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Abstract

Background: Since the beginning of the coronavirus disease 2019 pandemic, there has been an explosion of sequencing of the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, making it the most widely sequenced virus in the history. Several
databases and tools have been created to keep track of genome sequences and variants of the virus; most notably, the GISAID platform
hosts millions of complete genome sequences, and it is continuously expanding every day. A challenging task is the development of
fast and accurate tools that are able to distinguish between the different SARS-CoV-2 variants and assign them to a clade.

Results: In this article, we leverage the frequency chaos game representation (FCGR) and convolutional neural networks (CNNs) to
develop an original method that learns how to classify genome sequences that we implement into CouGaR-g, a tool for the clade
assignment problem on SARS-CoV-2 sequences. On a testing subset of the GISAID, CouGaR-g achieved an 96.29% overall accuracy,
while a similar tool, Covidex, obtained a 77, 12% overall accuracy. As far as we know, our method is the first using deep learning and
FCGR for intraspecies classification. Furthermore, by using some feature importance methods, CouGaR-g allows to identify k-mers
that match SARS-CoV-2 marker variants.

Conclusions: By combining FCGR and CNNs, we develop a method that achieves a better accuracy than Covidex (which is based on
random forest) for clade assignment of SARS-CoV-2 genome sequences, also thanks to our training on a much larger dataset, with
comparable running times. Our method implemented in CouGaR-g is able to detect k-mers that capture relevant biological information
that distinguishes the clades, known as marker variants.

Availability: The trained models can be tested online providing a FASTA file (with 1 or multiple sequences) at https://huggingface.
co/spaces/BIASLab/sars-cov-2-classification-fcgr. CouGaR-g is also available at https://github.com/AlgoLab/CouGaR-g under the GPL.

Keywords: chaos game representation, convolutional neural networks, classification of genome sequences, SARS-CoV-2, GISAID
clades, k-mer frequency, deep learning

Introduction
The global coordination in combating the coronavirus disease
2019 (COVID-19) pandemic has led to the sequencing of one of the
largest amounts of viral genomic data ever produced. All these
data are stored in publicly available archives, such as the Euro-
pean Nucleotide Archive (ENA) and GISAID [1], currently having
more than 9.6 million sequenced genomes, classified in variants,
clades, and lineages.

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) virus has evolved since its discovery, and the currently
available phylogenies describing its evolutionary history [2] show
more than 2,000 different genomes, divided into lineages. Since
the phylogeny is fairly stable and the main (existing) lineages (i.e.,
the lines of descent) have been identified, a natural and interest-
ing problem is to quickly find, given a sequence, the clade to which
it belongs (i.e., a group of descendants sharing a common ances-
tor) [3]. Fast and efficient solutions to the clade assignment prob-
lem would help in tracking current and evolving strains, and it
is crucial for the surveillance of the pathogen. This classification
problem has been attacked with machine learning approaches [4–
6] using the spike protein amino acid sequence to drive the clas-
sification step.

In this article, we propose a method for classifying SARS-CoV-2
genome sequences based on chaos game representation (CGR) [7]:
a deterministic bidimensional representation of a DNA sequence,
also called CGR encoding, that can be easily obtained from the
genome sequences. The CGR encoding of a sequence has 2 funda-
mental properties: it is deterministic (i.e., there is a unique CGR
encoding of each sequence) and reversible, and hence the original
sequence can be recovered from its representation [8].

A strongly related approach, known as frequency chaos game
representation (FCGR) [8, 9], starts from the k-mers (the substring
of length k) of the string we want to represent, resulting in the the
notion of kth order FCGR [10]. The kth order FCGR of a sequence s is
a 2k × 2k matrix whose elements are the number of occurrences
(i.e., the frequencies) of each k-mer in s, where each frequency is
stored in the specific and distinct position for each k-mer. Note
that the matrix shape depends on the fact that the sequence s
is on a 4-symbol alphabet. In essence, the FCGR is an alterna-
tive ordering of the histogram for all the k-mers (for a fixed in-
teger k). Deep learning and FCGR have been used to evaluate the
drug resistance for protein sequences of HIV [11]; to identify, for
a multiclass classification task, the source organism for a given
protein [12] (in this case, the FCGR has been extended to encode
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sequences in the protein alphabet); and to predict antimicrobial
resistance of different drugs in Escherichia coli [13]. The FCGR has
also been used for unsupervised clustering of DNA sequences of
several species [14] by using dense neural networks, where the in-
put of these networks must be a 1-dimensional vector. In this case,
the 2-dimensional FCGR representation of the sequences must be
flattened and cannot be fully exploited. For an extensive review
on CGR and its applications in bioinformatics, we refer the reader
to [15].

Subtyping SARS-CoV-2 sequences has been addressed in the lit-
erature with bioinformatics pipelines that require the alignment
to a reference genome [2, 16] and also with machine learning ap-
proaches aiming to skip the alignment step [17]. Furthermore, an
early approach to construct phylogenetics trees within SARS-CoV-
2 strains and closely related species was proposed in [18] using
FCGR as embedding for a hierarchical agglomerative clustering.
In a similar fashion, FCGR was explored along with other tech-
niques as embedding for the identification of homologies between
different known and emerging viruses in [19]. Convolutional neu-
ral networks (CNNs) [20] showed outstanding results in the well-
known Imagenet classification problem [21]. To the best of our
knowledge, only 2 works have used CNNs and FCGR for the classi-
fication of DNA sequences. In [22], a simplification of the network
reported in was used to classify different taxonomic categories
with a dataset of 3,000 sequences (1,200–1,400 long). A compari-
son with support vector machines (SVMs) showed that CNNs im-
prove over SVM when using a fragment (500 bp) of the sequences.
In [23], a CNN was proposed for the classification of a dataset of
≈660 sequences from 11 phylogenetic families reporting a test ac-
curacy of 87%.

In this article, we leverage the FCGR representation of genomic
sequences and CNN power to perform intraspecies classification
of viral DNA genome sequences, using SARS-CoV-2 as our case
of study and GISAID clades as our labels. Observe that in this
problem, the CNN classifies a dataset that is at least 2 orders
of magnitude larger than the one considered in the abovemen-
tioned studies. Another work that has tackled the clade assign-
ment problem is Covidex [24], a web app tool based on random
forest and k-mer frequencies: to the best of our knowledge, this
is the most recent work facing our problem. Notice that almost
the entire phylogenetics literature deals with interspecies classi-
fication, where the distance between possible cluster centroids is
larger, and hence the classification problem is easier. We propose
using a residual neural network [25] (ResNet50) for the classifica-
tion of DNA sequences into 11 GISAID clades, using a dataset of 2
orders of magnitude larger (153,000 sequences for training) than
those analyzed in the above-cited works (about 3,000 sequences in
[22]).

Classification metrics (accuracy, Matthews correlation coeffi-
cient [26], precision, recall, and F1-score) and analysis of the sep-
arability of the embeddings generated by the classification layer
(silhouette coefficient [27], Calinski–Harabasz score [28], and gen-
eralized discrimination value [GDV] [29]) are analyzed for each
model. Using the fact that each feature in the FCGR is uniquely
related to a k-mer, we aim to analyze if the most relevant k-mers
identified by feature importance methods (saliency maps [30] and
Shapley additive explanations [SHAP] values [31]) are related to
mutations defining each clade.

We trained 4 models, one for each value of k ∈ {6, 7, 8}. All mod-
els performed very similarly, with k = 8 being the best one, achiev-
ing an overall accuracy of 96.22% in the test set and the best clas-
sification metrics (0.948 for silhouette coefficient, 174,736.1 for

Calinski–Harabasz, and −0.718 for GDV). Three clades (O, GR, and
GRY) reported the lowest F1-score for all the trained models. Since
GR is a close ancestor of GRY and these 2 clades share many mu-
tations, they are confused with each other. For clade O, mispredic-
tions are among most of the clades.

Using the 20 most relevant k-mers identified by saliency maps,
we were able to achieve a similar performance to our CNN mod-
els using SVM for k ∈ {6, 7, 8}. Finally, to access the perfor-
mance of our models with respect to (w.r.t.) other approaches,
we compare our results with Covidex [24], the only recent tool
that we found in the literature solving the clade assignment prob-
lem. Our results show that our models outperform Covidex in
all clades and reported metrics (accuracy, precision, recall, and
F1-score).

Background
The CGR for encoding DNA/RNA sequences is formally defined as
follows:

Definition 1 (CGR)

Let s = s1…sn ∈ {A, C, G, T}∗ be a sequence. Then the CGR encoding of
the sequence s is the bidimensional representation of the ordered pair (xn,
yn), which is defined iteratively as

(xi, yi ) = 1
2

(
(xi−1, yi−1) + g(si )

)
, if i ≥ 1 (1)

where (x0, y0) = (0, 0) and

g(si ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, 1) si = A
(−1, 1) si = C
(−1,−1) si = G
(1,−1) si = T

(2)

Note that each point (xi, yi) obtained with the above encoding
represents the i-long prefix of the sequence s. Also, all the CGR
encodings are points inside the square with vertices given by the
values of the function g. In particular, the encoding of all prefixes
that shares the last character will be placed in the same quadrant;
all prefixes that share the 2 last characters will be placed in the
same sub-quadrant, and so on. This property results in a fractal
structure of the representation.

Missing bases can be problematic to encode, since the g( · ) func-
tion is not defined in that case; we used the notion of frequency
matrix CGR [8, 9], which has the added benefit of allowing us to
manage k-mers instead of strings of arbitrary length.

Definition 2 (frequency matrix of CGR)

Let s = s1…sn ∈ {A, C, G, T, N}∗ be a sequence, and let k be an integer.
Then the frequency matrix of CGR, in short FCGR, of the sequence s is a
2k × 2k bi-dimensional matrix F = (ai, j ), 1 ≤ i, j ≤ 2k, i, j ∈ N. For each
k-mer b ∈ {A, C, G, T}k, we have an element ai, j in the matrix F that is
equal to the number of occurrences of b as a substring of s. Moreover, the
position (i, j) of such element is computed as follows:

i = 2k − ⌈
2k−1(x + 1)

⌉ + 1

j = �2k−1(y + 1)	
where (x, y) is the CGR encoding for the k-mer b.

Note that the FCGR is defined for a DNA sequence with un-
known nucleotide, denoted by N—where k-mers with an N are
simply excluded in the counting process—while the CGR encoding
is well defined only when all nucleotides are known. To explicitly
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mention the dimension of the FCGR, we will refer to this as the
kth-order FCGR.

Classification of viral sequences of DNA
We are given a phylogeny over the possible viral strains, parti-
tioned into classes: each class c of such partition C is a clade of
the tree. More precisely, a clade is a group of related organisms
descended from a common ancestor [3]; in other words, a clade is
a subtree of a phylogeny that consists of an ancestral lineage and
all its descendants.

Given a genome sequence, which is a string s ∈ {A, C, G, T, N}∗,
we determine the original clade in C from which the genome se-
quence is originated; however, the genome sequence s might not
have been previously observed. In any case, the sequence will
be assigned to a putative clade. To solve this problem, we pro-
pose a supervised learning model based on CNNs, using FCGR as
inputs.

Data description
The dataset for this experiment was downloaded from GISAID. By
the time of our access to GISAID (https://www.gisaid.org/; 4 April
2022), there were around 10 million sequences.

In order to undersample the available data, we first dropped
all the rows in the metadata without information in the
columns Virus name, Collection Date, Submission Date,
clade, Host, and Is complete?, and then we built a fasta_id

identifier from the metadata as a concatenation of the columns
Virus name, Collection Date, and Submission Date.

For each clade, we randomly selected 20,000 sequences con-
sidering only those rows where the Host column has value
“Human”—clades L, V, and S have fewer than 20,000 sequences
available, and in these cases, all sequences have been selected.

As a result of the above procedure, we obtained 191,456 se-
quences among the 11 GISAID clades (S, L, G, V, GR, GH, GV, GK,
GRY, O, and GRA) over the 12 available, and we excluded the clade
GKA from our study since there were only 81 sequences reported
in the metadata. The undersampled dataset was randomly split
into train, validation, and test sets in a 80:10:10 proportion, pre-
serving the same proportion of clades (labels) in each set. The dis-
tribution of the clades over the datasets is given in Table 1.

Analyses
In this section, we present the experimental setup, the dataset
used to train and test each model, and clustering and classifica-
tion metrics. We train 1 model for each k ∈ {6, 7, 8}, and we comple-
ment the study of the accuracy of each model (compared against
Covidex [24]) with an analysis of the most relevant k-mers for the
classification of each clade using saliency maps and SHAP.

For this experiment, we choose k ∈ {6, 7, 8} and sequences from
11 GISAID clades: S, L, G, V, GR, GH, GV, GK, GRY, O, and GRA.

Experimental setup
All experiments are conducted using a Intel Core i5-10400 CPU @
2.90 GHz, x86_64, 32 GB RAM, and a graphic card NVIDIA GeForce
RTX 3060. The implementation is done in Python 3.10.5. Tensor-
flow 2.10.0 [32] was used for training the CNN and scikit-learn
1.1.12 [33] to compute classification metrics and clustering evalu-
ation (except for GDV that was implemented). All code is avail-
able online for reproducibility (https://github.com/AlgoLab/Cou
GaR-g).

Model training
Each model was set to be trained for 50 epochs with a batch size of
32 using an Adam optimizer [34] with a learning rate of 0.001 (the
default parameters in keras). The validation loss was monitored
after each epoch to save the best-trained weights, reducing the
learning rate with a patience of 8 epochs and a factor of 0.1, and
by an early stopping in case the metrics did not improve after 12
epochs.

We show the accuracy (average of the repeated 5-fold cross-
validation) of the train and validation sets for k = 8 in Fig. 1. For
k = 6 and k = 7, the training is more unstable for the first epochs,
but it behaves similar to k = 8 in the later epochs (i.e., training and
validation metrics are similar).

The architecture used in this experiment is the same for all k
(ResNet50 [25]); we only changed the input size. Originally, this ar-
chitecture was designed for inputs of size (224 × 224 × 3), which
led us to the assumption that this architecture could be more suit-
able for k = 8. Notice that our sequences are ≈29,000 bp long,
which means that our input FCGR for k = 8 is very sparse, since
from an n-long sequence, we can count n − k + 1 k-mers. This
means that (in the case where all k-mers are different) we have at
most 29,000 k-mers, and at least 55% of the elements of the FCGR
are 0 for k = 8. In Table 2, a comparison of the number of features
for each k and the training time per epoch in our experiments are
detailed.

Classification results
After each model is trained, Accuracy and Matthews correlation
coefficient are reported as global metrics (see Table 3). The preci-
sion and recall for the test set are computed for each clade us-
ing the best-trained weights (lowest loss in the validation set),
achieved at epochs 24 ± 5, 27 ± 8, and 20 ± 3 for k = 6, k = 7, and k
= 8, respectively. In our case, we assign each sequence to the clade
with the highest score. Precision, recall, and F1-score are shown in
Table 4.

Precision and recall are very similar among all the trained mod-
els, with small improvements when k increases; 5 out of 11 clades
have an F1-score greater than 99% in our best model (k = 8). Most
notable differences in the performance can be seen in clades GR
and GRY, which present the lowest (and under 90%) reported re-
call and precision in each model, respectively. Moreover, from the
confusion matrices (see Fig. 2), we can see that misclassified se-
quences that belong to clades GR and GRY are confused between
them, and this can be explained since clade GRY originates from
clade GR. For the other clades, most of the misclassified sequences
are predicted as (or belong to) clade G, which is the former one.
Clade O exhibits the second lowest recall, where the misclassified
sequences are assigned predominantly to clades G, GH, GK, and
GRY.

Comparison with the literature
We compare our results against Covidex [24], a tool that classi-
fies SARS-CoV-2 sequences into 3 nomenclatures: GISAID, Nexs-
train, and Pango lineages. Using a different model for each task, all
based on random forest and 6-mers as input, the reported accura-
cies are 97, 77%, 99, 52%, and 96, 56% for GISAID, Nextstrain, and
Pango models, respectively. Covidex also trained the models using
7-mers but claimed that it only produced slightly better results in
terms of accuracy but with more than doubling the computation
time [24].

The input for Covidex is a vector with the normalized count-
ing of the frequencies for all 4k k-mers. Our input, the FCGR, also
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Table 1: Distribution of the number of sequences selected for train, validation, and test sets by each clade. The final dataset for the 11
clades was split in a 80:10:10 proportion for train, validation, and test sets.

Clade Train Val Test Total Available

S 14,298 1,788 1,788 17,874 17,874
L 5,154 644 644 6,442 6,442
G 15,999 2,000 2,000 20,000 408,552
V 5,713 714 714 7,141 7,141
GR 16,000 2,000 2,000 20,000 625,662
GH 16,000 2,000 2,000 20,000 547,792
GV 16,000 2,000 2,000 20,000 182,248
GK 16,000 2,000 2,000 20,000 4,170,758
GRY 16,000 2,000 2,000 20,000 944,876
O 16,000 2,000 2,000 20,000 55,400
GRA 16,000 2,000 2,000 20,000 2,833,863

Total 153,164 19,146 19,146 191,456 9,800,608

Figure 1: Average accuracy in the training and validation sets for our
model with k = 8. The best model (final weights) is set as the one with
the lowest validation loss, achieved at epochs 24 ± 5 for k = 8 (from a
repeated 5-fold cross-validation process). All models were trained for 50
epochs using an early stopping of 12 epochs based on the validation loss
(hence, not all of them ran for 50 epochs).

considers all k-mers but in a bidimensional matrix. The main dif-
ference between both approaches is the model behind it; while
Covidex uses random forest to perform the classification, we take
advantage of the CNNs and use a 2-dimensional input, the FCGR.
Notice that using the FCGR with any other classical machine
learning method implies converting the FCGR into a vector and,
hence, the loss of the 2-dimensional structure.

Since our model is trained using GISAID clades, we only com-
pare to those results. Covidex used 10 clades: S, L, G, V, GR, GH,
GV, GK, GRY, and O. In our case, we included GRA since there were
enough available sequences by the time of our experiments, but
this is not considered in the comparison.

For Covidex, the model for the GISAID nomenclature was
trained with 66,126 sequences and tested on 13,230. Since Covidex
is made available as an user app for any SARS-CoV-2 sequence,
we used the app over our test dataset to compare the results. We
tested Covidex on our test dataset of 17,146 sequences (excluding
the 2,000 sequences from GRA clade). We achieved an accuracy
of 77, 12%, more than 18% lower than all our trained models and
20, 65% lower than their reported accuracy. The reported preci-
sion, recall, and F1-score, as well as the test results over our se-
lected dataset, can be seen in Table 5. We found that the reported
F1-score of Covidex is quite distant from the one we obtained in
our test dataset for clades L (−8.4%), G (−15.8%), GR (−42.4%),
GK (−10.9%), GRY (−19.3%), and O (−28.8%), while for clades S

(−0.8%), V (−2.9%), GH (−2.5%), and GV (−0.9%), we can observe
a decrement on the reported F1-score ranging from 0.8% to 2.9%.
Our models (see Table 4) exhibit better performance than Covidex
in all clades and metrics on our test set, with similar results only
on clades S and GV. We did not perform an extensive comparison
of the running times since both tools classify a genome sequence
in less than a second (on k = 8, our tool took 0.15 seconds on
average).

Clustering results
We evaluate the embeddings of the last layer of each trained
model using the silhouette coefficient, Calinski–Harabasz score,
and GDV. These results are shown in Table 6. We can observe that
the model for k = 9 is the best one among all metrics, but all
trained models exhibit a very similar separability based on sil-
houette and GDV.

Relevant k-mers for the classification of each
clade
The purpose of this experiment is to study if a set of the most
relevant k-mers (based on feature importance methods) are infor-
mative enough to a SVM to perform similarly to the trained CNNs
(that uses FCGR as input and hence all the 4k possible k-mers).

Using saliency maps and SHAP values, we can evaluate the con-
tribution of each element of a FCGR in the classification, for each
model. From each of these feature attribution methods, we can
obtain an ordered list of all k-mers. For each clade, we use the
centroid FCGR of all correctly classified sequences in the test set,
and then we use each centroid FCGR to identify the most relevant
k-mers for each clade and then train a SVM using the N most rel-
evant k-mers (for different values of N ∈ {1, 2, 3, 4, 5, 10, 15, 20, 25,
30, 35, 40, 45, 50}) and their respective frequencies as input.

The same training and test sets used for the CNNs were used
for the SVM. The results of the accuracy in the test set for the
different values of N are shown in Figs. 5 and 6. We can observe
that k-mers identified by saliency maps are more informative than
those identified by SHAP values, since for N = 20, we obtain similar
accuracy in the test set for k = 6, 7, 8 compared to CNN (96–97%),
while in the case of SHAP values, this accuracy is only achieved
by k = 7 with N = 35. Notice that using N = 20, we are considering
a small number of all possible k-mers (0.49% for k = 6, 0.12% for
k = 7, and 0.03% for k = 8).

Matching relevant k-mers to mutations
Using the reference genome employed by GISAID (EPI_ISL_402124)
(https://www.gisaid.org/resources/hcov-19-reference-sequence/)
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Table 2: For each k, the dimension of the FCGR, its number of features (4k), the amount of memory required to store the selected dataset
of 191,456 sequences as FCGR, and the average training time per epoch are reported. The number of features and the space increase
exponentially with respect to k.

k-mer Dimensions Features Size (GiB)
Time per epoch

(min)

6 (64,64) 4,096 6.6 4:05
7 (128,128) 16,384 24.1 8:21
8 (256,256) 65,536 94.2 24:50

Table 3: Accuracy and Matthews correlation coefficient (MCC) in
the set for each of our models. Each metric (μ ± σ ) is reported by
its average (μ) and standard deviation (σ ) from a repeated 5-fold
cross-validation process. For both accuracy and MCC, the model
increases with the value of k. Going from k = 6 to k = 8 increases
accuracy in 0.84% and MCC in 0.94%. The highest value of each
metric is highlighted in bold.

k-mer Accuracy MCC

6 0.953714 ± 0.001589 0.948792 ± 0.001813
7 0.959856 ± 0.001740 0.955566 ± 0.001910
8 0.962175 ± 0.002829 0.958211 ± 0.003141

and the list of marker variants (https://www.gisaid.org/resources/
statements-clarifications/clade-and-lineage-nomenclature-aids-
in-genomic-epidemiology-of-active-hcov-19-viruses/) for each
GISAID clade with respect to this reference, we evaluated how
many k-mers among the 50 chosen ones by saliency maps
and SHAP values actually matched any of the reported marker
variants. A summary is shown in Table 7.

The results show that the most relevant k-mers selected using
saliency maps match several of the reported marker variants (46
matches for k = 6, 51 for k = 7, and 11 for k = 8). On the other
hand, the ones chosen by SHAP values barely match with the mu-
tation (3 for k = 6), suggesting that saliency maps could provide
a richer explainability of the model from a biological perspective.
Examples of SHAP values and Saliency Maps applied to a random
sample from clade V are shown in Figs. 3 and 4, respectively.

Discussion
In this work, we have shown that FCGR can be used to classify
DNA sequences. Most notably, we have used FCGR to assign SARS-
CoV-2 genome sequences to its GISAID strain by running a CNN on
191,456 genome sequences (80% training set, 10% validation set,
and 10% test set). In particular, the eighth-order FCGR achieved a
test accuracy of 96.22%.Most misclassified sequences are shared
between 2 strongly related strains, GR and GRY (GR is a close an-
cestor of GRY).

We decided to exclude transfer learning from our experiments
after trying this approach without success on 8-mers. For this
trial, we used pretrained weights from the Imagenet dataset using
ResNet50 architecture, where the backbone weights were frozen,
and 3 dense layers were included at the top of it for the classifica-
tion.

We have assessed the influence of the length k of the substrings
(k-mers) used to build the FCGR, showing that values between 6
and 8 lead to very similar results, with less than 1% of difference
in both accuracy and MCC on the same test set. However, when
increasing the value of k, the training time for the model and the
memory required to save the FCGRs increases exponentially. For
k = 6, each epoch required 4:05 minutes and 6.6 GB of memory,

while for k = 8, it required 24:50 hours and 94.2 GB. However,
FCGRs show fractal structures; this suggests that we might couple
increasing k with using only a portion of the FCGR.

We compare our results with Covidex, a random forest–based
tool that classifies sequences on GISAID clades based on k-mer
frequencies. Under the same test set, our results show that our
models outperform Covidex in all clades and reported metrics (ac-
curacy, precision, recall, and F1-score). Moreover, we found that
the reported precision, recall, and F1-score of Covidex are quite
different for all clades except S and GV in our test set, exhibiting
a decrease in the F1-score metric up to 42.4%.

We have used saliency maps and SHAP to identify relevant k-
mers, looking for matches with the marker variants reported for
each strain. Using the k-mers obtained by saliency maps, we found
46, 51, and 11 matches for k = 6, 7, and 8, respectively. While, for
the k-mers identified by SHAP, only 3 matches were found for k =
6. A possible direction for future work is to explore other existing
methods (e.g., Lime [35], GradCAM [36], DeepLIFT [37]) that might
be suitable in explaining the decisions of the model.

Classifying genome sequences by introducing the assembly
bias includes more factors to take care of, since any classifica-
tion depends on the specific assembly pipeline that has been used.
To lessen this possible problem, we should study a related prob-
lem, where we classify read samples instead of fully assembled
genomes. This new problem is more complex, since different re-
gions of the viral genome can have different coverage—hence im-
pacting the frequencies—and reads need to be cleaned from both
errors and contamination artifacts (the latter might be attacked
with specialized tools like KMC3 [38]).

We did not perform an extensive comparison of the running
times since both tools classify a genome sequence in less than a
second.

Potential implications
This article shows how to couple FCGR with a deep neural net-
work that is especially suited to represent images, such as a CNN,
to predict clade assignment. Since FCGR is a simple and intuitive
representation of a set of k-mers, we expect this combination to
find applications in several other problems that are currently at-
tacked with approaches based on k-mers.

Methods
We use the kth-order FCGR representation for each sequence. In
order to obtain this representation, we need to count the k-mers
in each sequence and to put those frequencies in the FCGR based
on the CGR encoding.

Before feeding the FCGR to the model, we rescale its elements to
values between 0 and 1 for stability of the learning process. To do
so, we divide each FCGR element-wise by the maximum value in
the FCGR. It is worth mentioning that other preprocessing steps
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Figure 2: Confusion matrix for the test set for one of the trained models
with k = 8 (from a repeated 5-fold cross-validation process). All the
models are able to correctly classify more than 98% of the sequences for
all clades except for G, GR, GRY, and O. Most of the incorrectly classified
sequences of GR and GRY are confused between them, which makes
sense since they are evolutionary related. For the G clade, the incorrectly
classified sequences are shared between clades GK and O. For the clade
O, the incorrectly classified sequences are predominantly assigned to
clades G, GH, GK, and GRY.

were taken into consideration but ultimately excluded because
they were empirically worse.

Due to the huge amount of data available for most of the clades,
we undersampled at most 20,000 sequences per clade to perform
our experiments; nevertheless, for some clades, only a portion
was available (see table representativity). In order to overcome
the unbalance in the undersampled dataset, we decided to use
a weighted binary cross-entropy loss function (instead of over-
sampling the underrepresented classes), where the cost associ-
ated with a class c is inversely proportional to its representativity
in the training set.

Model architecture
We choose a residual neural network, ResNet50 [39], as our CNN,
adapted for kth-order FCGR, that is, with input size equal to
(2k × 2k × 1) and output size equal to the number of clades: |C|,
with softmax activation function in the last layer and categori-
cal cross-entropy as loss function, since we want to assign only 1
clade to each DNA sequence.

Model evaluation
To assess the performance of our trained model, we perform a
classification evaluation of the predictions and also a clustering
evaluation for the embeddings in order to evaluate the class sepa-
rability. The reported metrics are based on a repeated 5-fold cross-
validation.

Classification metrics
We report global (accuracy and Matthews correlation coefficient)
and class specific metrics (precision, recall, and F1-score) for the
trained models.

Class-specific metrics
Given a clade c, the correct predictions of the model can be com-
pared to all the sequences with ground truth c (recall) and to all
the sequences predicted by the model into the clade c (precision).

Formally, given a clade c, the positive class P consists of the
set of genome sequences that are assigned to c, while all other
genome sequences are the negative class N. Consequently, the

true positives consist of the sequences that originate from the
clade c and have been assigned to c, the false positives consist of
the sequences that do not originate from the clade c and have been
assigned to c, and the false negatives consist of the sequences that
originate from the clade c and have not been assigned to c. The
precision and recall are computed as follows:

precision = TP
TP + FP

, recall = TP
TP + FN

(3)

We also report the F1-score, defined as

f1 − score = 2
precision × recall
precision + recall

(4)

Global model metrics
Given a classification problem on S samples and N classes, the
corresponding confusion matrix C = (cij), i, j ∈ [1, N] is a square
matrix where each entry ci, j is the number of elements that belong
to the true class i and were classified in the class j, and the sum
of the entries in C is exactly S.

i. The accuracy of the model is defined as the proportion of the
corrected classified samples over the total number of sam-
ples; this value ranges between 0 and 1, where 0 means that
all samples were erroneously classified, while a value of 1
means a perfect classification. It can be defined in terms of
the entries of the confusion matrix as follows:

acc =
∑N

k=1 ckk

S
(5)

ii. The Matthews correlation coefficient (MCC), proposed in [26]
as a binary classification metric, was generalized to the
multiclass case in 2004 [40], and it can be defined in terms
of the confusion matrix as follows (see [41] for details):

MCC = cp × S − ∑N
k=1 pk × tk√

(S2 − ∑N
k=1 p2

k ) × (S2 − ∑
k = 1Nt2

k )
(6)

where cp = ∑N
k=1 ckk is the total number of samples cor-

rectly predicted, tk = ∑N
i=1 cik is the number of times class k

was truly occurred, and pk = ∑N
j=1 ck j is the number of times

class k was predicted. MCC lives in the range [−1, 1], where
1 is perfect classification, −1 is the opposite, and 0 means
that the confusion matrix is all zeros but for one single col-
umn, or when all entries are equal, ci j = K ∈ N [41].

Clustering measures
In order to assess the quality of the class separability given by
the CNN, we evaluate the embeddings of the last layer (the one
used to perform the classification) in the network with 3 clustering
evaluation measures. These embeddings are the output from the
final layer of the network for each FCGR.

i. Silhouette coefficient [27]. Given an embedding v belonging to
a cluster A, the silhouette coefficient s(v) of v compares the
mean intracluster distance in A (a) with the mean nearest-
cluster distance for v (b), that is, the closest cluster to v dif-
ferent from A.

s(v) = a − b
max{a, b} (7)

where a = 1
|A|

∑|A|
w∈A,w
=v d(v, w) and b =

minB
=A
1
|B|

∑|B|,v∈A
w∈B d(v, w).

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac119/6963321 by guest on 25 M

arch 2024



8 | GigaScience, 2023, Vol. 12, No. 1

Figure 3: FCGR image (left) and SHAP values (right) of the centroid FCGR for the clade V (k = 6). The FCGR image is obtained rescaling the frequencies
in the FCGR to a gray-scale range of 8 bits ([0, 255]); an inversion of colors is performed to visualize higher values as black squares and lower values as
white. SHAP values represent the importance of the features in the FCGR; the higher the value (red), the more important is the feature. Each feature
(pixel) in the FCGR corresponds to a k-mer.

Figure 4: FCGR image (left) and saliency map (right) of the centroid FCGR for the clade V (k = 6). The FCGR image is obtained rescaling the frequencies
in the FCGR to a gray-scale range of 8 bits ([0, 255]); an inversion of colors is performed to visualize higher values as black squares and lower values as
white. Saliency maps represent the importance of the features in the FCGR; the higher the value (red), the more important is the feature. Each feature
(pixel) in the FCGR and saliency map corresponds to a k-mer.

Table 5: Precision, recall, and F1-score for Covidex. The report part is taken from the supplementary material of [24]. The test part has
the precision, recall, and F1-score obtained by Covidex on our test set, restricted to the 10 clades (17,146 sequences) analyzed in [24]. We
found significant differences between Covidex and our trained models in the test metrics (see Table 4). In particular, the most notorious
differences with respect to F1-score, ranging from 8.4% to 42.4%, are found for clades L (−8.4%), G (−15.8%), GR (−42.4%), GK (−10.9%),
GRY (−19.3%), and O (−28.8%), while for clades S (−0.8%), V (−2.9%), GH (−2.5%), and GV (−0.9%), we can observe a decrement in the
reported F1-score ranging from 0.8%–2.9%. Metrics in bold in the test part are those that did not decrease more than 3% with respect to
the reported metrics.

Report Test
Clade Prec. Rec. F1-score Prec. Rec. F1-score

S 0.998 1 0.999 0.988 0.995 0.991
L 0.997 1 0.999 0.859 0.979 0.915
G 0.993 0.984 0.989 0.811 0.852 0.831
V 1 1 1 0.958 0.985 0.971
GR 0.945 0.915 0.930 0.379 0.760 0.506
GH 0.995 0.999 0.997 0.957 0.987 0.972
GV 0.996 0.999 0.997 0.980 0.995 0.988
GK 0.977 0.995 0.986 0.925 0.833 0.877
GRY 0.920 0.961 0.940 0.732 0.763 0.747
O 0.994 0.959 0.976 0.722 0.658 0.688

The value of s(v) ranges between −1 (wrongly assigned) and
1 (perfect separability). For a cluster A, the mean silhouette
coefficient of A is computed as the average of s(v) over all
embeddings v ∈ A.

ii. Calinski–Harabasz score [28]. Given a set of embeddings E of
size nE that has been clustered into k clusters, the Calinski–
Harabasz score s, also known as the variance ratio criterion,
is defined as the ratio of the between-clusters dispersion
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Table 6: Clustering metrics for our trained models. Each metric is computed using the output of each model and the predicted clade
(i.e., the clade that achieves the highest score by our model) in the test set. Each model is represented by the length of the k-mers used
to generate the FCGR. For the silhouette score, the closest to 1 the better. For the Calinski–Harabasz score, larger values are better. For
the GDV score, the closest to −1, the better. All models exhibit comparable separability of the clusters. Each metric (μ ± σ ) is reported
by the average (μ) and standard deviation (σ ) in the form of a repeated 5-fold cross-validation process.

k-mer Silhouette Calinski–Harabasz GDV

6 0.939 ± 0.007 145,879.214 ± 18,132.428 − 0.712 ± 0.003
7 0.948 ± 0.003 163,926.767 ± 8,638.391 − 0.717 ± 0.002
8 0.948 ± 0.006 174,736.086 ± 22,554.904 − 0.718 ± 0.003

Figure 5: Accuracy of test set for SVM trained models using only the
most N relevant k-mers for each clade (N ∈ {1, 2, 3, 4, 5, 10, 15, 20, 25, 30,
35, 40, 45, 50}). The relevant k-mers are selected using saliency maps on
the centroid of the correctly classified FCGR for each clade and model.
The same train and test datasets used for the trained CNNs are used for
the SVM. The SVM trained with 20 most relevant k-mers identified by
the saliency map, for k ∈ {6, 7} achieves an accuracy in the test set
(≈ 96%) that is in the range of the minimum and maximum accuracies
(see Table 3) obtained by our trained CNNs (the gray dashed band
represents the minimum and maximum accuracy for the trained CNNs).

Figure 6: Accuracy of test set for SVM trained model using only the
most N relevant k-mers for each clade (N ∈ {1, 2, 3, 4, 5, 10, 15, 20, 25, 30,
35, 40, 45, 50}). The relevant k-mers are selected using SHAP values on
the centroid of the correctly classified FCGR for each clade and model.
The same train and test datasets used for the trained CNNs are used for
the SVM. The SVM, trained with the 30 most relevant (or more) 6-mers
identified by SHAP values, achieves the closest accuracy (92, 44%) to the
ones obtained by our trained models (see Table 3). When k increases, the
accuracy always decreases (for the same number of relevant k-mers),
which can be explained since when k increases, the total number of
possible k-mers increases exponentially.

Table 7: Summary of matches between the 50 most relevant k-
mers (from saliency maps and SHAP values) and the list of marker
variants reported by GISAID for each clade. The k-mers obtained
by saliency maps are able to match several mutations and the
matches decrease when k increases, but the ones from SHAP val-
ues only reported 3 matches, for k = 6.

k-mer Saliency maps SHAP values

6 46 3
7 51 0
8 11 0

and the intercluster dispersion for all clusters (the disper-
sion of a group of n points is measured by the sum of the
squared distances of the points from their centroid).

s = tr(Bk )
tr(Wk )

nE − k
k − 1

(8)

where tr(Bk) is the trace of the between-cluster dispersion
matrix and tr(Wk) is the trace (the sum of all elements in
the diagonal of Wk) of the within-cluster dispersion matrix,
defined as follows:

Wk =
k∑

q=1

∑
v∈Cq

(v − cq )(v − cq )T (9)

Bk =
k∑

q=1

nq(cq − cE )(cq − cE )T (10)

where Cq is the set of embeddings in the cluster q, cq is the
centroid of the cluster q, and cE is the centroid of E and
nq = |Cq|.
The higher the score s means that the clusters are dense
and well separated.

iii. GDV [29]
Given a set of N D-dimensional embeddings {x1, …, xN},
with xn = (xn, 1, …, xn, D) and a set of L classes {C1, …, CL},
where each xn is assigned to one of the L distinct classes.
Consider their z-scored points (s1, …, sN), with si = (si, 1, …,

si, D), where sn,d = 1
2

xn,d−μd

σd
. Here, μd = 1

N

∑N
n=1 xn,d denotes

the mean, and σd =
√

1
N

∑N
n=1(xn,d − μd )2 is the standard de-

viation of dimension d. Using the rescaled data points sn =
(sn, 1, …, sn, D), the GDV � is calculated from the mean intr-
aclass and interclass distances as follows:

� = 1√
D

[
1
L

L∑
l=1

dintra(Cl ) − 2
L(L − 1)

L−1∑
l=1

L∑
m=l+1

dinter(Cl,Cm )

]

(11)
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where the mean intraclass for each class Cl is defined as

dintra(Cl ) = 2
Nl (Nl − 1)

Nl−1∑
i=1

Nl∑
j=i+1

d(s(l)
i , s(l)

j ) (12)

and the mean interclass for each pair of classes Cl and Cm

is defined as follows:

dinter(Cl,Cm ) = 1√
D

[ 1
NlNm

Nl∑
i=1

Nm∑
j=1

d(s(l)
i , s(l)

j )
]

(13)

Here, Nk correspond to the number of points in class k, and
s(k)

i is the ith point of class k. The quantity d(a, b) is the dis-
tance between a and b; for our case, we considered the Eu-
clidean distance. The value � range is between −1 (perfect
separability) and 0 (wrongly assigned).

Feature importance
After the model is trained, we can perform feature importance
methods (also known as pixel attribution in case of images) to an-
alyze the impact of each element of the FCGR in our prediction.
We selected saliency maps [30] and SHAP values [31]. Saliency
maps calculate the gradient of the loss function for a specific de-
sired class with respect to the input (FCGR) elements, and the gra-
dients are rescaled to [0, 1], where elements with values closer to
1 represent the more influential features for the input FCGR over
the predicted class. SHAP values are a game-theoretic approach to
explain the output of any machine learning model. It aims to ex-
plain the influence of each feature compared to the average model
output over the dataset the model was trained on, and it outputs
positive and negative values, where positive values push the pre-
diction higher, and negative values push the prediction lower. Us-
ing the most relevant features from both methods over the FCGR,
we aim to identify the most relevant k-mers for the classification
of each clade.

Using these methods, we aim to analyze the most relevant k-
mers for the classification of each clade in the trained models.
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