to our simulation setting, where the numbers of size-m hyper-
edges (m = 2, 3) are kept linearly increasing with n. However, it is worth noting that the variances
of the ARI obtained by HyperSBM tend to decrease with an increasing number of nodes n. One
final comment pertains to the relatively poor clustering performance obtained by both methods
in setting B3: this setting appears to be particularly challenging.

3.2.2 Parameter estimation accuracy

We also evaluate the accuracy of parameter estimation. As the parameter values may be extremely
small (see Section F.1 in Appendix S1), we choose to compute the Mean Squared Relative Error
(MSRE) between the true parameters (in the full model) and the estimated values, both for
the prior probabilities 𝜋q and the probabilities of hyperedge occurrence B(m)

q1,…,qm
. Specifically, we

compute the aggregated MSRE over all the components of 𝜃 using the following formula:

MSRE = 1
nrep

nrep∑
i=1

⎧⎪⎨⎪⎩
Q−1∑
q=1

(
𝜋̂i

q − 𝜋q

𝜋q

)2

+
M∑

m=2

∑
q1≤…≤qm

(
B̂i

q1,…,qm − Bq1,…,qm

Bq1,…,qm

)2⎫⎪⎬⎪⎭,
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16 BRUSA and MATIAS

F I G U R E 2 Boxplots of Mean Squared Relative Errors between true and estimated model parameters for
different settings XQ (where X = A,B is the scenario and Q = 2, 3 is the number of groups) and number of nodes
n (along x-axis). First row (resp. first column) shows scenario A with communities (resp. Q = 2) while second
row (resp. second column) shows scenario B with disassortative behavior (resp. Q = 3).

where (𝜋̂i
1,…, 𝜋̂i

Q−1, {B̂i
q1,…,qm}m,q1,…,qm ) is the set of free parameters estimated on the i-th dataset

by the full model and nrep = 50 is the number of replicates.
The corresponding results are summarized through the boxplots in Figure 2. The relative

errors are rather small, decreasing and showing a lower variance as the number of nodes
increases. Note that the absolute values of MSRE cannot be compared between the cases Q = 2
(first column) and Q = 3 (second column), with very different scales on the y-axis. Indeed, in the
first case, the relative error is cumulated over a total of 1 + 3 + 4 = 8 free parameters (in the full
model), while this increases to 2 + 6 + 10 = 18 free parameters when Q = 3.

3.3 Performance of model selection

In this section we assess the performance of ICL as a model selection criterion. The simulated
data is fitted with our HyperSBM with a number of latent states ranging from 1 to 5.

In Table 3, we show the frequency of the selected number of groups for setting A3’. The correct
model is selected in 74% of cases for n = 50, in 98% of cases for n = 100 and in 100% of cases for
n = 150, 200. We also compute the value of ARI of the classification obtained with three clusters
depending on the selected number of latent groups. This value is always equal to 1 when the
correct model is recovered, thus confirming the optimal behavior of HyperSBM already shown
in Section 3.2.
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BRUSA and MATIAS 17

T A B L E 3 Frequency (as a percentage) of the selected number of groups Q for setting A3’.

Q n = 50 n = 100 n = 150 n = 200
1 0% 0% 0% 0%

2 26% 2% 0% 0%

3 74% 98% 100% 100%

4 0% 0% 0% 0%

5 0% 0% 0% 0%

Note: Model selection is carried out by means of the ICL criterion. Results are computed over 50 samples for each value of n.

T A B L E 4 Description settings for the line clustering experiments.
Number of
points per line

Number of
noisy points

Total number
of points

Mean number
of hyperedges

Two lines 30 40 100 1070.84

Three lines 30 60 150 587.70

3.4 Line clustering through hypergraphs

Following Leordeanu and Sminchisescu (2012); Kamiński et al. (2019) and earlier references,
we here explore the use of hypergraphs to detect line clusters of points in R2. Similarly to the
construction of pairwise similarity measures, we here resort on third-order affinity measures
to detect alignment of points since pairwise measures would be useless to detect alignment.
Thus, for any triplet of points {i, j, k}, we use the mean distance to the best fitting line as
a dissimilarity measure d(i, j, k) and transform this through a Gaussian kernel to a similarity
measure.

We performed two different experiments, with either two or three lines. In each setting, we
randomly generate the same number of points per line in the range [−0.5, 0.5]2 and perturbed
with centered Gaussian noise with standard deviation equal to 0.01. We then add noisy points,
generated from uniform distribution on [−0.5, 0.5]2. The particular settings of each experiment
are described in Table 4 and Figure 3 shows the resulting sets of points.

For both settings, we generated 100 different 3-uniform hypergraphs using the following pro-
cedure. We randomly selected 3 points {i, j, k} and calculated the mean distance d(i, j, k) to the
best-fitting line. We then measured their similarity using a Gaussian kernel exp(−d(i, j, k)2∕𝜎2)
with 𝜎2 = 0.04. If the similarity was greater than a threshold 𝜖 = 0.999, we constructed a hyper-
edge {i, j, k}. This procedure resulted in both signal hyperedges, where all points belonged to
the same line cluster, and noise hyperedges, where the points were sufficiently aligned without
belonging to the same line. The signal-to-noise ratio of hyperedges was set to 2 for each hyper-
graph. We specifically simulated sparse hypergraphs, and the average number of hyperedges is
presented in Table 4. Additionally, isolated nodes in the hypergraph were excluded from the
clustering analysis.

We applied our HyperSBM algorithm to cluster the nodes of these 3-uniform and sparse
hypergraphs, and we compared the results with three different modularity-based approaches.
The first two approaches, referred to as Chodrow_Symm and Chodrow_AON, are from Chodrow
et al. (2021) and are based on their general symmetric and all-or-nothing modularity, respectively.
The third approach, referred to as Kaminski, is from Kamiński et al. (2019). The modularity-based
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18 BRUSA and MATIAS

F I G U R E 3 Sets of points from the line clustering experiments. Left: two lines (green dots and red
triangles) plus noise (black crosses). Right: three lines (green dots, red triangles and blue diamonds) plus noise
(black crosses).

Two Lines  Three Lines

F I G U R E 4 Boxplots of the adjusted Rand index obtained by the different clustering methods on the line
clustering problem. Left: two lines, right: three lines.

methods automatically select the number of groups, and for HyperSBM, we performed model
selection using Q ∈ {1,…, 6}.

Figure 4 displays the ARI obtained from the clustering results. We can observe that the
modularity-based methods fail to accurately recover the true original line clusters, resulting in
lower ARIs. In contrast, HyperSBM shows good performance in this task, achieving higher ARIs.
This difference in performance can be attributed to the tendency of modularity-based methods,
especially the one by Kamiński et al. (2019), to select a larger number of groups in this particular
context, as evidenced in Figure 5.

This experiment highlights the distinct behavior of HyperSBM compared to the
modularity-based clustering methods, including the approach proposed by Chodrow et al. (2021),
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BRUSA and MATIAS 19

Two Lines  Three Lines

F I G U R E 5 Estimated number of groups Q̂ on the line clustering problem. Left: two lines (true value of Q
is 3), right: three lines (true value of Q is 4).

despite both methods being based on a Stochastic Block Model (SBM) framework with a
maximum-likelihood approach.

4 ANALYSIS OF A CO-AUTHORSHIP DATASET

4.1 Dataset description

We analyze a co-authorship dataset available at http://vlado.fmf.uni-lj.si/pub/networks/data
/2mode/Sandi/Sandi.htm. The dataset originates from the bibliography of the book “Prod-
uct Graphs: Structure and recognition” by Imrich and Klavzăr and is provided as a bipar-
tite author/article graph. To construct the hypergraph, following the approach of Estrada
and Rodríguez-Velázquez (2006), we consider authors as nodes and create hyperedges that
link authors who have collaborated on the same paper. Further details regarding the dataset
pre-treatment can be found in Section G of the Appendix S1, along with additional analyses. In
our analysis, we set M = 4 and focused on the main connected component of the hypergraph,
which consists of 79 authors and 76 hyperedges. Among these hyperedges, 68.5% have a size of 2,
while 29% have a size of 3, and 2.5% have a size of 4.

4.2 Analysis with HyperSBM

We conducted an analysis of this dataset using our HyperSBM package. The model selection
based on the ICL criterion determined that there are two groups (Q̂ = 2). One group consists of
only eight authors, while the remaining 71 authors belong to the second group. Table 5 displays
the distribution of the number of distinct co-authors per author. Within the first group of eight
authors, six of them have the highest number of distinct co-authors, while the remaining two
authors each have four distinct co-authors.

Coming back to the bipartite graph of authors and (co-authored) papers, we looked at the
degree distribution of the authors, given in Table 6. This corresponds to the distribution of the
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T A B L E 5 Distribution of the number of distinct co-authors per author.
Number of
co-authors 1 2 3 4 5 6 7 8 10 11 12
Count 23 27 13 6 2 2 1 1 2 1 1

Note: The first group contains the six authors having the largest number of distinct co-authors (between 7 and 12) plus two
authors with four co-authors each.

T A B L E 6 Degree distribution of authors in the bipartite graph.

Author degree 1 2 3 4 5 6 7 8 10 13
Count 44 14 6 6 4 1 1 1 1 1

Note: Our first group contains the five most collaborating authors, one of the sixth, plus two authors with degree equal to 4.

number of co-authored papers per author. We observed that five of the eight authors from our
first group are the ones that co-published the most, the three others having also high degree (one
of degree 5 and two of degree 4). Thus, our first group is made of authors (among) the most
collaborative ones, which are also (among) the most prolific ones.

Neither the first nor the second group inferred by HyperSBM are communities. Indeed we
obtained the following estimated values from the size-2 hyperedges: B̂11 ≃ 4.2% is of the same
order as B̂12 ≃ 5.1% while B̂22 ≃ 0.8% is around five times smaller. This means that the first group
contains authors that have written with authors from the two groups while the second group is
made of authors who have less co-authored papers with people of their own group. Looking now
at size-3 hyperedges, we get that B̂111 ≃ 2 ⋅ 10−4; B̂112 ≃ 18 ⋅ 10−4; B̂122 ≃ 7 ⋅ 10−4 and B̂222 ≃ 0.6 ⋅
10−4. The most important estimated frequency is B̂112 that concerns two authors of the small first
group co-authoring a paper with one author of the large second group. The second most important
estimated frequency is B̂122 and is obtained for one author from small first group co-authoring a
paper with two authors of the large second group. The remaining frequencies of size-3 hyperedges
are negligible. This characterizes further the first groups as being composed by authors that do
co-author with their own group as well as with authors from the second one.

Finally, looking now at size-4 hyperedges, the only nonnegligible estimated frequency is
obtained for B̂1222 ≃ 4 ⋅ 10−6. We note here that the frequencies B̂’s with m = 3 or 4 are intrinsically
on different scales, as also happens with m = 2 or 3. So again, authors from group 1 co-authored
with the others authors. (Note that the first group is not large enough for a size-4 B̂ frequency
with at least two authors in that group 1 to be nonnegligible).

4.3 Comparison with two other methods

We first compared our approach with the hypergraph spectral clustering (HSC) algorithm pro-
posed in Ghoshdastidar and Dukkipati (2017). Let us recall that spectral clustering does not come
with a statistical criterion to select the number of groups. Looking at the partition obtained with
Q = 2 groups, spectral clustering outputs groups with sizes 24 and 55, respectively. These groups
are neither characterized by the number of co-authors nor their degrees in the bipartite graph
(see details in Appendix S1). Indeed, in our case the best clusters are not communities and their
sizes are very different, while we recall that spectral clustering tends to: (i) extract communities
and (ii) favor groups of similar size.
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BRUSA and MATIAS 21

We then analyzed the same dataset as a bipartite graph of authors/papers with the R package
sbm through the function estimateBipartiteSBM (Chiquet et al., 2022). This method infers
a latent blockmodel (that in fact corresponds to a SBM for bipartite graphs) and automatically
selects a number of groups on both parts (authors and papers). The method relies on the same
core VEM algorithm as ours, adapted to the bipartite graphs context. Hereafter, we refer to this
method as the Bipartite-SBM implementation. Let us underline here that while the bipartite
stochastic blockmodel can be written as a particular case of a HSBM, the converse is not true (see
Section A.3 in the Appendix S1). In particular, our hypergraph SBM is not constrained by the need
to cluster the set of hyperedges.

The Bipartite-SBM also selected two groups of authors (and one group of papers). There
was one small group with four authors, entirely contained in our first small group; it corre-
sponds to authors that have the highest degree in the bipartite graph and the highest number of
co-authors. So, Bipartite-SBM output a very small group of the most prolific and the most
collaborative authors in this dataset. Further details about the distinctions between these groups
and the ones obtained by HyperSBM are given in Appendix S1.

As a conclusion, we see that while the outputs of Bipartite-SBM and HyperSBM may
seem close on this specific dataset, they are nonetheless different. On the other hand, and still on
this specific dataset, the spectral clustering approach outputs results that are completely different
from those of HyperSBM.

5 DISCUSSION

We have proposed a hypergraph SBM for simple hypergraphs and general clusters types, that is,
our work is not limited to community detection and/or equally sized clusters. This is in sharp
contrast with most existing approaches. For example, Ghoshdastidar and Dukkipati (2014, 2017)
obtained error bounds that converge to zero only for the (Aff-m) model with equally sized
groups and assuming moreover that 𝛼(m) > 𝛽(m). Moreover, references such as Ke et al. (2020),
Ahn et al. (2018), and Chien et al. (2019) primarily focus on community detection, which
means they only identify clusters that correspond to communities. Our inference procedure is
based on a maximum-likelihood approach, which should in principle provide some statistical
guarantees. While consistency and asymptotic normality of the variational and the maximum
likelihood estimators in our HSBM is left for future work, we believe that such results could be
obtained following approaches used in the context of graphs SBMs (Bickel et al., 2013; Celisse
et al., 2012). It is worth noting that while Chodrow et al. (2021) initially employ a maximum
likelihood approach, they deviate from that setting for their inference procedure. In contrast,
our method retains the maximum likelihood framework throughout the inference process. The
maximum likelihood approach also enables the use of a penalized criterion for model selec-
tion. The SBM for hypergraphs presented in Balasubramanian (2021) is highly general. However,
their least-squares estimator for a hypergraphon model is computationally infeasible. Addition-
ally, their Algorithm 1 is dedicated to community detection and does not provide general cluster
recovery.

Our model can accommodate self-loops without significant changes by allowing for m = 1.
Furthermore, it can be easily extended to handle multiple hypergraphs (with or without
self-loops) by incorporating a zero-inflated or deflated Poisson distribution on the conditional
distribution of the hyperedges. In a more general setting, the conditional Bernoulli distribu-
tion can be replaced with any parametric distribution to handle weighted hypergraphs, and it
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22 BRUSA and MATIAS

could also easily incorporate covariates. This flexibility allows for the adaptation of our model to
various types of hypergraph data.

While an important challenge is to reduce the complexity of our approach, some gain could
be provided by constraining the parameter set. For instance, Contisciani et al. (2022) consider
a Poisson HSBM, where the connectivity parameter is nonzero only between nodes in the same
cluster. While this assumption is quite restrictive, it is mitigated by the introduction of overlapping
clusters. In the same way, Ruggeri et al. (2023) propose a similar model where the connectivity
parameter is the sum of nodes-pairs contributions, resulting in a model that differs from what
could be obtained through a clique reduction graph (namely, the graph obtained from hyperedges
transformed into cliques). In both cases, these constraints on the parameters considerably reduce
the complexity of the inference procedure which is based on a variational-like approach (but does
not rely on an ELBO). We believe that similar techniques could be useful in our case and plan to
explore that in future works.
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Kamiński, B., Poulin, V., Prałat, P., Szufel, P., & Théberge, F. (2019). Clustering via hypergraph modularity. PLoS

One, 14(11), e0224307.
Ke, Z. T., Shi, F., & Xia, D. (2020). Community detection for hypergraph networks via regularized tensor power

iteration (Technical Report). arXiv:1909.06503.
Kruskal, J. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to

arithmetic complexity and statistics. Linear Algebra and its Applications, 18(2), 95–138.
Leordeanu, M., & Sminchisescu, C. (2012). Efficient hypergraph clustering. In N. D. Lawrence & M. Girolami (Eds.),

Proceedings of the fifteenth international conference on artificial intelligence and statistics Proceedings of machine
learning research (Vol. 22, pp. 676–684). PMLR.

Massen, C. P., & Doye, J. P. K. (2005). Identifying communities within energy landscapes. Physical Review E, 71,
046101.

Matias, C., & Robin, S. (2014). Modeling heterogeneity in random graphs through latent space models: A selective
review. ESAIM: Proceedings and Surveys, 47, 55–74.

Muyinda, N., De Baets, B., & Rao, S. (2020). Non-king elimination, intransitive triad interactions, and species
coexistence in ecological competition networks. Theoretical Ecology, 13, 385–397.

Newman, M. E. J. (2016). Equivalence between modularity optimization and maximum likelihood methods for
community detection. Physical Review E, 94, 052315.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12754 by L

uca B
rusa - U

niversita M
ilano B

icocca , W
iley O

nline L
ibrary on [24/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



24 BRUSA and MATIAS

Ng, T., & Murphy, T. (2022). Model-based clustering for random hypergraphs. Advances in Data Analysis and
Classification, 16, 691–723.

Poda, V., & Matias, C. (2024). Comparison of modularity-based approaches for nodes clustering in hypergraphs.
Peer Community Journal, 4, e37.

Rohe, K., Chatterjee, S., & Yu, B. (2011). Spectral clustering and the high-dimensional stochastic blockmodel.
Annals of Statistics, 39(4), 1878–1915.

Ruggeri, N., Contisciani, M., Battiston, F., & Bacco, C. D. (2023). Community detection in large hypergraphs.
Science Advances, 9(28), eadg9159.

Singh, P., & Baruah, G. (2021). Higher order interactions and species coexistence. Theoretical Ecology, 14, 71–83.
Squartini, T., & Garlaschelli, D. (2011). Analytical maximum-likelihood method to detect patterns in real networks.

New Journal of Physics, 13(8), 083001.
Stephan, L., & Zhu, Y. (2022). Sparse random hypergraphs: Non-backtracking spectra and community detection. In

2022 IEEE 63rd annual symposium on foundations of computer science (FOCS) (pp. 567–575). IEEE.
Swan, M., & Zhan, J. (2021). Clustering hypergraphs via the MapEquation. IEEE Access, 9, 72377–72386.
Torres, L., Blevins, A. S., Bassett, D., & Eliassi-Rad, T. (2021). The why, how, and when of representations for

complex systems. SIAM Review, 63(3), 435–485.
Turnbull, K., Lunagómez, S., Nemeth, C., & Airoldi, E. (2023). Latent space modeling of hypergraph data. Journal

of the American Statistical Association, 1–13. https://doi.org/10.1080/01621459.2023.2270750
van Handel, R. (2011). On the minimal penalty for Markov order estimation. Probability Theory and Related Fields,

150(3), 709–738.
Vazquez, A. (2009). Finding hypergraph communities: A Bayesian approach and variational solution. Journal of

Statistical Mechanics: Theory and Experiment, 2009(7), P07006.
Wolff, K. H. (1950). The sociology of Georg Simmel. The Free Press.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at
the end of this article.

How to cite this article: Brusa, L., & Matias, C. (2024). Model-based clustering in simple
hypergraphs through a stochastic blockmodel. Scandinavian Journal of Statistics, 1–24.
https://doi.org/10.1111/sjos.12754

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12754 by L

uca B
rusa - U

niversita M
ilano B

icocca , W
iley O

nline L
ibrary on [24/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1080/01621459.2023.2270750
https://doi.org/10.1111/sjos.12754
https://doi.org/10.1111/sjos.12754

	Model-based clustering in simple hypergraphs through a stochastic blockmodel 
	1 INTRODUCTION
	2 A STOCHASTIC BLOCKMODEL FOR HYPERGRAPHS
	2.1 Model formulation
	2.2 Parameter identifiability
	2.3 Parameter estimation via variational expectation-maximization
	2.3.1 Algorithm initialization
	Random initialization
	``Soft'' spectral clustering
	Graph-component absolute spectral clustering
	2.3.2 Fixed point
	2.3.3 Stopping criteria
	2.3.4 Algorithm complexity and choice of M

	2.4 Model selection

	3 SYNTHETIC EXPERIMENTS
	3.1 Synthetic data
	3.2 Clustering and estimation under HSBM with a fixed number of groups
	3.2.1 Clustering results
	3.2.2 Parameter estimation accuracy

	3.3 Performance of model selection
	3.4 Line clustering through hypergraphs

	4 ANALYSIS OF A CO-AUTHORSHIP DATASET
	4.1 Dataset description
	4.2 Analysis with HyperSBM
	4.3 Comparison with two other methods

	5 DISCUSSION

	ACKNOWLEDGMENTS
	ORCID
	REFERENCES
	Supporting Information

