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Abstract. On non-compact Riemannian manifolds, we construct distance-like functions with deriva-
tives controlled up to some order k assuming bounds on the growth of the derivatives of the curvature
up to order k − 2 and on the decay of the injectivity radius. This construction extends previously
known results in various directions, permitting to obtain consequences which are (in a sense) sharp.
As a first main application, we give refined conditions guaranteeing the density of compactly sup-
ported smooth functions in the Sobolev space W k,p on the manifold. Contrary to all previously
known results this can be obtained also on manifolds with possibly unbounded geometry. In the
particular case p = 2, making use of the Weitzenböck formula for a Lichnerowicz Laplacian acting
on k-covariant totally symmetric tensor fields, we can weaken the assumptions needed to obtain
the density property, avoiding any condition on the highest order derivatives of the curvature.
Distance-like functions are also used to obtain new disturbed Sobolev inequalities, disturbed Lp-
Calderón-Zygmund inequalities and the full Omori-Yau maximum principle for the Hessian under
weak assumptions.
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1. Introduction and main results

1.1. Higher order distance-like functions. Let (M, g) be a complete non-compact Riemannian
manifold and let r(x) be the distance from x ∈M to a fixed reference point o ∈M . The behaviour
of the function r(x) detects how much the manifold differs from the Euclidean space. It turns out
that in general r(x) is 1-Lipschitz on M , but only a.e. differentiable. This happens as soon as
the point o has a cut-locus, and in particular whenever M has non-trivial topology. This lack of
regularity of r represents an obstacle to perform a certain kind of smooth analysis. In order to
overcome this problem, it is often enough to use, in place of r, a suitable smooth approximation of
the distance function. A first evidence in this direction is given by a well-known result by M. P.
Gaffney [9] (often attributed in the literature to R. E. Greene and H. Wu, [11]), who showed the
existence of a function H(x) on M which is smooth, distance-like (i.e. C−1r(x) < H(x) < Cr(x)
outside a compact set) and whose gradient has norm uniformly bounded by 1. This can be obtained
by smoothing r in local coordinate charts by mollification.

In order to adapt to Riemannian manifolds certain techniques of Ck (Euclidean) analysis, one
would like to have at disposal on M a smooth distance-like functions of which one controls not only
the gradient, but also higher order (covariant) derivatives up to the order k. It is thus a natural
question to what extent one can generalize Gaffney’s result, providing sufficiently general geometric
assumptions which guarantee the existence of a distance-like function with controlled higher order
derivatives.

A first achievement in this direction is due to J. Cheeger and M. Gromov, [7] (see also [21] for a
detailed proof), who remarked that a uniform double-sided bound on the sectional curvatures of M
permits to get a uniform bound also on the norm of the second order derivatives of Gaffney’s first-
order distance-like function through the local smoothing process, thanks to the Hessian comparison.
More recently, L. F. Tam provided in [28] a new completely different proof of Cheeger-Gromov’s
result: start with the first-order distance-like function by Gaffney-Greene-Wu and let it evolve by
the heat flow of M ; the regularizing property of the heat flow, together with the sectional curvature
bound, permits to control also the second order derivatives along the evolution, so that the evolution
at a fixed time (say t = 1) gives the aimed second-order distance-like function. Contrary to the
proof by Cheeger-Gromov, Tam’s approach is more flexible, in the sense that it can be adapted to
other sets of assumptions. This was first observed by the second and third authors in [25], where
the existence of a second order-distance like function was obtained when the underlying manifold
has (double-sided) bounded Ricci curvature and positive injectivity radius. For a further recent
result, see also [19], where the assumption of positive injectivity radius is replaced by the request
that the volumes of unitary balls are almost Euclidean. This seems a pretty strong assumption,
which however a priori could not imply injg(M) > 0 in general.

As we will see later, for most applications the uniform bound on the second-order derivatives is a
property stronger than what is really needed, in that we can actually allow derivatives to explode at
infinity, provided that their growth is appropriately controlled. Starting from this observation, in the
previous paper [20] we found conditions which ensure the existence of a distance-like function with
uniformly bounded gradient and sub-linear growth of the second-order derivatives. Namely, this
holds true provided that: a) the norm of the Riemann tensor grows sub-quadratically or b) the norm
of the Ricci tensor grows sub-quadratically and the injectivity radius can possibly vanish at infinity,
but no faster than 1/r(x). In order to obtain this improvement, we introduced a new strategy: the
distance-like function is no more given by a solution of the linear homogeneous parabolic heat flow,
but instead by the solution of a non-linear non-homogeneous elliptic equation.
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Concerning the existence of higher order distance-like functions (i.e. with controlled derivatives
up to the order k > 2), up to our knowledge, the only known achievement is due to L. F. Tam ( see
[8, Remark 26.50]) who proved the following

Proposition 1.1. Let k ≥ 2. Let (Mm, g) be a complete Riemannian manifold such that, for some
D > 0, we have |∇jRiem| ≤ D2 for j = 0, . . . , k − 2. Then there exists a distance-like function
H ∈ C∞(M) such that |∇jH| ≤ C, for j = 1, . . . , k, with C a positive constant depending only on
m, k,D.

Let λ : [0,+∞) → [0,+∞) be a C∞ function. Before stating the first main result of this paper,
let us introduce the following assumptions:

(A1) There exists a constant R1 > 0 such that λ is strictly positive and non-decreasing on
[R1,+∞).

(A2) For every δ > 0, there exist constants R2 = R2(δ) > 0 and M2 = M2(δ) > 1 such that

∀ t > R2, M2(δ)−1 ≤ λ(δt)

λ(t)
≤M2(δ), and M2(δ)−1 ≤ λ′(δt)

λ′(t)
≤M2(δ).

(A3) There exist constants R3 > 0 and M3 > 1 such that

∀ t > R3, M−1
3 ≤ tλ′(t)

λ(t)
≤M3.

Moreover, for every integer j ≥ 1 we introduce the assumptions
(A4(j)) There exist constants R4(j) > 0 and M4(j) > 1 such that

∀ t > R4(j),
tλ(j)(t)

λj(t)
≤M4(j).

The first main theorem of this paper is the following.

Theorem 1.2. Let (M, g) be a complete Riemannian manifold and o ∈ M a fixed reference point,
r(x)

.
= dist(x, o). Let k ≥ 2 be an integer. Let λ satisfy the assumptions (A1), (A2), (A3) and

(A4(j)), j = 1, . . . , k. Suppose that one of the following curvature assumptions holds

(a) for some i0 > 0,

|∇jRic|(x) ≤ λ(r(x))2+j , 0 ≤ j ≤ k − 2, injg(x) ≥ i0
λ(r(x))

> 0 on M.

(b)
|∇jRic|(x) ≤ λ(r(x))2+j , 1 ≤ j ≤ k − 2, |Sect|(x) ≤ D2λ(r(x))2.

Then there exists an exhaustion function H ∈ C∞(M) such that for some positive constant C > 1
independent of x and o, we have on M that

(i) C−2r(x) ≤ H(x) ≤ max {r(x), 1};
(ii) |∇H|(x) ≤ 1;
(iii) for 2 ≤ j ≤ k,

∣∣∇jH∣∣ (x) ≤ C max{λ(r(x))j−1, 1}.
More comments about assumptions (A1) to (A4) will be given in Subsection 3.1. For the moment

let us only point out that admissible choices for λ which are relevant in the applications are, for
instance, constant multiples of

λ(r(x)) = r(x)η, η ≥ 0, or λ(r(x)) = r(x)
ī∏
i=1

ln[i](r(x))

where ln[i] stands for the i-th iterated logarithm (e.g. ln[2](t) = ln ln t, etc.) and ī is some positive
integer. See Lemma 3.4 for more details.

Theorem 1.2 extends the previously known results in several directions. Namely note that:
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• The Proposition 1.1 due to Tam is still true if we assume only |∇jRic| ≤ D2 and either a
uniform bound on all the sectional curvatures or the positivity of the injectivity radius;
• as in [20], we can assume a controlled growth of the curvatures and/or a controlled decay

of the injectivity radius and get an estimate for the growth of the derivatives, which is
enough for some important applications, as for instance for proving the density of compactly
supported functions in Sobolev spaces;
• we can admit more general (non-necessarily sub-polynomial) growth functions. This gener-

alizes also the second order result obtained in [20], and permits to get consequences which
are (in a sense) sharp. See for instance Remark 1.6 and Subsection 6.3.

We present here the strategy of the proof of Theorem 1.2 in the special easy case where λ(r(x)) =
r(x). Reasoning by induction, suppose that we have a distance-like function Hk−1 which satisfies
|∇jHk−1| ≤ r(x)j−1 outside a compact set for j = 1, . . . , k − 1. According to (a generalization of)
a theorem due to D. Bianchi and A. G. Setti, [6], we can prove the existence of a smooth function
h such that

(i) C−1
h r2(x) ≤ h(x) ≤ Chr2(x);

(ii) |∇h| ≤ Chr(x);
(iii) ∆h = |∇h|2 − CθH2

k−1(x),

outside a compact set; see Theorem 3.5. Suppose that we already have obtained an estimate for
|∇jh| for j = 2, . . . , k − 1 (formally, this is done via a second induction process). Derivating the
equation at (iii), we get

(1) ∇k−2∆h = ∇k−2|∇h|2 − Cθ∇k−2H2
k−1(x).

The curvature and injectivity radius assumptions, together with an appropriate local rescaling of
the metric, guarantee the existence of a harmonic atlas with respect to which the metric is uniformly
controlled in Ck−1,α. Accordingly, in any local harmonic coordinate chart Ω, equation (1) writes
∆0∇k−2h = F on Ω, where ∆0 is the Euclidean Laplacian and F a certain (vector-valued) function
which depends on ‖g‖Ck−1,α(Ω), ‖h‖Ck−1(Ω) and ‖Hk−1‖Ck−1(Ω). Since all these three norms are
controlled, we are in the position to implement standard Euclidean elliptic theory and deduce a
C2,α control on ∇k−2h, that is, a Ck,α control on ∇kh. The desired function H is finally obtained
letting H = h2.

1.2. The density property for Sobolev spaces. As alluded to above, distance-like functions
guarantee that the underlying manifold M is not too different from the Euclidean space (in a
suitable sense). Namely, when M supports a distance-like function with controlled derivatives,
certain properties and tools from classic analysis on Rn can be proved to have a Riemannian
counterpart on M . In this sense, one of the main applications is to density results of smooth
compactly supported functions in Sobolev spaces, as probably first observed in [13], [16].

Given (Mm, g) a smooth, complete, possibly non-compact Riemannian manifold without bound-
ary, k an integer, and p ≥ 1, one can define the Sobolev space W k,p(M) as the space of functions
on M all of whose (weak) derivatives of order 0 to k have finite Lp norm. By a generalised Meyers-
Serrin-type theorem (see e.g. [12]) this coincides with the completion of the space

Cpk(M)
.
=

{
u ∈ C∞(M) :

∫
M
|∇ju|pdvol < +∞, ∀ j = 0, . . . , k

}
with respect to the norm

‖u‖k,p =
k∑
j=0

(∫
M
|∇ju|pdvol

) 1
p

.

Moreover, we can define W k,p
0 (M) ⊆ W k,p(M) as the closure of the space of smooth compactly

supported functions C∞c (M) with respect to the same norm.
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In case M = Rm, it is well known that W k,p
0 (Rm) = W k,p(Rm) for all k integer and p ∈ [1,∞), so

that one could expect the same equivalence to hold true also on complete Riemannian manifold M .
However, quite surprisingly, the problem seems to remain open in general so far; see for instance
[18, p. 49].

Problem 1.3. Given an arbitrary complete Riemannian manifold (M, g), is it true that

(2) W k,p
0 (M) = W k,p(M)

for all integer k ≥ 0 and p ∈ [1,∞)?

Of course, the answer is positive under certain additional assumptions. First, (2) is satisfied for all
k and p when M is compact; see for instance [4, Theorem 2.9]. Concerning complete non-compact

manifolds, it is a standard fact that W 0,p
0 (M) = W 0,p(M) = Lp(M), and with some effort one can

also prove that W 1,p
0 (M) = W 1,p(M) for all k and p ∈ [1,∞); [3].

Regarding the first non-trivial order, i.e. k = 2, in our previous work [20] we showed that

W 2,p
0 (M) = W 2,p(M), p ∈ [1,+∞), for complete manifolds with either a sub-quadratic growth

of the norm of the Riemann curvature, or a subquadratic growth of both the norm of the Ricci
curvature and the squared inverse of the injectivity radius. Previously known results, obtained in
[18], [14], were assuming uniform constant bounds on either the Ricci tensor and the injectivity
radius or the Riemann tensor. As far as concerns higher order Sobolev spaces the most up to date
result is the following proposition due to E. Hebey, [18].

Proposition 1.4 (Proposition 3.2 in [18]). Let (M, g) be a smooth, complete Riemannian manifold
with positive injectivity radius, and let k ≥ 3 be an integer. We assume that for j = 0, . . . , k − 2,

|∇jRic| is bounded. Then for any p ∈ [1,∞), W k,p
0 (M) = W k,p(M).

As a first main application of Theorem 1.2, we will prove the density property on complete Rie-
mannian manifolds with a suitable growth condition on the derivatives of the Ricci tensor and either
the Riemannian curvature tensor or the inverse of the injectivity radius. The admissible growth
rate depends explicitly on the order of the Sobolev space we are dealing with. Note that, contrary
to Proposition 1.4, the following Theorem 1.5 concerns also manifolds with possibly unbounded
geometry.

Theorem 1.5. Let k ≥ 2. In the assumptions of Theorem 1.2, if we further assume that λ1−k 6∈
L1([1,+∞)), then we have that W k,p(M) = W k,p

0 (M) for all p ∈ [1,+∞).

Remark 1.6. Choosing the function λ in Theorem 1.5 in essentially the best admissible way, we

get that W k,p(M) = W k,p
0 (M) for all p ∈ [1,+∞) for instance if

|∇jRic|(x) ≤

r(x)

ī∏
i=1

ln[i](r(x))

(2+j)/(k−1)

, 0 ≤ j ≤ k − 2,

and either

(a) for some i0 > 0, inj(x) ≥ i0
(
r(x)

∏ī
i=1 ln[i](r(x))

)−1/(k−1)
> 0, or

(b) for some D > 0, |Riem|(x) ≤ D2
(
r(x)

∏ī
i=1 ln[i](r(x))

)2/(k−1)
.

Accordingly, this theorem improves also our previous [20, Theorem 1.4] when k = 2, permitting to

achieve the density result W 2,p
0 (M) = W 2,p(M) on manifolds whose curvatures can grow more than

quadratically.

To get a flavour of the proof of Theorem 1.5, consider here the easy case k = 3 and λ(r) = r1/2

(so that λ1−k 6∈ L1([1,+∞))). Following a standard construction, let φR ∈ C∞c (R+) be a family
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of cut-off functions such that φR ≡ 1 on [0, R] and |φ(j)
R | ≤ CR−j1[R,2R]. Let H be the 3rd-

order distance-like function given by Theorem 1.2 and define χR
.
= φR ◦ H. Then {χR}R>1 is

a family of 3rd-order cut-off functions, namely |∇jχR| are uniformly bounded as R → ∞ for
j = 1, 2, 3. Once one has 3rd-order cut-off functions, it is a standard fact that f ∈ W 3,p(M) can
be approached by χRf in W 3,p(M)-norm. In this process, the main term to control is of the form
|φ′R(H(x))∇3H(x)| . R−1λ2 = R−1R = 1. Here, this latter control was deduced from uniform
estimates which we have separately on φ′R(H(x)) and on ∇3H(x) in B2R(o) \BR(o). One can look
instead for a more careful point-wise control. Namely one imposes that |φ′R(H(x))| is smaller and
smaller as H(x) → ∞ in order to compensate the growth of ∇3H(x). This leads us to a more
careful construction of the real cut-offs φR, in such a way that |φ′R(H(x))| ∼ 1

λ2(H(x))
∼ 1
|∇3H(x)| .

This can be done as soon as λ1−k 6∈ L1((1,+∞)), and permits us to get the results under the sharper
assumptions which we described in Remark 1.6.

1.3. Sampson-Lichnerowicz Laplacian and the special case W k,2(M). In the particular case
p = 2, the assumptions of Theorem 1.5 can be weakened. For k = 2, L. Bandara [5] proved that

W 2,2(M) = W 2,2
0 (M) under the sole lower bound Ric(x) ≥ −C for some constant C > 0. In

[20], we pointed out that in fact Ric(x) ≥ −Cr2(x) suffices. The point is that in these weaker
assumptions one can still prove the existence of a distance-like function H with |∆H| ≤ Cr2,
and hence of Laplacian cut-offs with |∆χn| uniformly bounded, [6]. Given f ∈ W 2,2(M), the
Weitzenböck formula applied to the Hodge Laplacian acting on the (skew-symmetric) one form
d(χnf) permit to control ‖f∇2χn‖L2 in terms of ‖f∆χn‖L2 , and thus to prove that χnf → f in
W 2,2(M). Generalizing this approach to higher order Sobolev spaces is non-trivial. Indeed, one is
led to apply Bochner techniques to the (0, k − 1)-tensor ∇k−1(χnf), which is very far from being
skew-symmetric when k > 2. Accordingly, the Bochner formula for the Hodge Laplacian acting
on k-forms can not be exploited. However, it turns out that ∇2(χnf) = Hess (χnf) is symmetric.
This is no more true for k > 3, but ∇k−1(χnf) remains almost symmetric, in the sense that it has
a symmetric principal term, plus lower order terms which can be controlled. Thus, one can apply
an analogous technique to J. H. Sampson’s Laplacian ∆Sym, [26]. This latter is a Laplace operator
acting on the space of symmetric (0, k)-tensors which

(a) is a Lichnerowicz Laplacian, i.e. it satisfies a Weitzenböck formula

∆L = ∆B + cRic,

where c is a suitable (in this case negative) constant, ∆B is the Bochner Laplacian and Ric
is the Weitzenböck curvature operator (see Subsection 5.2 for more details).

(b) has a Hodge-type decomposition ∆Sym = D∗SDS − DSD
∗
S , where DS is the symmetrized

covariant derivative, and D∗S its formal adjoint.

Exploiting this, one can get a control on the L2-norm ‖f∇kχn‖L2 in terms of ‖f∆∇k−2χn‖L2 .
Choosing the cut-offs χn to be what we called k-th order (rough) Laplacian cut-offs, this latter
term can be estimated under assumptions which are weaker than the assumptions of Theorem 1.5
(in particular we do not need to control the highest order derivatives of the curvature). More
precisely, in Section 5 we will prove the following.

Theorem 1.7. Let (M, g) be a complete Riemannian manifold and o ∈ M a fixed reference point
r(x)

.
= distg(x, o). Let k ≥ 3 be an integer. Let λ satisfy assumptions (A1), (A2), (A3), and (A4(j))

for j = 1, . . . , k − 1 above, and suppose that λ1−k /∈ L1([1,+∞)). Suppose that

|∇jRiem| ≤ λ(r(x))2+j , 0 ≤ j ≤ k − 3.

Then we have that W k,2
0 (M) = W k,2(M).
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1.4. Other applications. Beyond the density problem for Sobolev spaces, other results can be
obtained by means of Theorem 1.2, notably when k = 2, i.e. for distance-like functions with
controlled gradient and Hessian. Some of these applications were already observed in [20], including
disturbed Sobolev inequalities, L2-Calderón-Zygmund inequalities and the full Omori-Yau maximum
principle for the Hessian. Since Theorem 1.2 improves [20, Theorem 1.5] also when k = 2, by allowing
for a wider class of admissible growth functions λ, the range of application of the results alluded to
above is enlarged in this paper. This will be made explicit respectively in Theorem 6.1, Theorem
6.4 and Subsection 6.3. On the way, we will take also the occasion to point out a couple of new
applications of the 2nd-order distance-like functions which were not contained in [20]. The first one
is a higher order version of the disturbed Sobolev inequality, i.e.

‖ϕ‖Lpm/(m−kp)(M) ≤ A
k−1∑
r=−1

∥∥∥(max{1; r(x)})
η
mp

(r+1)(2m−rp) |∇k−r−1ϕ|
∥∥∥
Lp(M)

,

for all ϕ ∈ C∞c (M). Quite surprisingly, compared to the case k = 1, this does not require any
additional assumption; see Proposition 6.3. The second new application is the following disturbed
global Lp Calderón-Zygmund inequality for p 6= 2.

Theorem 1.8. Let (Mm, g) be a smooth, complete non-compact Riemannian manifold without
boundary. Let o ∈ M , r(x)

.
= distg(x, o) and suppose that for some η > 0, some D > 0 and some

i0 > 0,

|Sect|(x) ≤ D2(1 + r(x)2)η, injg(x) ≥ i0
D(1 + r(x))η

> 0 on M.

Then there exist constants A > 0 depending on m, η, D, i0 and the constant C from Theorem 1.2,
such that for all ϕ ∈ C∞c (M) it holds

‖|Hessϕ|g‖pLp ≤ A
[
‖H2ηϕ‖pLp + ‖∆ϕ‖pLp

]
,

where H ∈ C∞(M) is the distance-like function given by Theorem 1.2, which satisfies in particular
H(x) ≤ max{1; r(x)}.

Compared to the L2-case alluded to above, the main difficulty here is to control the injectivity
radius of the manifold at hand under a conformal deformation of the metric.

1.5. Structure of the paper. The rest of the paper is structured as follows. In Section 2, for
the reader’s convenience, we list some notations which will be used throughout the paper. Section
3 is devoted to the construction of higher order distance-like functions described in Theorem 1.2.
These will be then used in Section 4 to construct the cut-off functions needed for the proof of the
density property for Sobolev spaces stated in Theorem 1.5 which will be proved in the final part of
the section. In Section 5 we focus on the special case p = 2. We construct the k-th order rough
Laplacian cut-off functions, introduce Sampson’s Lichnerowicz Laplacian acting on the space of
smooth sections of symmetric k-covariant tensors and its Weitzenböck formula, and give a proof of
the density property stated in Theorem 1.7. The other applications of the higher order distance-like
functions we mentioned above will be presented in Section 6, which contains in particular a proof
of Theorem 1.8. For the sake of completeness, we end the paper with two appendices. In Appendix
A, we give a proof of some commutation formulas which we use in Section 5, while in Appendix B
we explicitly prove the Weitzenböck formula for Sampson’s Laplacian.

2. Some notational conventions

The following are some notations and conventions which will be used throughout the paper.

For any β > 0, the Euclidean ball of radius β centered at the origin will be denoted by Bβ.

Given a smooth enough function λ : R → R, its j-th derivative will be denoted by λ(j). Moreover,
using standard notation, given a smooth enough function F : Rm → R we will denote by DF the
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Euclidean gradient of F and, given a multi-index γ = (γ1, . . . , γq) ∈ {1, . . . ,m}q, we will denote
|γ| = q and ∂γF = ∂qγ1···γqF

.
= ∂γ1 · · · ∂γqF .

Given (Mm, g) an m-dimensional complete Riemannian manifold, we will denote by ∇g, ∆g
.
=

divg∇g and∇jg, respectively, the corresponding Riemannian gradient, the (negative definite) Laplace-
Beltrami operator and the natural j-th covariant derivative, thus specifying in the subscript the
metric we are considering. Given a smooth enough f : M → R, the Hessian of f , i.e. ∇2

gf , will be
also denoted by Hessgf . An analogous convention will be used for various concepts associated to
the metric such as the geodesic distance dg(·, ·), open geodesic balls Bg

r (x) of radius r centered at a
point x ∈M , the injectivity radius injg(x) at a point x ∈M , the global injectivity radius injg(M),
and the volume measure dvolg. Likewise, we will denote the Riemann curvature tensor of (M, g) by
Riemg, the Ricci tensor by Ricg and the Sectional curvature of a two dimensional subspace π ⊂ TxM
by Sectg(π). However, we will omit the subscript metric when the meaning is clear, as for instance
for the fiber norms induced by g (as in the expression |∇gf |), as well as in all the Section 5 and in
the Appendix A and B, where we are considering a unique Riemannian metric g on M .

Note also that when writing an inequality of the form |Sectg|(x) ≤ a(x) on M we will mean
that all the sectional curvatures at the point x are dominated, in absolute value, by a(x) for every
x ∈M .

In some parts of the paper, especially in Section 5 and in the appendices, some of the formulae
which we will need can be significantly simplified using the following ”∗” notation, used e.g. in [29].
We denote by A ∗B any tensor field which is a real linear combination of tensor fields, each formed
by starting with the tensor field A⊗B, using the metric to switch the type of any number of T ∗M
components to TM components, or vice versa, taking any number of contractions, and switching
any number of components in the product.

Finally, all over the paper, C will denote real constants, whose explicit value can possibly change
from line to line. When it will seem appropriate we will specify some dependences of these constants
at the subscript.

3. Higher order distance-like functions

3.1. On the assumptions. Let λ : [0,+∞) → [0,+∞) be a C∞ function. In Section 1 we
introduced the following assumptions:

(A1) There exists a constant R1 > 0 such that λ is strictly positive and non-decreasing on
[R1,+∞).

(A2) For every δ > 0, there exist constants R2 = R2(δ) > 0 and M2 = M2(δ) > 1 such that

∀ t > R2, M2(δ)−1 ≤ λ(δt)

λ(t)
≤M2(δ), and M2(δ)−1 ≤ λ′(δt)

λ′(t)
≤M2(δ).

(A3) There exist constants R3 > 0 and M3 > 1 such that

∀ t > R3, M−1
3 ≤ tλ′(t)

λ(t)
≤M3.

Moreover, for every integer j ≥ 1 we have defined the property
(A4(j)) There exist constants R4(j) > 0 and M4(j) > 1 such that

∀ t > R4(j),
tλ(j)(t)

λj(t)
≤M4(j).

Let θ(t)=̇tλ(t). We have the validity of the following

Lemma 3.1. Assumption (A3) implies that for all t > R3,

(1 +M−1
3 )λ(t) ≤ θ′(t) ≤ (1 +M3)λ(t).

Let j ≥ 1 be an integer. Since θ(j) = tλ(j)(t) + jλ(j−1)(t), we have
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Lemma 3.2. Assumptions (A4(j − 1)) and (A4(j)) imply that there exist constants R5(j) > 0 and
M5(j) > 1 such that

∀ t > R5(j), θ(j)(t) ≤M5(j)λ
j(t).

Now, let j ≥ 0. Define Θ(t)=̇(θ′(t))2 = (tλ′(t) + λ(t))2. Note that Θ(j) is a linear combination

of terms of the form θ(j1)θ(j2), with j1 and j2 positive integers satisfying j1 + j2 = j + 2. Then we
have also the following

Lemma 3.3. Suppose that assumptions (A4(s)), s = 1, . . . , j + 1 are satisfied. Then there exist
constants R6(j) > 0 and M6(j) > 1 such that

∀ t > R6(j), Θ(j)(t) ≤M6(j)λ
j+2(t).

Lemma 3.4. (i) The function λ(t)=̇tη with η > 0 satisfies assumptions (A1), (A2), (A3) and
(A4(j)) for j ≥ 2.

(ii) Suppose that

λ(t) = αt

j̄∏
j=1

ln[j](t)

for t large enough, where α > 0 is a constant, j̄ a positive integer and we recall that ln[j]

stands for the j-th iterated logarithm. Then λ satisfies assumptions (A1), (A2), (A3) and
(A4(j)) for j ≥ 2.

Proof. (i) (A1), (A2), (A3) are trivially satisfied. Concerning (A4(j)) for j ≥ 2, we have

tλ(j)(t)

λj(t)
= C

tη−j+1

tjη

If η ≤ 1, then tη−j+1 ≤ 1 when t > 1, whence the thesis. For η > 1, we have tη+1 ≤ tηj when t > 1,
which permits to conclude.

(ii) (A1) is trivial. Concerning (A2) note that

λ(δt)

λ(t)
= δ

j̄∏
j=1

ln[j](δt)

ln[j](t)
,

and ln[j](δt)

ln[j](t)
→ 1 as t→∞ for every j. Similarly, λ′(t) = α+α

∑j̄
q=1

∏j̄
j=q ln[j](t), so that λ′(t) ∼t→∞

α
∏j̄
j=1 ln[j](t), and

lim
t→∞

λ′(δt)

λ′(t)
= lim

t→∞

∏j̄
j=1 ln[j](δt)∏j̄
j=1 ln[j](t)

= 1.

Concerning (A3), we have that

tλ′(t)

λ(t)
=
αt
(

1 +
∑j̄

q=1

∏j̄
j=q ln[j](t)

)
λ(t)

∼t→∞
αt
∏j̄
j=1 ln[j](t)

λ(t)
= 1

Concerning (A4(j)) it is enough to remark that limt→∞ λ
(j)(t) = 0 and that λj(t) ≥ αjtj ≥ t when

t is large enough. �
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3.2. A generalization of a result by Bianchi-Setti. Schoen and Yau proved in [27] the existence
of families of Laplacian cut-off functions on manifolds with lower bounded Ricci curvature. In [6,
Theorem 2.1], Bianchi and Setti generalized this result in two directions. On the one hand they
got a better control on the Laplacian of the cut-offs when the negative part of the Ricci curvature
vanishes at infinity. On the other hand they showed that one can get Laplacian cut-offs even when
the negative part of the Ricci curvature explodes at infinity, provided that its growth is suitably
controlled, i.e. Ricg ≥ −Cr(x)2. In the following theorem, we extend this latter result to the
assumption Ricg ≥ −λ2(r(x)) for a larger class of growth functions λ. This in particular will permit
to sharpen applications to the density problem for Sobolev spaces, see Subsection 4.1.

Theorem 3.5. Let λ : [0,+∞) → [0,+∞) be a C∞ function satisfying assumptions (A1), (A2),
(A3). Let (Mm, g) be a complete Riemannian manifold and o ∈ M a fixed reference point, r(x)

.
=

distg(x, o). Suppose that for some R0 > 0,

Ricg(x) ≥ −λ2(r(x)), on M \BR0(o).

Let r̃ ∈ C∞(M \ o) be an exhaustion function on M such that for some Cr̃ > 1
C−1
r̃ r(x) ≤ r̃(x) ≤ Cr̃r(x)

r̃(x) = r(x), on B2(o) \B1/2(o)

|∇g r̃| ≤ 1.

Then there exists h ∈ C∞(M) such that

(i) C−1
h r(x)λ(r(x)) ≤ h(x) ≤ Ch max{1; r(x)λ(r(x))};

(ii) |∇gh| ≤ Chλ(r(x)) on M ;
(iii) ∆gh = |∇gh|2 − Cθ(θ′(r̃(x)))2 on M \BRθ(o)

for some constants Cθ > 0, Rθ > 0 and Ch > 1. Here θ is the function defined on [0,+∞) by
θ(t)=̇tλ(t).

Beyond the more restrictive choice for the growth function λ, in the original version of Theorem
3.5 given in [6, Theorem 2.1] the first-order distance-like function r̃ was required to satisfy ‖r̃ −
r‖L∞(M) < ε for an ε arbitrarily small. This is the case for instance if r̃ is a distance-like function
provided by Gaffney’s result [9]. Instead, our Theorem 3.5 works for general first-order distance-like
functions; see Proposition 3.9 below. This represents a minor technical improvement, which will
reveal however essential in proving Theorem 1.2.

Indeed, in order to prove the existence of a distance-like function Hk with a control on the
derivatives up to order k > 2 we will first construct a distance-like function Hk−1 which is controlled
up to order k − 1 and then apply Theorem 3.5 with r̃ = Hk−1 and set h = θ(Hk). The control on
the k-th order derivatives is obtained by differentiating k − 2 times the equation appearing in (iii),
and then using elliptic estimates in suitable harmonic coordinates; see Lemma 3.11. However, note
that in order to get a second-order distance-like function (i.e. for k = 2) the exact form of equation
(iii) is not needed since it suffices to have an estimate of the form |∆gh| ≤ Cλ2(r(x)).

Proof (of Theorem 3.5). The proof mimics the proof of Theorem 2.1 in [6]. The main difference
is to modify the equation of which log h will be a solution, according to our more general set of
assumptions. We will sketch the relevant changes. Also, if λ is bounded then the result is contained
in [6, Theorem 2.1]. We can thus assume from now on that λ is unbounded and λ(t) → ∞ as
t→∞.

We start by pointing out the following lemma.

Lemma 3.6. Let λ : [0,+∞) → [0,+∞) be a C∞ function satisfying assumptions (A1) and
(A2). Let (Mm, g) be a complete Riemannian manifold and o ∈ M a fixed reference point, r(x)

.
=



HIGHER ORDER DISTANCE-LIKE FUNCTIONS AND SOBOLEV SPACES 11

distg(x, o). Suppose that for some R0 > 0,

Ricg(x) ≥ −λ2(r(x)), on M \BR0(o).

Then there exists α > 1, CSY > 0 and Rα > 0 such that for every x ∈M \BRα(o) it holds

volg(B1/4(x)) ≥ CSY e−αr(x)λ(r(x)).

The original idea is due to Schoen and Yau, [27], while in [6, Proposition 2.11] the authors
consider bounds given by (possibly negative) powers of r(x).

Proof (of Lemma 3.6). Set Gx=̇λ2(2r(x) + 1). By continuity, since λ(t) → ∞ as t → ∞, if r(x) is
large enough, then Ricg ≥ −Gx on B2r(x)+1(o). By the Bishop-Gromov comparison,

volg(B1/4(x)) ≥volg(Br(x)+1(x))
VGx(1/4)

VGx(r(x) + 1)
≥ volg(B1(x))

VGx(1/4)

VGx(r(x) + 1)

≥volg(B1(x))
V0(1/4)

VGx(r(x) + 1)
,

where VGx(t) represents the volume of a ball of radius t in the m-dimensional simply connected
space-form of constant negative curvature −Gx, and V0(1/4) is the the volume of a ball of radius
1/4 in Rm. A standard computation using assumption (A2) shows that there exist constants C1 > 0,
Rα > 0 and α > 1 independent of x such that

VGx(r(x) + 1) ≤ C1e
αr(x)λ(r(x)),

as soon as r(x) > Rα. Setting CSY = C−1
1 volg(B1(x))V0(1/4) concludes the proof of the lemma. �

Recall that θ(t) = tλ(t). Proceeding as in [6, Theorem 2.1] we can produce a function ω ∈
C∞(M \B1(o)) solution of 

∆gω = C2
e (θ′(r̃(x)))2ω,

ω|∂B1 = 1,

0 < ω|M\B̄1(o) < 1,

(3)

with Ce a large enough constant to be fixed later. Computing as in [6, page 6] we get that for every

0 < γ <
√
C2
e/2 and every x ∈M \B2(o),

(4)

∫
B1/4(x)

(θ′(r̃(y)))2eγθ(r̃(y))ω2dvolg(y) ≤
∫
M\B1(o)

(θ′(r̃(y)))2eγθ(r̃(y))ω2dvolg(y) ≤ A

C2
e − 4γ2

,

where A = eλ(1)
∫
∂B1(o) |∇gω|dvolm−1 . We need the following Li-Yau gradient estimate.

Lemma 3.7. There exists a constant CLY > 0 and RLY > 0 such that for every R > RLY and for
every x ∈ BR+1(o) \BRLY (o),

|∇gω|2

ω2
≤ C2

LY C
2
eλ

2(R).

Proof. A special case of Theorem 2.8 in [6] ensures the existence of a constant C ′LY > 0 such that

|∇gω|2

ω2
≤ C ′LY max{λ2(R);C2

e (θ′(R))2}.

By Lemma 3.1, θ′(R) ≤ (1 +M3)λ(R) for R large enough, which proves the lemma. �

Reasoning as in [6, page 6], thanks to Lemma 3.7, for every x ∈M \B3(o) and every y ∈ B1/4(x),
we have

(5) ω(y) ≥ ω(x)e−
1
4
CLY Ceλ(r(x)).
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Note also that there exist δ > 0, κ > 0 and Rδ > 0 such that for every x ∈ M \ BRδ(o) and every
y ∈ B1/4(x),

(6) (θ′(r̃(y)))2eγθ(r̃(y)) ≥ δ(θ′(r̃(x)))2eκγθ(r̃(x)).

This follows from assumption (A2) and the fact that |r̃(x) − r̃(y)| < 1/4 (because |∇g r̃| ≤ 1).
Inserting (5) and (6) in (4) gives

ω2(x)δ(θ′(r̃(x)))2eκγθ(r̃(x))e−
1
2
CLY Ceλ(r(x))volg(B1/4(x)) ≤ A

C2
e − 4γ2

.

From Lemma 3.6, we deduce that

ω2(x) ≤ C−1
SY δ

−1 A

C2
e − 4γ2

(θ′(r̃(x)))−2e−κγθ(r̃(x))+ 1
2
CLY Ceλ(r(x))+αr(x)λ(r(x))

whenever r(x) > R1=̇ max{Rα;Rδ;RLY ; 3}. Recalling assumption (A1) and (A2), we get

θ(r̃(x)) ≥ θ(C−1
r̃ r(x)) ≥ ζθ(r(x)),

with ζ = C−1
r̃ M2(C−1

r̃ )−1 > 0 independent of x. Hence

−κγθ(r̃(x)) +
1

2
CLY Ceλ(r(x)) + αr(x)λ(r(x)) ≤ − [κγζ − α] r(x)λ(r(x)) +

1

2
CLY Ceλ(r(x)).

At this point we can make a choice of γ > 3α
κζ , so that κγζ − α > 2α, and a choice of Ce > 2γ.

There exists a radius R2 > 0 such that

− [κγζ − α] r(x)λ(r(x)) +
1

2
CLY Ceλ(r(x)) ≤ αr(x)λ(r(x))

for all x ∈M \BR2(o). Because of assumption (A1) and Lemma 3.1, θ′(t) is lower bounded. Hence
we have obtained that

ω2(x) ≤ C−1
SY δ

−1 A

C2
e − 4γ2

e−αr(x)λ(r(x))

on M \BR3(o) for some R3 ≥ R2. Define

h(x)=̇(φ(x)− 1) ln(ω(x)) + φ(x),

where φ ∈ C∞(M) is such that φ(x) ≡ 1 in B2(o) and φ(x) ≡ 0 in M \ B3(o). We have that on
M \BR3(o)

h(x) = − ln(ω(x)) ≥ ln

(
CSY δ

C2
e − 4γ2

A

)
+ αr(x)λ(r(x)),

from which we deduce the existence of a radius R4 > R3 such that

h(x) ≥ α

2
r(x)λ(r(x))(7)

on M \BR4(o). On the other hand , since h(o) = 1, thanks to Lemma 3.7 we can compute

h(x) =h(o) +

∫ r(x)

0
|∇gh(σ(s))|ds ≤ 1 +RLY max

BRLY

|∇gh|+
∫ r(x)

RLY

CLY Ceλ(r(x))ds(8)

≤α′r(x)λ(r(x)),

for some constant α′ independent of x. By definition of the smooth function h and up to choose
Ch > max{α′, 2/α,CLY Ce} large enough, as a consequence of (7), (8) and Lemma 3.7, we have
thus obtained the validity of the points (i) and (ii) in the statement of Theorem 3.5. The point (iii)
follows from (3) and a direct computation. �
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3.3. Proof of Theorem 1.2: case (a). We are going to prove Theorem 1.2 in the set of assump-
tions (a), i.e.

Theorem 3.8. Let (Mm, g) be a complete Riemannian manifold and o ∈M a fixed reference point,
r(x)

.
= distg(x, o). Let k ∈ N+. If k ≥ 2, suppose in addition that for some i0 > 0,

|∇jgRicg|(x) ≤ λ(r(x))2+j , 0 ≤ j ≤ k − 2, injg(x) ≥ i0
λ(r(x))

> 0 on M,

where the function λ satisfies assumptions (A1), (A2), (A3), (A4(j)) for j = 1, . . . , k. Then there
exists an exhaustion function H = Hk ∈ C∞(M) such that for some positive constant Ck > 1
independent of x, we have on M that

(i) C−2
k r(x) ≤ H(x) ≤ max {r(x), 1};

(ii) for 1 ≤ j ≤ k, |∇jgH|(x) ≤ Cj−1
k max{λ(r(x))j−1, 1}.

The proof is done by induction on k. For k = 1, the function λ is not involved in the statement,
and this is the content of the well-known theorem by Gaffney, [9, 11]. Assume now that for some
k ≥ 2 and some i0 > 0

|∇jgRicg|(x) ≤ λ(r(x))2+j , 0 ≤ j ≤ k − 2, injg(x) ≥ i0
λ(r(x))

> 0 on M.

As induction hypothesis we suppose that the result holds true for k− 1, i.e. there exists a distance-
like function Hk−1 ∈ C∞(M) such that for some positive constant Ck−1 > 1 independent of x, we
have on M that

(i) C−2
k−1r(x) ≤ Hk−1(x) ≤ max {r(x), 1};

(ii) for 1 ≤ j ≤ k − 1, |∇jgHk−1|(x) ≤ Cj−1
k−1 max{λ(r(x))j−1, 1}.

By Theorem 3.5 we have the following

Proposition 3.9. In the assumptions of Theorem 3.8, there exists a function h = hk ∈ C∞(M)
and a constant Ch > 1 such that

(i) C−1
h r(x)λ(r(x)) ≤ h(x) ≤ Ch max{1; r(x)λ(r(x))};

(ii) |∇gh|g ≤ Chλ(r(x)) on M ;
(iii) ∆gh = |∇gh|2g − Cθ(θ′(Hk−1(x)))2 on M \BRθ(o) for some constants Cθ > 0 and Rθ > 0.

Recall that a local coordinate system
{
xi
}m
i=1

is said to be harmonic if for any i, ∆gx
i = 0. As a

consequence of [2] we have the validity of the following

Proposition 3.10. Let α ∈ (0, 1), Q > 1, δ > 0. Let (Mm, g) be a smooth Riemannian manifold,
and Ω an open subset of M . Set

Ω(δ) = {x ∈M s.t. dg(x,Ω) < δ} .

Suppose that

|∇jgRicg|(x) ≤ 1, 0 ≤ j ≤ k − 2 and injg(x) ≥ i for all x ∈ Ω(δ),

then there exists a positive constant CHR = CHR(m,Q, k, α, δ, i), such that on the geodesic ball
BCHR(x) of center x and radius CHR, there is a centered harmonic coordinate chart such that the
metric tensor is Ck−1,α controlled in these coordinates. In particular, if gij, i, j = 1, . . . ,m, are the
components of g in these coordinates, then

(1) Q−1δij ≤ gij ≤ Qδij as bilinear forms;

(2)
∑

1≤|γ|≤k−1 r
|γ|
H supy |∂γgij(y)| ≤ Q− 1
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By assumption, we have that

|∇jgRicg|(x) ≤ λ(r(x))2+j , 0 ≤ j ≤ k − 2, injg(x) ≥ i0
λ(r(x))

> 0 on M.

Fix x ∈M \Bg
2(o) and set

λ1 = λ1(x)
.
= λ(r(x) + 1).

Since λ is increasing, for all y ∈ Bg
1(x) we have

|∇jgRicg|(y) ≤ λ2+j
1 , 0 ≤ j ≤ k − 2, and injg(y) ≥ i0

λ1
.

We define a new rescaled metric gλ
.
= λ2

1g on M , so that for all y ∈ Bgλ
λ1

(x) we have

|∇jgλRicgλ |(y) ≤ 1, 0 ≤ j ≤ k − 2, and injgλ(y) ≥ λ1injg(y) ≥= i0.

According to Proposition 3.10 ( applied with δ = 1/2) there exists a constant CHR = CHR(m,Q, i0, k)
such that on Bgλ

CHR
(x) there exists a centered harmonic chart ϕH = (y1, . . . , ym) : Bgλ

CHR
(x)→ U ⊂

Rm such that ϕH(x) = 0 ∈ Rm and, setting ĝλ = gλ ◦ ϕ−1
H , it holds

(1HC) Q−1δij ≤ (ĝλ)ij ≤ Qδij as bilinear forms;

(2HC)
∑

1≤|γ|≤k−1C
|γ|
HR supy

∣∣∣∂γ (ĝλ)ij (y)
∣∣∣ ≤ Q− 1,

Since
∂q ĝ

ij
λ = −∂q (ĝλ)lk ĝ

il
λ ĝ

kj
λ ,

we have also that

(1′HC) Q−1δij ≤ ĝijλ ≤ Qδ
ij ;

(2′HC)
∑

1≤|γ|≤k−1 supy

∣∣∣∂γ ĝijλ (y)
∣∣∣ ≤ C(Q),

for some constant C(Q), depending only on Q.

For β
.
= CHR/Q, on Bβ we set ĝ = g ◦ ϕ−1

H , ĥ = h ◦ ϕ−1
H and Ĥ = Hk−1 ◦ ϕ−1

H .

We need the following fundamental lemma.

Lemma 3.11. Let i and j be integers in {1, . . . ,m}. Let 0 ≤ q ≤ k−1 and let γ = (γ1, . . . , γq−1) ∈
{1, . . . ,m}q−1 be a multi-index (possibly empty for q = 0, 1). There exists a positive constant C > 0
such that

(9) ∀ v ∈ Bβ, |∂iĥ|(v) ≤ C,
and, if q ≥ 1,

(10) ∀ v ∈ B4−qβ,
∣∣∣∂2
ij∂

q−1
γ1···γq−1

ĥ
∣∣∣ (v) ≤ C.

Before proving Lemma 3.11, let us point out the following computational lemma which will be
used repeatedly.

Lemma 3.12. Let F ∈ C∞(M). Set F̂
.
= F ◦ ϕ−1

H and let v ∈ Bβ. Let d ≤ k. Then there exists a
real positive constant C1 independent of x such that

(1) If
∣∣∣∂ne1···enF̂ ∣∣∣ (v) ≤ C0 for some constant C0 > 0 (possibly depending on x), for all n ∈

{1, . . . , d} and for all multi-index (e1, . . . , en) ∈ {1, . . . ,m}n, then
∣∣∣∇nĝλF̂ ∣∣∣ĝλ (v) ≤ C1C0 for

all n ∈ {1, . . . , d}.
(2) If

∣∣∣∇nĝλF̂ ∣∣∣ĝλ (v) ≤ C0 for some constant C0 > 0 (possibly depending on x) and for all

n ∈ {1, . . . , d}, then
∣∣∣∂ne1···enF̂ ∣∣∣ (v) ≤ C1C0 for all n ∈ {1, . . . , d} and for all multi-index

(e1, . . . , en) ∈ {1, . . . ,m}n.
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(3) λd1

∣∣∣∇dĝλF̂ ∣∣∣ĝλ =
∣∣∣∇dĝF̂ ∣∣∣

ĝ
.

(4)
∣∣∣∇dĝF̂ ∣∣∣

ĝ
(v) =

∣∣∇dgF ∣∣g (ϕ−1
H (v)) .

Proof. As for (1) and (2) we proceed by induction on d. For d = 0, the result is trivial with C1 = 1.
Suppose that we have proved the assertions for some d − 1 and let us prove it for d. Clearly the
only nontrivial case is n = d.

(1). By definition ∣∣∣∇dĝλF̂ ∣∣∣2ĝλ =
(
∇dĝλF̂

)
e1...ed

(
∇dĝλF̂

)
f1...fd

ĝe1f1

λ · · · ĝedfdλ

The expression in coordinates of
(
∇dĝλF̂

)
e1...ed

can be written as a linear combination of terms, each

of which is given by the product of factors of the form ∂αF̂ with factors of the form ∂β(ĝλΓkij), where

the multi-indexes α and β have orders, respectively, |α| ≤ d and |β| ≤ d − 2. Note that ∂β(ĝλΓkij)

contains partial derivatives of ĝλ and ĝ−1
λ of order at most d − 1, which are uniformly bounded as

soon as d ≤ k by the properties of the harmonic chart ϕH .
(2). Reasoning as for the previous implication, we get∣∣∣∂de1···enF̂ ∣∣∣ (v) =

∣∣∣∣(DdF̂
)
e1...ed

∣∣∣∣ (v)

≤
∣∣∣∣(∇dĝλF̂)e1...ed

∣∣∣∣ (v) + C
(∣∣∣∇d−1

ĝλ
F̂
∣∣∣+ · · ·+

∣∣∣∇1
ĝλ
F̂
∣∣∣)

≤
∣∣∣∇dĝλF̂ ∣∣∣ĝλ |∂e1 |ĝλ · · · |∂ed |ĝλ + C

≤ C.

(3). Note that (
∇dĝλF̂

)
e1...ed

=
(
∇dĝF̂

)
e1...ed

.

Accordingly, ∣∣∣∇dĝλF̂ ∣∣∣2ĝλ =
(
∇dĝλF̂

)
e1...ed

(
∇dĝλF̂

)
f1...fd

ĝe1f1

λ · · · ĝedfdλ

=
(
∇dĝF̂

)
e1...ed

(
∇dĝF̂

)
f1...fd

λ−2
1 ĝe1f1 · · ·λ−2

1 ĝedfd

= λ−2d
1

∣∣∣∇dĝF̂ ∣∣∣2
ĝ
.

(4). By definition of ĝ. �

Proof (of Lemma 3.11). The property (9) is a direct consequence of (ii) in Proposition 3.9 and of
Lemma 3.12. In particular, Lemma 3.11 is verified when q = 0. It remains to prove (10) for q ≥ 1.
Let us proceed by induction on q. Suppose that the lemma is proved for all the integers q between
0 and q̄, with 0 ≤ q̄ ≤ k − 2. Let us prove it for q̄ + 1.

Define Θ(t)=̇(θ′(t))2 = (tλ′(t) + λ(t))2. By Proposition 3.9 (iii), h satisfies

∆gh(x) = |∇gh|2(x)− CθΘ(Hk−1(x))

on M \BRθ(o), which reads in harmonic coordinates as

λ2
1ĝ
ij
λ (v)∂2

ij ĥ(v) = λ2
1ĝ
ij
λ (v)∂iĥ(v)∂j ĥ(v)− CθΘ(Ĥ(v)), ∀v ∈ Bβ.
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Applying the differential operator ∂ q̄γ1···γq̄ to both sides, and multiplying by λ−2
1 , we get on Bβ

ĝijλ ∂
2
ij

(
∂ q̄γ1···γq̄ ĥ

)
=
∑(

∂na1···an ĝ
ij
λ

)(
∂lb1···bl∂iĥ

)(
∂ q̄−n−lc1···cq̄−n−l∂j ĥ

)
− Cθλ−2

1 ∂ q̄γ1···γq̄(Θ(Ĥ))(11)

−
∑(

∂na1···an∂
2
ij ĥ
)(

∂ q̄−nb1···bq̄−n ĝ
ij
λ

)
.
=f̂ .

Here the first summation is taken over all the (possibly empty) subsets {as}ns=1 ⊂ {γs}
q̄
s=1 and

{bs}ls=1 ⊂ {γs}
q̄
s=1 \ {as}ns=1, and we have set {cs}q̄−n−ls=1

.
= {γs}q̄s=1 \ ({as}ns=1 ∪ {bs}ls=1). Similarly

the second summation is taken over all the non-empty subsets {bs}q̄−ns=1 ⊂ {γs}
q̄
s=1 and we have set

{as}ns=1
.
= {γs}q̄s=1 \ {bs}

q̄−n
s=1 . Fix w ∈ B4−q̄β. We need to prove that

∣∣∣∂2
ij∂

q̄−1
γ1···γq̄−1 ĥ

∣∣∣ (w) ≤ C for

some constant C independent of x and w. Define h̃ ∈ C∞(Bβ) by

h̃(v)
.
= ĥ(v)−

q̄∑
j=0

Dj ĥ(w)(v, . . . , v)

j!
.

Note that h̃− ĥ is a polynomial of degree q̄, so that

ĝijλ ∂
2
ij∂

q̄
γ1···γq̄ h̃ = ĝijλ ∂

2
ij∂

q̄
γ1···γq̄ ĥ = f̂ .

Rescaling to B4−q̄β(w) the elliptic Schauder estimates given for instance in [17, Theorem 5.21], we
know that there exists C > 0, depending on q̄ (hence on k), but not on w, such that∣∣∣∂2

ij∂
q̄
γ1···γq̄ ĥ(w)

∣∣∣ =
∣∣∣∂2
ij∂

q̄
γ1···γq̄ h̃(w)

∣∣∣(12)

≤C
{∥∥∥∂ q̄γ1···γq̄ h̃

∥∥∥
L∞(B4−q̄β(w))

+
∥∥∥f̂∥∥∥

L∞(B4−q̄β(w))
+
[
f̂
]
C0,α(B4−q̄β(w))

}
.

Note that B4−q̄β(w) ⊂ B41−q̄β(0). We will estimate the three terms at RHS of (12) separately.

1st term. Estimating
∥∥∥∂ q̄γ1...γq̄ h̃

∥∥∥
L∞(B4−q̄β(w))

.

Let v ∈ B4−q̄β(w). Note that

∂ q̄γ1...γq̄

q̄∑
j=0

Dj ĥ(w)(v, . . . , v)

j!
= ∂ q̄γ1...γq̄

Dq̄ĥ(w)(v, . . . , v)

q̄!
= Dq̄ĥ(w)(∂γ1 , . . . , ∂γq̄).

Hence ∣∣∣∂ q̄γ1...γq̄ h̃
∣∣∣ (v) =

∣∣∣Dq̄h̃(v)(∂γ1 , . . . , ∂γq̄)
∣∣∣

=
∣∣∣Dq̄ĥ(v)(∂γ1 , . . . , ∂γq̄)−Dq̄ĥ(w)(∂γ1 , . . . , ∂γq̄)

∣∣∣
≤ 2β

∥∥∥Dq̄+1ĥ
∥∥∥
L∞(B4−q̄β(w))

≤ C

by the inductive hypothesis of the lemma.

2nd term. Estimating
∥∥∥f̂∥∥∥

L∞(B4−q̄β(w))
.
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Concerning the first addend in f̂ , since n ≤ k − 1, by the property (2′HC) of the harmonic chart
we can compute ∥∥∥(∂na1···an ĝ

ij
λ

)(
∂lb1···bl∂iĥ

)(
∂ q̄−n−lc1···cq̄−n−l∂j ĥ

)∥∥∥
L∞(B41−q̄β(w))

(13)

≤C
∥∥∥∂lb1···bl∂iĥ∥∥∥L∞(B41−q̄β(w))

∥∥∥∂ q̄−n−lc1···cq̄−n−l∂j ĥ
∥∥∥
L∞(B41−q̄β(w))

≤C,

where we have used the inductive hypothesis and the fact that l+1 ≤ q̄+1 and q̄−n− l+1 ≤ q̄+1.

We now consider the second addend of f̂ and estimate
∥∥∥Cθλ−2

1 ∂ q̄γ1···γq̄(Θ(Ĥ))
∥∥∥
L∞(B41−q̄β(w))

. If

q̄ = 0, then ∥∥∥Cθλ−2
1 ∂ q̄γ1···γq̄(Θ(Ĥ))

∥∥∥
L∞(B41−q̄β(w))

=
∥∥∥Cθλ−2

1 Θ(Ĥ)
∥∥∥
L∞(B41−q̄β(w))

≤ C

as a direct consequence of Lemma 3.3. If q̄ ≥ 1, then ∂ q̄γ1···γq̄(Θ(Ĥ)) can be developed as a linear
combinations of terms of the form

Θ(j)(Ĥ)

j∏
s=1

∂
es−es−1
γσ(es−1+1)···γσ(es)

Ĥ,

where e0 = 0, j ∈ {1, . . . , q̄}, {es}js=1 is an increasing subset of {1, . . . , q̄} with ej = q̄, and σ ∈ Πq̄

is a permutation of {1, . . . , q̄}. By the inductive hypothesis of Theorem 3.8,∣∣∇es−es−1
g Hk−1

∣∣
g

(v) ≤ Cλ(r(x))es−es−1−1.

Lemma 3.12 and assumption (A2) then imply that∣∣∣∂es−es−1
γσ(es−1+1)···γσ(es)

Ĥ
∣∣∣ (v) ≤ Cλ−1

1 ,

and, using also Lemma 3.3,∥∥∥∂ q̄γ1···γq̄(Ĥ
2η)
∥∥∥
L∞(B41−q̄β(w))

≤ C max
j,{es}js=1,σ

∥∥∥∥∥Θ(j)(Ĥ)

j∏
s=1

∂
es−es−1
γσ(es−1+1)···γσ(es)

Ĥ

∥∥∥∥∥
L∞(B41−q̄β(w))

≤ C max
j
λ(Ĥ)2+j

j∏
s=1

λ−1
1

≤ C max
j
λ2+j−j

1

≤ Cλ2
1.

Accordingly

(14)
∥∥∥Cθλ−2

1 ∂ q̄γ1···γq̄(Θ(Ĥ))
∥∥∥
L∞(B41−q̄β(w))

≤ C

Finally, concerning the third addend in f̂ , since n < q̄ and using again harmonic radius estimates
we get ∥∥∥(∂na1···an∂

2
ij ĥ
)(

∂ q̄−nb1···bq̄−n (ĝλ)ij

)∥∥∥
L∞(B41−q̄β(w))

≤ C
∥∥∥∂na1···an∂

2
ij ĥ
∥∥∥
L∞(B41−q̄β(w))

(15)

≤ C.
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Combining (13), (14) and (15) we thus get

(16)
∥∥∥f̂∥∥∥

L∞(B41−q̄β(w))
≤ C.

3rd term. Estimating
[
f̂
]
C0,α(B4−q̄β(w))

.

First, note that for any function F ∈ C1(B4−q̄β(w)) it holds clearly that

(17) [F ]C0,α(B4−q̄β(w)) ≤ (21−2q̄β)1−α ‖F‖C1(B4−q̄β(w)) .

Reasoning as for (14), we get that, for any s ∈ {1, . . . ,m},∥∥∥Cθλ−2
1 ∂s∂

q̄
γ1···γq̄(Θ(Ĥ))

∥∥∥
L∞(B4−q̄β(w))

≤ C,

from which, together with (17),

(18)
[
Cθλ

−2
1 ∂ q̄γ1···γq̄((Θ(Ĥ)))

]
C0,α(B4−q̄β(w))

≤ C.

Moreover, as long as either n ∈ {1, . . . , q̄} or n = 0 and l ∈ {1, . . . , q̄ − 1} we have that∥∥∥∂s [(∂na1···an ĝ
ij
λ

)(
∂lb1···bl∂iĥ

)(
∂ q̄−n−lc1···cq̄−n−l∂j ĥ

)]∥∥∥
L∞(B4−q̄β(w))

≤
∥∥∥(∂n+1

sa1···an ĝ
ij
λ

)(
∂lb1···bl∂iĥ

)(
∂ q̄−n−lc1···cq̄−n−l∂j ĥ

)∥∥∥
L∞(B4−q̄β(w))

+
∥∥∥(∂na1···an ĝ

ij
λ

)(
∂l+1
sb1···bl∂iĥ

)(
∂ q̄−n−lc1···cq̄−n−l∂j ĥ

)∥∥∥
L∞(B4−q̄β(w))

+
∥∥∥(∂na1···an ĝ

ij
λ

)(
∂lb1···bl∂iĥ

)(
∂ q̄−n−l+1
sc1···cq̄−n−l∂j ĥ

)∥∥∥
L∞(B4−q̄β(w))

≤C

for any s ∈ {1, . . . ,m}, where each addend has been estimated reasoning as for (13). Note that we
used here the condition n + 1 ≤ q̄ + 1 ≤ k − 1 which permits to have the needed control in the
harmonic chart. Combining with (17), we get

(19)
[(
∂na1···an ĝ

ij
λ

)(
∂lb1···bl∂iĥ

)(
∂ q̄−n−lc1···cq̄−n−l∂j ĥ

)]
C0,α(B4−q̄β(w))

≤ C,

Similarly, for any s ∈ {1, . . . ,m} and any n ∈ {1, . . . , q̄ − 2}, it holds∥∥∥∂s [(∂na1···an∂
2
ij ĥ
)(

∂ q̄−nb1···bq̄−n ĝ
ij
λ

)]∥∥∥
L∞(B4−q̄β(w))

≤
∥∥∥(∂n+1

sa1···an∂
2
ij ĥ
)(

∂ q̄−nb1···bq̄−n ĝ
ij
λ

)∥∥∥
L∞(B4−q̄β(w))

+
∥∥∥(∂na1···an∂

2
ij ĥ
)(

∂ q̄−n+1
sb1···bq̄−n ĝ

ij
λ

)∥∥∥
L∞(B4−q̄β(w))

≤C,

from which

(20)
[(
∂na1···an∂

2
ij ĥ
)(

∂ q̄−nb1···bq̄−n ĝ
ij
λ

)]
C0,α(B4−q̄β(w))

≤ C.

Hence, in order to control
[
f̂
]
C0,α(B4−q̄β(w))

, it remains to estimate the LHS of (19) for l = q̄ and

n = 0, and the LHS of (20) for n = q̄ − 1. Namely, we have to bound[
ĝijλ

(
∂ q̄b1···bq̄∂iĥ

)]
C0,α(B4−q̄β(w))

+
[(
∂ q̄−1
a1···aq̄−1

∂2
ij ĥ
)(

∂1
b1 ĝ

ij
λ

)]
C0,α(B4−q̄β(w))

.



HIGHER ORDER DISTANCE-LIKE FUNCTIONS AND SOBOLEV SPACES 19

By the properties of the harmonic chart, it is enough to obtain an upper bound for terms of the
form [

∂ q̄+1
b1···bq̄+1

ĥ
]
C0,α(B4−q̄β(w))

,

for some indexes b1, . . . , bq̄+1 ∈ {1, . . . ,m}. Letting p = m
1−α , by the Euclidean Sobolev embeddings

(see e.g [1, p. 109]), we have

(21) [∂ q̄+1
b1···bq̄+1

ĥ]C0,α(B4−q̄β(w)) ≤ K3

{
‖∂ q̄+1

b1···bq̄+1
ĥ‖pLp(B4−q̄β(w)) +

m∑
s=1

‖∂s∂ q̄+1
b1···bq̄+1

ĥ‖pLp(B4−q̄β(w))

}1/p

,

with K3 a positive constant depending only on m, α, β and k (via q̄). Concerning the first term at
the RHS of (21), by the inductive hypothesis we have

‖∂ q̄+1
b1···bq̄+1

ĥ‖pLp(B4−q̄β(w)) ≤ ‖∂
q̄+1
b1···bq̄+1

ĥ‖pL∞(B4−q̄β(w))β
mκm ≤ C,(22)

where κm is the volume of the m-dimensional unit ball B1 ⊂ Rm. Concerning the second term at
the RHS of (21), we note that |∂s∂ q̄+1

b1···bq̄+1
ĥ| ≤ |D2∂ q̄b1···bq̄ ĥ|, where, given a C2 function F on Bβ,

D2F denotes the Euclidean Hessian matrix of F and |D2F |2=̇
∑m

i,j=1(∂i∂jF )2. According to the

Euclidean Calderón-Zygmund inequality, [10, Theorem 9.11], we thus have

‖∂s∂ q̄+1
b1···bq̄+1

ĥ‖Lp(B4−q̄β(w)) ≤ ‖D2∂ q̄b1···bq̄ ĥ‖Lp(B4−q̄β(w))(23)

≤ C1

(
‖∆0∂

q̄
b1···bq̄ ĥ‖Lp(B41−q̄β(w)) + ‖∂ q̄b1···bq̄ ĥ‖Lp(B41−q̄β)

)
,

where ∆0 =
∑

i ∂i∂i is the Euclidean Laplacian and the positive constant C1 depends on m, α (via
p), β and k (via q̄). We have that

(24) ‖∂ q̄b1···bq̄ ĥ‖Lp(B41−q̄β) ≤ C

by the inductive hypothesis. Concerning the other addend in (23), using the properties of the
harmonic chart, we get

|∆0∂
q̄
b1···bq̄ ĥ| = |

m∑
s=1

∂2
ss∂

q̄
b1···bq̄ ĥ| ≤ C|ĝ

ij
λ ∂

2
ij∂

q̄
b1···bq̄ ĥ| = C|f̂b|,

where f̂b is defined as f̂ in (11), replacing the indices γ1, . . . , γq̄ in the definition of f̂ with b1, . . . , bq̄.
Accordingly, computing as for (16), we get

‖∆0∂
q̄
b1···bq̄ ĥ‖Lp(B41−q̄β(w)) ≤ C‖f̂b‖Lp(B41−q̄β(w))

≤ C‖f̂b‖L∞(B41−q̄β(w))

≤ C.

Inserting this latter and (24) in (23), and combining with (21) and (22), we obtain[
∂ q̄+1
b1···bq̄+1

ĥ
]
C0,α(B4−q̄β(w))

≤ C.

Together with (18), (19) and (20), this gives[
f̂
]
C0,α(B4−q̄β(w))

≤ C.

Hence, all the three addends in the RHS of (12) are upper bounded by a positive constant C, so
that we have shown the validity of (10) with q = q̄+1. This concludes the proof of Lemma 3.11. �
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We can now come back to the proof of Theorem 3.8. Note that by assumption (A1) θ(t)=̇tλ(t)
is smooth, increasing on [R1,+∞) and limt→+∞ θ(t) = +∞, hence θ−1 : [θ(R1),+∞) → [R1,+∞)
is well-defined, smooth and increasing. Define H = Hk ∈ C∞(M \BRH (o)) by H = θ−1 ◦ h, where
RH is chosen large enough so that h ≥ θ(R1) on M \BRH (o). First, since θ−1 and λ are increasing,

from C−1
h θ(r) ≤ h ≤ Chθ(r) we deduce that

H(x) ≥ θ−1(C−1
h θ(r(x))) ≥ θ−1(C−1

h r(x)λ(C−1
h r(x))) = C−1

h r(x),

and similarly H(x) ≤ Chr(x). To finish the proof of Theorem 1.2 we are going to prove by induction
on j that, for 1 ≤ j ≤ k, we have that∣∣∇jgH∣∣ (x) ≤ Cj−1 max{λ(r(x))j−1, 1}.

We first consider the case j = 1. Then |∇gh|(x) = θ′(H(x))|∇gH|(x), so that, using also Lemma
3.1,

|∇gH|(x) =
|∇gh|(x)

θ′(H(x))

≤ Chλ(r(x))

θ′(H(x))

≤ C.

Similarly, suppose that for some 1 ≤ j̄ ≤ k and all 1 ≤ j ≤ j̄−1,
∣∣∣∇jgH∣∣∣ (x) ≤ Cj−1 max{λ(r(x))j−1, 1}.

We have that ∇j̄gh(x)−∇j̄gH(x)θ′(H) can be written as a linear combination of terms of the form

θ(s)(H) ⊗si=1 ∇eig H, with 2 ≤ s ≤ j̄ and
∑s

i=1 ei = j̄. By inductive hypothesis, using also Lemma
3.2, we have that

|θ(s)(H)

s⊗
i=1

∇eig H| ≤ |θ(s)(H)|
s∏
i=1

|∇eig H|

≤ |θ(s)(H)|
s∏
i=1

λ(r(x))ei−1

≤ Cλ(H(x))sλ(r(x))j̄−s

≤ Cλ(r(x))j̄ .

In particular, by Lemmas 3.11 and 3.12,

|∇j̄gH(x)| ≤ C
|∇j̄gh(x)|+

∑j̄
s=2 |θ(s)(H)

⊗s
i=1∇eig H|

θ′(H(x))

≤ C λj̄1
λ(r(x))

≤ Cλ(r(x))j̄−1.

We have thus proved that there exists a function H ∈ C∞(M \BRH (o)) such that for any x outside
a compact set K of M

(i) C−1
h r(x) ≤ H(x) ≤ Chr(x);

(ii) for 1 ≤ j ≤ k,
∣∣∣∇jgH∣∣∣ (x) ≤ Cλ(r(x))j−1.

Replacing H with H/Ch, and choosing a suitable smooth continuation of H|M\K inside the compact
K, we get that, up to possibly increase the value of C, it holds

(i) C−2r(x) ≤ H(x) ≤ max {r(x), 1};
(ii) for 1 ≤ j ≤ k,

∣∣∣∇jgH∣∣∣ (x) ≤ Cj−1 max{λ(r(x))j−1, 1};
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as desired.

3.4. Proof of Theorem 1.2: case (b). In this section, we are going to prove Theorem 1.2 in the
set of assumptions (b), i.e.

Theorem 3.13. Let (Mm, g) be a complete Riemannian manifold and o ∈ M a fixed reference
point, r(x)

.
= distg(x, o). Let k ∈ N+. If k ≥ 2, suppose in addition that for some D > 0,

|∇jgRicg|(x) ≤ λ(r(x))2+j , 0 ≤ j ≤ k − 2, |Sectg|(x) ≤ Dλ(r(x))2 on M,

where the function λ satisfies assumptions (A1), (A2), (A3), (A4(j)) for j = 1, . . . , k. Then there
exists an exhaustion function H = Hk ∈ C∞(M) such that for some positive constant CH > 1
independent of x, we have on M that

(i) C−2
H r(x) ≤ H(x) ≤ max {r(x), 1};

(ii) for 1 ≤ j ≤ k,
∣∣∣∇jgH∣∣∣ (x) ≤ Cj−1

H max{λ(r(x))j−1, 1}.

We proceed as in [20, Subsection 4.2]. Note that the first part of the proof of Theorem 3.8 does
not require the control on the injectivity radius. In particular, we can suppose by induction that
there exists a distance-like function Hk−1 ∈ C∞(M) such that for some positive constant Ck−1 > 1
independent of x and o, we have on M that

(i) C−2
k−1r(x) ≤ Hk−1(x) ≤ max {r(x), 1};

(ii) for 1 ≤ j ≤ k − 1,
∣∣∣∇jgHk−1

∣∣∣
g

(x) ≤ Cj−1
k−1 max{λ(r(x))j−1, 1}.

By Theorem 3.5 we get also in the present assumptions the validity of Proposition 3.9. In particular
there exists h = hk ∈ C∞(M) such that

(i) C−1
h r(x)λ(r(x)) ≤ h(x) ≤ Ch max{1; r(x)λ(r(x))};

(ii) |∇gh|g ≤ Chλ(r(x)) on M ;
(iii) ∆gh = |∇gh|2g − Cθ(θ′(Hk−1(x)))2 on M \BRθ(o) for some constants Cθ > 0 and Rθ > 0.

Fix R0 ∈ R+ such that λ(2R0 + 1) > π
2R0

. This is always possible since λ is strictly positive and

non-decreasing. If x ∈M satisfies r(x) > 1 +R0, then on BR0(x)

|Sectg| ≤ D2λ2(R0 + r(x))
.
= D2K2

x.

By a localized version of the Cartan-Hadamard theorem (see e.g. [15, Lemma 2.7]) we have that,

for every 0 < R < min
{

π
DKx

, R0

}
, there exists a smooth complete Riemannian manifold (M̄, ḡ),

x̄ ∈ M̄ and a smooth surjective local isometry

F
.
= Fg,x,R : Bḡ

R(x̄)→ Bg
R(x)

such that

• F (x̄) = x;
• injḡ(x̄) ≥ R;

• |Sectḡ| ≤ D2K2
x on Bḡ

R(x̄);

• F (Bḡ
r (x̄)) = Bg

r (x), for all 0 < r < R.

In particular, for every ȳ ∈ Bḡ
R/2(x̄) ,we have that

(25) |Sectḡ|(ȳ) ≤ D2K2
x, |∇jḡRicḡ|(ȳ) ≤ K2+j

x , injḡ(ȳ) ≥ dḡ
(
ȳ, ∂Bḡ

R(x̄)
)
≥ R

2
.

Letting λ2
R0

.
= (m− 1)K2

x, we set

ḡλ = λ2
R0
ḡ.

Then, by (25),

|Ricḡλ |(ȳ) ≤ D2, |∇jḡλRicḡλ |(ȳ) ≤ 1, injḡλ(ȳ) ≥ λR0

R

2
.
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We can choose R = π
2DKx

< R0, obtaining that

injḡλ(ȳ) ≥
√
m− 1π

4D

.
= i0.

Proposition 3.10 hence yields that there exists a constant CHR = CHR(m,Q, i0, k) independent of x
such that on Bḡλ

CHR
(x) ⊂ M̄ there exists a centered harmonic chart ϕH = (y1, . . . , ym) : Bḡλ

CHR
(x)→

U ⊂ Rm such that ϕH(x) = 0 and, setting ĝλ = ḡλ ◦ ϕ−1
H , it holds

(1HC) Q−1δij ≤ (ĝλ)ij ≤ Qδij as bilinear forms;

(2HC)
∑

1≤|γ|≤k−1C
|γ|
HR supy

∣∣∣∂γ (ĝλ)ij (y)
∣∣∣ ≤ Q− 1,

(1′HC) Q−1δij ≤ ĝijλ ≤ Qδ
ij ;

(2′HC)
∑

1≤|γ|≤k−1 supy

∣∣∣∂γ ĝijλ (y)
∣∣∣ ≤ C(Q),

for some constant C(Q), depending only on Q.

For a fixed x, we can define h̄ : Bḡ
R(x̄)→ R by h̄ = h ◦ F and ĥ : Bβ → R by ĥ = h̄ ◦ ϕ−1

H .

Since F is a local isometry, at this stage, we can estimate the covariant derivatives of ĥ exactly as
we did in the proof of Theorem 3.8. In order to get our conclusion, we deduce from these estimates
a control on the covariant derivatives of h̄, hence of h, and finally of H = θ−1 ◦h outside a compact
set of M .

4. k-th order cut-offs and application to the density problem

In the following corollary we notice that higher order exhaustion functions, as the ones which we
obtained in the proof of Theorem 1.2, permit to construct k-th order cut-off functions. These, in
turn, will allow us to conclude the proof of the density result Theorem 1.5.

Corollary 4.1. Let (M, g) be a complete Riemannian manifold and o ∈M a fixed reference point,
r(x)

.
= distg(x, o). Let k ≥ 2 be an integer. Let λ satisfy assumption (A1), (A2), (A3) and (A4(j)),

j = 1, . . . , k, and suppose that λ1−k 6∈ L1([1,+∞)). Suppose that one of the following curvature
assumptions holds

(a) for some i0 > 0,

|∇jgRicg|(x) ≤ λ(r(x))2+j , 0 ≤ j ≤ k − 2, injg(x) ≥ i0
λ(r(x))

> 0 on M.

(b) for some D > 0,

|∇jgRicg|(x) ≤ λ(r(x))2+j , 1 ≤ j ≤ k − 2, |Sectg|(x) ≤ D2λ(r(x))2 on M.

Then there exist a family of cut-off functions {χR}R>3 ⊂ C∞c (M) and a constant Cχ > 0 inde-
pendent of R such that

(1) χR = 1 on BC−1
H (R−2)(o), with CH the constant appearing in Theorem 1.2;

(2) |∇jgχR| ≤ Cχ for j = 1, . . . , k.

Proof. Let αR be a positive constant and define the family {ψR}R>3 of functions on R by

ψR(t)=̇

{
max{1−

∫ t
R αRλ

1−k(s)ds; 0}, if t > R

1, if t ≤ R.

We note that ψR ∈ C0(R) and, by the assumptions on λ, for every R there exists a constant
T (R) ∈ R depending on R such that ψR(t) ≡ 0 if and only if t ∈ [T (R),∞). We can choose the
positive constant αR small enough so that T (R) − R > 4. Note also that αR

.
= α can be chosen

independent of R since λ is increasing. Clearly the ψR are not C2, so we want to regularize it in a
neighborhood of R and T (R), keeping the derivatives controlled.
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Let ζ : R→ R be a C∞ increasing function such that ζ ≡ 0 in (−∞,−1], ζ ≡ 1 in [1,+∞).
There exists qR ∈ [−1, 1] such that

(26)

∫ R+2

0

ζ(t+R− qR)

λk−1(t)
dt =

∫ R+2

0

1[R,+∞)(t)

λk−1(t)
dt =

∫ R+2

R

1

λk−1(t)
dt.

In fact, we have that∫ R+2

0

ζ(t+R− 1)

λk−1(t)
dt ≤

∫ R+2

0

1[R,+∞)(t)

λk−1(t)
dt ≤

∫ R+2

0

ζ(t+R+ 1)

λk−1(t)
dt,

so that (26) follows by continuity. Similarly, we have also that there exists QR ∈ [−1, 1] such that

(27)

∫ T (R)+2

R+2

ζ(−t+ T (R) +QR)

λk−1(t)
dt =

∫ T (R)+2

R+2

1[0,T (R)](t)

λk−1(t)
dt =

∫ T (R)

R+2

1

λk−1(t)
dt.

Now for every R > 1, define the real smooth function

µR(t)=̇
ζ(−t+ T (R) +QR)ζ(t−R+ qR)

λk−1(t)

and

φR(t)=̇1− α
∫ t

R−2
µR(s)ds.

Then φR ∈ C∞(R), φR is decreasing, φR ≡ 1 if t < R− 2 and φR = ψR ≡ 0 if t > T (R) + 2 because
of (26) and (27). Moreover

|φ′R(t)| = α|µR(t)| ≤ α

λk−1(t)
.

Similarly, let ZR(t)=̇ζ(−t+ T (R) +QR)ζ(t−R+ qR) and Λ(t)=̇λ1−k(t). Then, for j = 2, . . . , k

|φ(j)
R (t)| = α|µ(j−1)

R (t)| ≤ α
j−1∑
s=1

(
j − 1

s

)
|Z(s)
R (t)||Λ(j−1−s)(t)|.

We have that

|Z(s)
R (t)| ≤ 2s max

0≤l≤k
‖ζ(l)‖2∞ < C

independently of R. Moreover Λ(j−1−s)(t) can be written as a linear combination of terms of the

form λ1−k−u(t)
∏u
i=1 λ

(ei)(t), with 1 ≤ u ≤ j − 1− s and
∑u

i=1 ei = j − 1− s. Since, by assumption

(A4(j)), λ(ei)(t) ≤M4(ei)λ
ei(t), we get∣∣∣∣∣λ1−k−u(t)

u∏
i=1

λ(ei)(t)

∣∣∣∣∣ ≤ Cλ1−k−u(t)λj−1−s(t)

and

|Λ(j−1−s)(t)| ≤ Cλ1−k(t)

for every s = 1, . . . , j − 1, so that

|φ(j)
R (t)| ≤ Cλ1−k(t)(28)

for every j = 2, . . . , k.
Now, define the family of cut-off functions {χR}R>3 ⊂ C∞c (M) by χR=̇φR ◦H, where H is the

k-th order distance-like function given by Theorem 1.2. Note that if r(x) ≤ C−1
H (R − 2), then
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χR(x) = 1. Moreover, we have that for every j = 1, . . . , k, ∇jgχR(x) can be written as a linear

combination of terms of the form φ
(s)
R (H)

⊗s
i=1∇eig H, with 1 ≤ s ≤ j and

∑s
i=1 ei = j. We have

|φ(s)
R (H)

s⊗
i=1

∇eig H| ≤ |φ
(s)
R (H)|

s∏
i=1

|∇eig H|

≤ |φ(s)
R (H)|

s∏
i=1

λ(r(x))ei−1

≤ Cλ(H(x))1−kλ(r(x))j−s

≤ C,
and thus

|∇jgχR| ≤ C
for every j = 1, . . . , k. �

4.1. Proof of the density result. We can now give the proof of the following result which we
stated in Section 1 as Theorem 1.5.

Theorem 4.2. In the assumptions of Corollary 4.1, we have that W k,p(M) = W k,p
0 (M) for all

p ∈ [1,+∞).

Proof (of Theorem 1.5). We can apply Corollary 4.1 and get the existence of a sequence of cut-off
functions {χn} with uniformly bounded covariant derivatives up to order k. This suffices to get
the desired density result. Indeed, first recall that C∞(M) ∩W k,p(M) is dense in W k,p(M) (see
for instance [12]). Then, given a smooth function f ∈ C∞(M) ∩W k,p(M), define fn

.
= χnf . One

obtains that

‖fn − f‖Lp = ‖(1− χn)f‖Lp ,(29)

‖∇g(fn − f)‖Lp ≤‖f∇gχn‖Lp + ‖(1− χn)∇gf‖Lp ,(30) ∥∥∇jg(fn − f)
∥∥
Lp
≤
j−1∑
l=0

∥∥∥Cl|∇j−lg χn||∇lgf |
∥∥∥
Lp

+
∥∥(1− χn)∇jgf

∥∥
Lp
, j = 2, . . . , k,(31)

where Cl are integer constants depending on j and l. Note that each of (1− χn),
{
∇jχn

}
j=1,...,k

is

uniformly bounded and supported in supp(1 − χn). Moroever, given any compact set K ⊂ M , we
have that supp(1 − χn) ⊂ M \K for n � 1. since f ∈ W k,p(M) this permits to conclude that all
the terms at the RHS of (29), (30), (31) tend to 0 as n → ∞. More precisely we have that both
the terms of the form ∥∥∥|∇j−lg χn||∇lgf |

∥∥∥
Lp
≤ Cχ

∥∥∥∇lgf∥∥∥
Lp(supp(1−χn))

and the terms of the form ∥∥(1− χn)∇jgf
∥∥
Lp
≤
∥∥∇jgf∥∥Lp(supp(1−χn))

go to 0 as n→∞ since f ∈W k,p(M). �

5. Case p=2

5.1. k-th order (rough) Laplacian cut-offs. In this subsection we prove versions of Theorem
3.13 and Corollary 4.1 under weaker assumptions. Namely, we assume a control on the derivatives
of the Ricci curvature up to a smaller order. As a price to pay, we do not get a control on the
whole k-th order covariant derivative ∇kH of the distance-like function H, but only on its trace,
i.e. the rough Laplacian of the (k − 2)-th covariant derivative of H. This result will be used in
Corollary 5.2 to construct a family of k-th order (rough) Laplacian cut-offs. In the rest of this section
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we will combine these (rough) Laplacian cut-offs and the Weitzenböck formula for the Sampson-
Lichnerowicz Laplacian to get the density of smooth compactly supported function in W k,2(M).

Theorem 5.1. Let (M, g) be a complete Riemannian manifold and o ∈ M a fixed reference point,
r(x)

.
= distg(x, o). Let k ≥ 3 be an integer. Let λ satisfy assumption (A1), (A2), (A3) and (A4(j)),

j = 1, . . . , k − 1. Suppose that

(32) |Sect|(x) ≤ λ(r(x))2, and |∇jRic|(x) ≤ λ(r(x))2+j , 0 ≤ j ≤ k − 3.

Then there exists an exhaustion function H ∈ C∞(M) such that for some positive constant C∆ > 1
independent of x, we have on M that

(i) C−2
∆ r(x) ≤ H(x) ≤ max {r(x), 1};

(ii) |∇jH| ≤ Cj−1
∆ max

{
λ(r(x))j−1, 1

}
, 1 ≤ j ≤ k − 1;

(iii) |∆∇k−2H| ≤ C∆ max
{
λ(r(x))k−1, 1

}
.

When acting on sections of a tensor bundle, ∆ denotes the rough Laplacian, i.e. ∆T = −∇∗∇T =
tr12∇2T , for any tensor field T . Note that ∆ is equal to minus the Bochner Laplacian ∆B we will
use in Subsection 5.2.

Proof. Note that in the proof of Theorem 3.13, the assumption |∇k−2Ric| ≤ λ(r(x))k was used only
to control |∇kh|. Accordingly, by the proof of Theorem 3.13 we already know that there exists a
smooth exhaustion function h ∈ C∞(M) such that

C−1r(x)λ(r(x)) ≤ h(x) ≤ C max {1; r(x)λ(r(x))} ∀x ∈M
|∇jh|(x) ≤ Cλj(r(x)) ∀x ∈M \Bρ̄(o), j = 1, . . . , k − 1.(33)

Moreover, by construction

(34) ∆h = |∇h|2 − Cθ
(
θ′(Hk−2(x))

)2
= |∇h|2 − CθΘ(Hk−2(x)) onM \ B̄Rθ(o),

for some constants Cθ > 0 and Rθ > 0. Here Hk−2 is such that for some positive constant C > 1
(independent of x and o) we have on M that

Cr(x) ≤ Hk−2(x) ≤ max {r(x), 1}
|∇Hk−2|(x) ≤ 1

|∇jHk−2|(x) ≤ C max
{
λj−1(x), 1

}
, j = 2, . . . , k − 2.

Taking ∇k−2 of (34) we obtain that

∇k−2∆h = 2∇k−3
(
∇2h(∇h, ·)

)
− Cθ∇k−2(Θ(Hk−2)).

Hence

|∇k−2∆h| ≤ C
[
|∇k−1h||∇h|+ |∇k−2h||∇2h|+ . . .+ |∇2h||∇k−2h|

]
+ Cθ|L|.

Here L is a linear combination of terms of the form

Θ(j)(Hk−2)

j∏
s=1

∇es−es−1Hk−2,

where e0 = 0, j ∈ {1, . . . , k − 2} and {es}js=1 is an increasing subset of {1, . . . , k − 1} with ej = k−2.
Using the above properties of h and Hk−2 and Lemma 3.3 we hence get that

|∇k−2∆h| ≤ Cλk(r(x)).
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By Lemma A.1 in Appendix A, we thus obtain that

|∆∇k−2h| =|∇k−2∆h|+ |Riem ∗ ∇k−2h+∇Ric ∗ ∇k−3h+ . . .+∇k−3Ric ∗ ∇h|(35)

≤|∇k−2∆h|+ C
(
|Riem||∇k−2h|+ |∇Ric||∇k−3h|+ . . .+ |∇k−3Ric||∇h|

)
≤C

λ(r(x))k +
k−3∑
j=0

λ(r(x))2+jλ(r(x))k−2−j


≤Cλ(r(x))k.

For the definition of the notation ∗ appearing in the latter formula see Section 2.
As in the proof of Theorem 1.2 define H

.
= Hk−1 ∈ C∞(M \ BRH (o)) by H = θ−1 ◦ h. Then H

is distance-like and

|∇jH| ≤ Cj−1 max
{
λ(r(x))j−1, 1

}
1 ≤ j ≤ k − 1.

Moreover we have that

∆∇k−2h = ∆
(
θ′(H)∇k−2H

)
+ L1,

where L1 is a linear combination of terms of the form ∆
(
θ(s)(H)

⊗
∇eiH

)
, with 2 ≤ s ≤ k− 2 and∑s

i=1 ei = k − 2. Letting {Ei} being a local orthonormal frame on M , note that

∆(θ′(H)∇k−2H) =
∑
i

∇Ei
(
θ′′(H)∇EiH∇k−2H + θ′(H)∇Ei∇k−2H

)
=θ′′′(H)|∇H|2∇k−2H + θ′′(H)∆H∇k−2H

+ 2θ′′(H)∇∇H∇k−2H + θ′(H)∆∇k−2H,

and

∆
[
θ(s)(H)⊗si=1 ∇eiH

]
=
∑
i

∇Ei

(
θ(s+1)(H)∇EiH ⊗

s⊗
i=1

∇eiH + θ(s)(H)∇Ei (⊗si=1∇eiH)

)

=θ(s+2)(H)|∇H|2
s⊗
i=1

∇eiH + θ(s+1)(H)∆H
s⊗
i=1

∇eiH

+ 2θ(s+1)(H)∇∇H

(
s⊗
i=1

∇eiH

)
+ θ(s)(H)∆

(
s⊗
i=1

∇eiH

)
.

Hence, using Lemma 3.1, Lemma 3.2, and proceeding as for the end of the proof of Theorem 3.8,
we get that

|∆∇k−2H| = C

θ′(H)

[
|∆∇k−2h|+ |θ′′′(H)||∇H|2|∇k−2H|+ |θ′′(H)||∆H||∇k−2H|

+|θ′′(H)||∇∇H∇k−2H|+ max
s=2,...,k−2

|θ(s+2)(H)||∇H|2|
s⊗
i=1

∇eiH|

+ max
s=2,...,k−2

|θ(s+2)|θ(s+1)(H)||∆H
s⊗
i=1

∇eiH|

+ max
s=2,...,k−2

(|θ(s+1)(H)||∇∇H
s⊗
i=1

∇eiH|+ |θ(s)(H)||∆(

s⊗
i=1

∇eiH)|)

]
≤Cλ(r)k−1.

�
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Using the function H coming from Theorem 5.1, we want now to produce a sequence of higher
order (rough) Laplacian cut-off functions. This will be done in the following

Corollary 5.2. Let (M, g) be a complete Riemannian manifold and o ∈ M a fixed reference point
r(x)

.
= distg(x, o). Let k ≥ 3 be an integer. Let λ satisfy assumptions (A1), (A2), (A3), and (A4(j))

for j = 1, . . . , k − 1, and suppose that λ1−k /∈ L1([1,+∞)). Suppose that

(36) |∇jRiem|(x) ≤ λ(r(x))2+j , 0 ≤ j ≤ k − 3.

Then there exists a family of cut-off functions {χR} ⊂ C∞c (M), and a constant C > 0 independent
of R such that,

(1) χR = 1 on BC−1
H (R−2)(o);

(2) |∇jχR| ≤ Cλ−k+j, j = 1, . . . , k − 1;
(3) |∆∇k−2χR| ≤ C,

Proof. As in Corollary 4.1, For each radius R � 1, define χR
.
= φR ◦H, with H the distance-like

function given by Theorem 5.1 and φR defined as in the proof of Corollary 4.1. Properties (1) and
(2) follow from the proof of Corollary 4.1. About (3), using Lemma A.1 we note that

(37) |∆∇k−2χR| ≤ |∇k−2∆χR|+ |Riem ∗ ∇k−2χR +∇Ric ∗ ∇k−3χR + . . .∇k−3Ric ∗ ∇χR|.

About the first term on the RHS of (37), note that

∆(φR ◦H) = φ′R∆H + φ′′R|∇H|2,

and hence

|∇k−2∆χR| = |∇k−2(φ′R∆H)|+ |∇k−2(φ′′R|∇H|2)|.

We have that ∇k−2(φ′R∆H) can be written as

(38) ∇k−2(φ′R∆H) =
∑
c

Ccφ
(c1+...+ck−3+1)

[
k−3⊗
t=1

(∇tH)⊗ct

]
⊗∇ck−2∆H,

where c varies among all (k− 2)-vectors of nonnegative integers such that
∑k−3

t=1 tct + ck−2 = k− 2,
and the Cc are positive integer constants.
With the same notations, ∇k−2(φ′′R|∇H|2) can be written as

∇k−2(φ′′R|∇H|2) =
∑
c

Ccφ
(c1+...+ck−3+2)

[
k−3⊗
t=1

(∇tH)⊗ct

]
⊗∇ck−2 |∇H|2(39)

=
∑
c

Ccφ
(c1+...+ck−3+2)

[
k−3⊗
t=1

(∇tH)⊗ct

]
⊗∇ck−2−1(∇2H(∇H, ·)).

Inserting (28) in (38) and using Theorem 5.1 (also combined with Lemma A.1), we get

|∇k−2(φ′R∆H)| ≤ Cλ1−k
[
λ
∑k−3
t=1 (tct−1)+ck−2+1

]
≤ Cλ1−kλk−2 = Cλ−1 = C.

Analogously, recalling also that

|∇ck−2−1(∇2H(∇H, ·)| ≤ C
[
|∇ck−2+1H||∇H|+ |∇ck−2H||∇2H|+ . . .+ |∇2H||∇ck−2H|

]
,

by (39), we get that

|∇k−2(φ′′R|∇H|2)| ≤ Cλ1−k
[
λ
∑k−3
t=1 (tct−1)+ck−2

]
≤ Cλ1−k

[
λk−2+1

]
≤ C.
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About the second term on the RHS of (37),we have that by (36) and property (2) of the cut-off
functions,

|Riem||∇k−2χR| ≤Cλ2λ−k+k−2 = C,

|∇lRic||∇k−2−lχR| ≤Cλ2+lλ−k+k−2−l = C,

for l = 1, . . . , k − 3. This concludes the proof of property (3) of the cut-off functions and hence
yields the validity of the Lemma. �

5.2. Weitzenböck formulas. Fix a tensor bundle E → M with m-dimensional fibers, endowed
with an inner product induced by the metric g and a compatible connection ∇ induced by the Levi-
Civita connection on M . A Lichnerowicz Laplacian is a second order differential operator acting on
the space of smooth sections Γ(E) of the form

(40) ∆L = ∆B + cRic,

for a suitable constant c. Here ∆B = −tr12(∇2) = ∇∗∇ is the Bochner Laplacian (with ∇∗ the
formal L2-adjoint of ∇) and Ric is a smooth symmetric endomorphism of E known as Weitzenböck
curvature operator. When T is a (0, k)-tensor, the Weitzenböck curvature operator, takes the form

(41) Ric(T )(X1, . . . , Xk) =

k∑
i=1

∑
j

(R(Ej , Xi)T ) (X1, . . . , Ej , . . . , Xk),

where {Ei} is a local orthonormal frame and

R(X,Y )
.
= ∇2

X,Y −∇2
Y,X = ∇X∇Y −∇Y∇X −∇[X,Y ],

which may be applied to any tensor field. Note that, by the classical Bochner-Weitzenböck formula,
the Hodge Laplacian on exterior differential forms decomposes as in (40) with c = 1.

Since, obviously, R(X,Y ) vanishes on functions, for any (0, k)-tensor T , we have that

Ric(T )(X1, . . . , Xk) =−
k∑
i=1

∑
j

∑
p 6=i

T (X1, . . . , R(Ej , Xi)Xp, . . . , Ej , . . . , Xk)

+
∑
j

T (X1, . . . , R(Ej , Xi)Ej , . . . , Xk)


=−

k∑
i=1

∑
j

∑
p 6=i

T (X1, . . . ,
∑
l

g(R(Ej , Xi)Xp, El)El, . . . , Ej , . . . , Xk)

−
∑
ν

T (X1, . . . ,Ric(Eν , Xi)Eν , . . . , Xk)

]

=−
k∑
i=1

∑
j

∑
p 6=i

∑
l

T (X1, . . . , El, . . . , Ej , . . . , Xk)Riem(Ej , Xi, Xp, El)

−
∑
ν

T (X1, . . . , Eν , . . . , Xk)Ric(Xi, Eν)

]
,

where we are setting

Riem(X,Y, Z,W ) = g(R(X,Y )Z,W )

Ric(X,Y ) = tr Riem(X, ·, ·, Y ).
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This curvature term has a quite complicated expression, but it can be estimated in terms of the
curvature operator R of M (the linear extension to Λ2TM of the (2, 2)-Riemann curvature tensor);
see e.g. [23, Corollary 9.3.4].

Proposition 5.3. Let T be a (0, s) tensor. If the curvature operator R satisfies R ≥ α, for some
constant α < 0, then 〈Ric(T ), T 〉 ≥ αC|T |2, with C constant depending only on s.

5.3. A Lichnerowicz Laplacian on symmetric (0, k)-tensors. Another remarkable example of
differential operator which can be rewritten as a Lichnerowicz Laplacian was introduced by J. H.
Sampson in [26] on smooth sections of the bundle S(0,k)(M) of totally symmetric (0, k)-tensors (see
also [22]).

Namely, consider the symmetrization operator sk, i.e. the projection of the full tensor bundle
T 0,k(M) on S(0,k)(M). Given h a (0, k− 1)-tensor field, we can define the totally symmetric tensor

hS(X1, . . . , Xk−1)=̇sk−1(h)(X1, . . . , Xk−1) =
1

(k − 1)!

∑
σ∈Πk−1

h(Xσ(1), . . . , Xσ(k−1)).

Let us define the operator DS : ΓS(0,k−1)(M)→ ΓS(0,k)(M) by

(DSh
S)(X0, . . . , Xk) =ksk(∇hS)(X0, . . . , Xk).

Its formal L2- adjoint D∗S : ΓS(0,k)(M)→ ΓS(0,k−1)(M) is then given by

(D∗Sh
S)(X1, . . . , Xk−2) =−

∑
i

(∇EihS)(Ei, X1, . . . , Xk−2).

Letting ∆Sym = D∗SDS −DSD
∗
S , we have by [26] (see also Appendix B for a proof) that

∆Symh
S = ∇∗∇hS −Ric(hS),

that is to say, ∆Sym is of type (40) for c = −1.
In particular, one can compute that

1

2
∆|hS |2 =− 〈∇∗∇hS , hS〉+ |∇hS |2(42)

=− 〈∆Symh
S , hS〉 − 〈Ric(hS), hS〉+ |∇hS |2

It is worth mentioning that for (0, 2)-tensors, in [23, Chapter 9] it was introduced a different

Lichnerowicz Laplacian acting on smooth sections of S(0,2)(M), with particular focus on applications
of the Bochner technique to this operator. However the operator ∆Sym seems to conform better to
our scope.

5.4. Proof of Theorem 1.7. In our assumptions, we know by Corollary 5.2 that there exists a
sequence of cut-off functions {χn} ⊂ C∞c (M), and a constant C > 0 independent of n such that,

(1) χn = 1 on BC−1
H (n−2)(o);

(2) |∇jχn| ≤ Cλ−k+j , j = 1, . . . , k − 1;
(3) |∆∇k−2χn| ≤ C,

Since smooth functions are dense in W k,2(M), to prove the density result it is sufficient to consider
f ∈ C∞(M) ∩ W k,2(M); see for instance [12]. We want to prove that χnf converges to f in
W k,2(M). The lower order terms can be treated as in the proof of Theorem 4.2, by using the
dominated convergence theorem and the properties of the cut-off functions. Here we prove that∫

M
|∇k(χnf)−∇kf |2dvolg → 0,
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as n→∞. Note that∫
M
|∇k(χnf)−∇kf |2dvolg =

∫
M

∣∣∣∣∣
[

k∑
i=0

(
k

i

)
∇k−iχn ⊗∇if

]
−∇kf

∣∣∣∣∣
2

dvolg

≤
∫
M

(1− χn)2|∇kf |2 +
k−1∑
i=0

(
k

i

)∫
M
|∇k−iχn|2|∇if |2dvolg

Taking into account the properties of the cut-off functions, the only non-trivial term to study is∫
M
|f |2|∇kχn|2

To prove that this goes to 0 as n → ∞ we are going to use (42) with h
.
= ∇k−1χn and hence

hS = sk−1(∇k−1χn). First note that, in general,

1

2
div
(
f2∇

∣∣hS∣∣2) ≤f2
[
−〈∆Symh

S , hS〉 − 〈Ric(hS), hS〉+ |∇hS |2
]

+ 2|f ||hS ||〈∇f,∇|hS |〉|.

Hence, by Young’s and Kato’s inequality, we get that, for any 0 < η < 1,

1

2
div
(
f2∇|hS |2

)
+ f2〈∆Symh

S , hS〉 ≤ − f2〈Ric(hS), hS〉+ f2|∇hS |2

+ ηf2|∇|hS ||2 +
1

η
|∇f |2|hS |2

≤− f2〈Ric(hS), hS〉+ (1 + η)f2|∇hS |2 +
1

η
|∇f |2|hS |2.

Integrating, we get that∫
M
〈∆Symh

S , f2hS〉dvolg ≤−
∫
M
f2〈Ric(hS), hS〉dvolg(43)

+ (1 + η)

∫
M
f2|∇hS |2dvolg +

1

η

∫
M
|∇f |2|hS |2dvolg,

for any η > 0. Recall that hS = sk−1(∇k−1χn). Note that, by Cauchy-Schwarz inequality,

(44) |sk−1(∇k−1χn)|2 ≤ |∇k−1χn|2.

Hence, by the properties of the cut-off functions χn, the dominated convergence theorem, and the
fact that f ∈W k,2(M), we have that∫

M
|∇f |2|sk−1(∇k−1χn)|2dvolg → 0

as n → ∞. Furthermore, the curvature term in (43) can be controlled, under our assumptions,
using Proposition 5.3. More precisely we have that

(45) −
∫
M
f2〈Ric(hS), hS〉dvolg ≤ (−α)C

∫
M
f2|hS |2dvolg.

Let us now analyze the LHS of (43). We let

A =

∫
M
〈D∗SDS(sk−1(∇k−1χn)), f2sk−1(∇k−1χn)〉dvolg

B =

∫
M
〈DSD

∗
S(sk−1(∇k−1χn)), f2sk−1(∇k−1χn)〉dvolg,
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so that

(46)

∫
M
〈∆Symh

S , f2hS〉dvolg = A−B.

First, let us deal with the term B. Using (44) we get

B =

∫
M
〈D∗S(sk−1(∇k−1χn)), D∗S(f2sk−1(∇k−1χn))〉dvolg(47)

=

∫
M

[
f2|D∗S(sk−1(∇k−1χn))|2 − 2f〈i∇f (sk−1(∇k−1χn)), D∗S(sk−1(∇k−1χn))〉

]
dvolg

≤2

∫
M
f2|D∗S(sk−1(∇k−1χn))|2dvolg +

∫
M
|∇f |2|sk−1(∇k−1χn)|2dvolg

≤2

∫
M
f2|D∗S(sk−1(∇k−1χn))|2dvolg +

∫
M
|∇f |2|∇k−1χn|2dvolg.

In the following we will use the ”∗” notation we defined in Section 2. Moreover, we will work in
a normal orthonormal frame {Ei} at p ∈M , and in frame computations we will use the convention
of lowering all indices, summing over repeated indices.

Note that

(48) |D∗S(sk−1(∇k−1χn))|2 =
∑

i2,...,ik−1

 1

(k − 1)!

∑
i1

∇i1

 ∑
π∈Πk−1

∇k−1
iπ(1)...iπ(k−1)

χn

2

.

Recall that for any (0, r)-tensor α, with r ≥ 1, the standard commutation formula gives that

(49) (∇i∇j −∇j∇i)αi1...ir = Riem ∗ α

Hence for each of the terms in square parentheses on the RHS of (48) we can trace back to a rough

Laplacian of a (k−2)-th covariant derivative of χn. For instance, consider the term ∇i1∇k−1
i2...ik−1i1

χn.

We can compute (at the point p ∈M about which we have selected the normal orthonormal frame):∑
i1

∇i1∇k−1
i2...ik−1i1

χn =
∑
i1

∇i1
[(
∇k−1
i2...ik−1i1

−∇k−1
i2...ik−2i1ik−1

)
χn

+
(
∇k−1
i2...ik−2i1ik−1

−∇k−1
i2...ik−3i1ik−2ik−1

)
χn + . . .+∇k−1

i1i2...ik−1
χn

]
=
∑
i1

∇i1
((
∇k−4Riem ∗ ∇χn + . . .+ Riem ∗ ∇k−3χn

)
i1...ik−1

+∇k−1
i1i2...ik−1

χn

)
=
(
∇k−3Riem ∗ ∇χn + . . .+ Riem ∗ ∇k−2χn

)
i2...ik−1

+ ∆∇k−2
i2...ik−1

χn.

The other terms can be treated similarly. Hence, by (48) and Young’s inequality, we get that

|D∗S(sk−1(∇k−1χn))|2 ≤ C(m, k)
(
|∆∇k−2χn|2 + |Riem|2|∇k−2χn|2 + . . .+ |∇k−3Riem|2|∇χn|2

)
,

where (here and from now on) C(m, k) is a constant, depending only on k and m, which can possibly
change from line to line. Integrating, we get from (47) that

B ≤
∫
M

2C(m, k)f2
(
|∆∇k−2χn|2 + |Riem|2|∇k−2χn|2 + . . .+ |∇k−3Riem|2|∇χn|2

)
dvolg(50)

+

∫
M
|∇f |2|∇k−1χn|2dvolg.
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On the other hand, by Young’s inequality and reasoning as in (44), we have that

A =

∫
M
〈DS(sk−1(∇k−1χn)), DS(f2sk−1(∇k−1χn))〉dvolg(51)

=

∫
M
f2|DS(sk−1(∇k−1χn))|2dvolg

+

∫
M
k〈DS(sk−1(∇k−1χn)), 2fsk

(
df ⊗ sk−1(∇k−1χn)

)
〉dvolg

≥(1− δ)
∫
M
f2|DS(sk−1(∇k−1χn))|2dvolg −

k2

δ

∫
M
|∇f |2|∇k−1χn|2dvolg,

for any δ > 0. Substituting (45) in (43), then this latter, (50) and (51) in (46), we hence get that

(−α)C

∫
M
f2|sk−1(∇k−1χn)|2dvolg + (1 + η)

∫
M
f2|∇(sk−1(∇k−1χn))|2dvolg

+
1

η

∫
M
|∇f |2|sk−1(∇k−1χn)|2dvolg

≥(1− δ)
∫
M
f2|DS(sk−1(∇k−1χn))|2dvolg −

k2

δ

∫
M
|∇f |2|∇k−1χn|2dvolg

−
∫
M
C(m, k)f2

(
|∆∇k−2χn|2 + |Riem|2|∇k−2χn|2 + . . .+ |∇k−3Riem|2|∇χn|2

)
dvolg

−
∫
M
|∇f |2|∇k−1χn|2dvolg.

Using our assumptions, the properties of the rough Laplacian cut-off functions χn, Proposition 5.3,
the dominated convergence theorem, and the fact that f ∈W k,2(M), this yields that

(52) lim sup
n→∞

∫
M
f2
[
(1− δ)|DS(sk−1(∇k−1χn))|2 − (1 + η)|∇sk−1(∇k−1χn)|2

]
dvolg ≤ 0.

Let us first study the term |∇sk−1(∇k−1χn)|2. Since, by definition,

sk−1(∇k−1χn)(Ei1 , . . . , Eik−1
) =

1

(k − 1)!

 ∑
π∈Πk−1

∇k−1
iπ(1)...iπ(k−1)

χn

 ,

using (49), we have that

((k − 1)!)2|∇sk−1(∇k−1χn)|2

=
∑
i1,...,ik

 ∑
π∈Πk−1

∇kikiπ(1)...iπ(k−1)
χn

2

=(k − 1)!|∇kχn|2 +
∑
i1,...,ik

∑
π∈Πk−1

(∇kikiπ(1)...iπ(k−1)
χn ·

∑
σ∈Πk−1\{π}

∇kikiσ(1)...iσ(k−1)
χn)

= ((k − 1)! + ((k − 1)!− 1)(k − 1)!) |∇kχn|2

+
(
∇kχn ∗

(
Riem ∗ ∇k−2χn +∇Riem ∗ ∇k−3χn + . . .∇k−3Riem ∗ ∇χn

))
= ((k − 1)!)2 |∇kχn|2 +

(
∇kχn ∗

(
Riem ∗ ∇k−2χn +∇Riem ∗ ∇k−3χn + . . .∇k−3Riem ∗ ∇χn

))
.
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Hence, using Young’s inequality,

|∇sk−1(∇k−1χn)|2 ≤|∇kχn|2 + C(m, k)
[
ε|∇kχn|2

(53)

+
1

ε

(
|Riem|2|∇k−2χn|2 + |∇Riem|2|∇k−3χn|2 + . . .+ |∇k−3Riem|2|∇χn|2

)]
for any ε > 0. On the other hand, concerning the other term in (52), we have that

|DS(sk−1(∇k−1χn))|2 =k2|sk(∇sk−1(∇k−1χn))|2.

Since sk(∇sk−1(∇k−1χn)) = sk(∇kχn), we thus have that

|DS(sk−1(∇k−1χn))|2 = k2|sk(∇kχn)|2

=
k2

(k!)2

∑
i1,...,ik

∑
π∈Πk

∇kiπ(1)...,iπ(k)
χn

2

=
k2

(k!)2

k!|∇kχn|2 +
∑
i1,...,ik

∑
π∈Πk

(∇kiπ(1)...iπ(k)
χn ·

∑
σ∈Πk\{π}

∇kiσ(1)...iσ(k)
χn)


=

k2

(k!)2

[
(k! + (k!− 1)k!) |∇kχn|2

+
(
∇kχn ∗

(
Riem ∗ ∇k−2χn +∇Riem ∗ ∇k−3χn + . . .∇k−3Riem ∗ ∇χn

))]
=

k2

(k!)2

[
(k!)2 |∇kχn|2

+
(
∇kχn ∗

(
Riem ∗ ∇k−2χn +∇Riem ∗ ∇k−3χn + . . .∇k−3Riem ∗ ∇χn

))]
.

Using again Young’s inequality we get

|DS(sk−1(∇k−1χn))|2 ≥ k2|∇kχn|2 + C(m, k)
[
−ε|∇kχn|2(54)

−1

ε

(
|Riem|2|∇k−2χn|2 + |∇Riem|2|∇k−3χn|2 + . . .+ |∇k−3Riem|2|∇χn|2

)]
,

for any ε > 0. Using (53) and (54), we get that∫
M
f2
[
(1− δ)

(
k2 − C(m, k)ε

)
− (1 + η) (1 + C(m, k)ε)

]
|∇kχn|2dvolg

≤
∫
M
f2
[
(1− δ)|DS(sk−1(∇k−1χn))|2 − (1 + η)|∇sk−1(∇k−1χn)|2

]
dvolg

+

∫
M
f2

[
(1− δ)C(m, k)

1

ε

(
|Riem|2|∇k−2χn|2 + . . .+ |∇k−3Riem|2|∇χn|2

)]
dvolg

+

∫
M
f2

[
(1 + η)C(m, k)

1

ε

(
|Riem|2|∇k−2χn|2 + . . .+ |∇k−3Riem|2|∇χn|2

)]
dvolg.

By (52) and reasoning as above we know that the RHS converge to 0 as n → ∞. Hence, suitably
choosing ε, η, δ � 1 we finally obtain the desired conclusion:∫

M
f2|∇kχn|2dvolg → 0,

as n→∞.
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6. Some sharp applications

6.1. Disturbed Sobolev inequalities. First, we point out the following

Theorem 6.1. Let (Mm, g) be a smooth, complete non-compact Riemannian manifold without
boundary. Let o ∈M , r(x)

.
= distg(x, o) and suppose that for some η > 0, D > 0 and some i0 > 0,

|Ricg|(x) ≤ D2(1 + r(x)2)η, injg(x) ≥ i0
D(1 + r(x))η

.

Let p ∈ [1,m) and q ∈ [p,mp/(m − p)]. Then there exist constants A1 > 0, A2 > 0, depending on
m, p, q and the constant C from Theorem 1.2, such that for all ϕ ∈ C∞c (M) it holds(∫

M
|ϕ|qdvolg

) 1
q

≤ A1

(∫
M
|∇ϕ|pdvolg

)1/p

+A2

(∫
M
H2η|ϕ|pdvolg

)1/p

,(55)

where H ∈ C∞(M) is the distance-like function given by Theorem 1.2.

Remark 6.2. Theorem 6.1 was proved in [20] with η ≤ 1. However the proof therein works also
when η > 1 up to replace [20, Theorem 1.5] with the k = 2 case of Theorem 1.2 above, with

λ(t) = D2(1 + t2)
η
2 . Note that one could also state the theorem for more general growth functions

λ(r) as in Theorem 1.2.

Since, under a Ck-control on the curvature, there exists distance-like functions with controlled
higher order derivatives, one naturally expects that some sort of improved higher order Sobolev
inequality should be obtained exploiting the control on the higher derivatives of the curvature.
However, for the moment, this possible phenomenon remains unclear to us. Indeed, generalizing
a fact remarked in [4, Proposition 2.11] for the standard (i.e. non-disturbed) Sobolev inequali-
ties, higher order disturbed Sobolev inequalities hold true under exactly the same assumptions as
Theorem 6.1.

Proposition 6.3. Let (Mm, g) be a smooth, complete non-compact Riemannian manifold without
boundary. Let o ∈M , r(x)

.
= distg(x, o) and suppose that for some η > 0, D > 0 and some i0 > 0,

|Ricg|(x) ≤ D2(1 + r(x)2)η, injg(x) ≥ i0
D(1 + r(x))η

.

Let p ∈ [1,m) and let k be an integer in [1, mp ). Then there exists a constant A > 0 depending on

m, p, k and the constant C from Theorem 1.2, such that for all ϕ ∈ C∞c (M) it holds

‖ϕ‖
L

pm
m−kp (M)

≤ A
k−1∑
r=−1

∥∥∥H η
mp

(r+1)(2m−rp)|∇k−r−1ϕ|
∥∥∥
Lp(M)

,(56)

where H ∈ C∞(M) is the distance-like function given by Theorem 1.2.

Proof. For the ease of notation we will write ‖ · ‖p for ‖ · ‖Lp(M). For j = 1, . . . , k, define qj
.
=

pm/(m− jp). We prove that for every s = 0, . . . , k − 1 it holds

‖ϕ‖qk ≤ C
k−1∑
r=s−1

∥∥∥H2η
∑r
j=s q

−1
j |∇k−r−1ϕ|

∥∥∥
qs
,(57)

with the convention that
∑−1

j=0 q
−1
j = 0. Since

∑r
j=0 q

−1
j = (2m− rp)(r + 1)/(2mp), the inequality

(56) is equivalent to (57) when s = 0.
Note that p = q0 < q1 < · · · < qk, and that qj = nqj−1/(n − qj−1), so that Theorem 6.1 applies

with p = qj−1 and q = qj . In particular, (57) holds true when s = k − 1. For general s, we prove
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now the validity of (57) by backward induction. Namely, suppose that for some integer t ∈ [1, k−1],
(57) holds true with s = t, i.e.

‖ϕ‖qk ≤ C
k−1∑
r=t−1

∥∥∥H2η
∑r
j=t q

−1
j |∇k−r−1ϕ|

∥∥∥
qt
.

Applying (55) with p = qt−1 and q = qt at each terms of RHS gives

‖ϕ‖qk ≤ C

[
k−1∑
r=t−1

∥∥∥∥H 2η
qt−1H2η

∑r
j=t q

−1
j |∇k−r−1ϕ|

∥∥∥∥
qt−1

+
k−1∑
r=t−1

∥∥∥∇(H2η
∑r
j=t q

−1
j |∇k−r−1ϕ|

)∥∥∥
qt−1

]

≤ C

[
k−1∑
r=t−1

∥∥∥H2η
∑r
j=t−1 q

−1
j |∇k−r−1ϕ|

∥∥∥
qt−1

+
k−1∑
r=t−1

∥∥∥(H2η
∑r
j=t q

−1
j −1|∇H||∇k−r−1ϕ|

)∥∥∥
qt−1

+
k−1∑
r=t−1

∥∥∥H2η
∑r
j=t q

−1
j ∇|∇k−r−1ϕ|

∥∥∥
qt−1

]
.

Recalling that |∇H| ≤ 1, and that |∇|∇k−r−1ϕ|| ≤ |∇k−rϕ| (see [4, p. 36, (1)]), we obtain

‖ϕ‖qk ≤ C

[
k−1∑
r=t−1

∥∥∥H2η
∑r
j=t−1 q

−1
j |∇k−r−1ϕ|

∥∥∥
qt−1

+
k−1∑
r=t−1

∥∥∥(H2η
∑r
j=t q

−1
j |∇k−r−1ϕ|

)∥∥∥
qt−1

+
k−1∑
r=t−1

∥∥∥H2η
∑r
j=t q

−1
j |∇k−rϕ|

∥∥∥
qt−1

]

≤ C

[
k−1∑
r=t−1

∥∥∥H2η
∑r
j=t−1 q

−1
j |∇k−r−1ϕ|

∥∥∥
qt−1

+
k−2∑
r=t−2

∥∥∥H2η
∑r+1
j=t q

−1
j |∇k−r−1ϕ|

∥∥∥
qt−1

]
.

Since
∑r+1

j=t q
−1
j ≤

∑r
j=t−1 q

−1
j , we finally get

‖ϕ‖qk ≤ C
k−1∑
r=t−2

∥∥∥H2η
∑r
j=t−1 q

−1
j |∇k−r−1ϕ|

∥∥∥
qt−1

,

i.e. (57) holds true for s = t− 1 as desired. �

6.2. Calderón-Zygmund inequalities. Calderón-Zygmund inequalities are a powerful tool in
Euclidean analysis which permits to control the Lp-norm of the Hessian of a function u in terms
of the Lp-norms of the Laplacian of u and of u itself. On a complete non-compact Riemannian
manifolds (M, g), it was proved by B. Güneysu and S. Pigola in [16] that the global Calderón-
Zygmund inequality

(CZ(p)) ∀u ∈ C∞c (M), ‖|Hessu|g‖pLp ≤ A1‖u‖pLp +A2‖∆u‖pLp

holds for p ∈ [1,+∞) if either

• p = 2 and Ricg ≥ −C for some C > 0, or
• |Ricg| ≤ C for some C > 0 and injg(M) > i0 > 0.

In general there is no hope to get (CZ(p)) on an arbitrary complete non-compact manifold, due
to counterexamples, [16, 21]. However one can weaken the assumptions in [16] obtaining a weaker
version of (CZ(p)) in which an unbounded weight function appears in the ‖u‖Lp term of (CZ(p)).
This approach was considered for instance in [20], where the authors proved (a slightly weaker
version of) the following
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Theorem 6.4. Let (Mm, g) be a smooth, complete non-compact Riemannian manifold without
boundary. Let o ∈M , r(x)

.
= distg(x, o) and suppose that one of the following curvature assumptions

holds

(a) for some η > 0, some D > 0 and some i0 > 0,

|Ricg|(x) ≤ D2(1 + r(x)2)η, injg(x) ≥ i0
D(1 + r(x))η

> 0 on M.

(b) for some η > 0 and some D > 0,

|Sectg|(x) ≤ D2(1 + r(x)2)η.

Then there exist constants A1 > 0, A2 > 0, depending on m, η, D and the constant C from Theorem
1.2, such that for all ϕ ∈ C∞c (M) it holds

‖|Hessϕ|g‖2L2 ≤ A1‖H2ηϕ‖2L2 +A2‖∆ϕ‖2L2 ,(58)

where H ∈ C∞(M) is the distance-like function given by Theorem 1.2.

Remark 6.5. The same observation as in Remark 6.2 applies also to Theorem 6.4.

As commented in [20], obtaining a weighted Lp Calderón-Zygmund inequality under the same
assumptions of Theorem 6.4 is a non-trivial problem. The main issue is to keep a control on the
injectivity radius under the conformal deformation. However, it turns out that this can be done
at least under slightly stronger assumptions, i.e. if we assume both a control on the sectional
curvatures and on the injectivity radius. Accordingly, we can obtain Theorem 1.8 stated in Section
1, which we state here again for readers’ convenience.

Theorem 6.6. Let (Mm, g) be a smooth, complete non-compact Riemannian manifold without
boundary. Let o ∈ M , r(x)

.
= distg(x, o) and suppose that for some η > 0, some D > 0 and some

i0 > 0,

|Sectg|(x) ≤ D2(1 + r(x)2)η, injg(x) ≥ i0
D(1 + r(x))η

> 0 on M.

Then there exist constants A > 0 depending on m, η, D, i0 and the constant C from Theorem 1.2,
such that for all ϕ ∈ C∞c (M) it holds

‖|Hessϕ|g‖pLp ≤ A
[
‖H2ηϕ‖pLp + ‖∆ϕ‖pLp

]
,

where H ∈ C∞(M) is the distance-like function given by Theorem 1.2.

Proof. We can write the geometric assumption in the following form: for some η > 0, some D′ > 0
and some i′0 > 0,

|Sectg|(x) ≤ D̄2r(x)2η, injg(x) ≥ ī0
r(x)η

> 0 on M \B1(o).

As in the proof of [20, Theorem 1.7], define the new complete conformal metric g̃ = H2sg, which
satisfies in particular

(59) |Sectg̃| ≤ K2

on M for some constant K > 0. Here H is the second order distance-like function whose existence
is guaranteed in our assumptions by Theorem 1.2. For later purposes, observe that reasoning as in
the proof of [20, Lemmas 7.3 and 7.4] one can prove the existence of a constant c̃ such that for all
j large enough and all ρ > 0,

Bg
c̃−1ρr(xj)−η

(xj) ⊂ Bg̃
ρ(xj) ⊂ Bg

c̃ρr−η(rj)
(xj).

We claim that

(60) ∃ ĩ0 > 0, ∀x ∈M, injg̃(x) ≥ ĩ0 > 0.
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Suppose it is not the case. Then there exists a sequence of points {xj}∞j=1 ⊂ M \ Bg
1(0) such that

injg̃(xj) <
1
j and distg̃(xj , o)→∞ as j →∞.

We call Fj : B π
2K

(0) ⊂ TxjM → M the exponential map expxj of the metric g̃ restricted to

B π
2K

(0) ⊂ TxjM . Since Sectg̃ ≤ K2, by Rauch comparison theorem in Bg̃
π

2K
(xj) there are no

points conjugated to xj for the metric g̃. In particular Fj is a smooth local diffeomorphism onto

Bg̃
π

2K
(xj) and a smooth surjective local isometry once TxjM is endowed with the pulled-back metric

exp∗xj g̃. Hence, injg̃(xj) <
1
j implies that for j > 2K

π , there exists a point yj ∈ Bg̃
j−1(xj) such that

yj = F (Yj,1) = F (Yj,2) for two different points Yj,1 and Yj,2 in Bj−1(0) ⊂ TxjM . Also, there are two
different constant speed minimizing geodesics γ̃j,1(t) and γ̃j,1(t) wrt g̃ which connect xj to yj and

lifts to Γ̃j,1(t) = tYj,1 and Γ̃j,2(t) = tYj,2 respectively.

Let j > 2c̃2K
π , so that

(61) Bg̃
j−1(xj) ⊂ Bg

c̃j−1r−η(rj)
(xj) ⊂ Bg̃

c̃2j−1(xj) ⊂ Bg̃
2K
π

(xj).

Since F is a local isometry, F−1(yj) is a discrete set, so that γ̃j,1 and γ̃j,2 belong necessarily to

two different relative homotopy classes [γ̃j,1]{xj ,yj} and [γ̃j,2]{xj ,yj} of paths in Bg̃
c̃2j−1(xj) with fixed

boundary points xj and yj . Because of (61) we have also that γj,1 and γj,2 are curves contained in
Bg
c̃j−1r−η(rj)

(xj) which belong to two different relative homotopy classes [γ̃j,1]{xj ,yj} and [γ̃j,2]{xj ,yj}

of paths in Bg
c̃j−1r−η(xj)

(xj) with fixed boundary points xj and yj . However,

injg(xj) ≥
ī0

r(xj)η
> c̃j−1r−η(xj),

as soon as j > c̃/i0. Hence, for j large enough, Bg
c̃j−1r−η(xj)

(xj) is contractible, which contradicts

the existence of two different homotopy classes of curves. The claim (60) is thus proved.
Recalling also (59), we have thus the validity on (M, g̃) of an Lp Calderón-Zygmund inequality,

[16, Theorem C], i.e.,

∀u ∈ C∞c (M), ‖|Hessg̃ u|g̃‖p
L̃p
≤ A1‖u‖p

L̃p
+A2‖∆g̃u‖p

L̃p
.(62)

Here and on ‖ ·‖
L̃p

is the Lp norm of a function computed with respect to the conformally deformed

metric g̃ on M . Given ϕ ∈ C∞c (M), define u ∈ C∞c (M) by H
η(m

p
−2)

u = ϕ. Setting eφ = Hη and
computing as in [20, Section 7],we get that

e4φ|Hessg̃ u|2g̃ = |Hessu|2g + 2|∇u|2g|∇φ|2g + (m− 2)g(∇u,∇φ)2 − 2g(∇u,∇φ)∆gu− 4Hessu(∇u,∇φ)

≥ |Hessu|2g + 2|∇u|2g|∇φ|2g − (m− 2)|∇u|2g|∇φ|2g − |∇u|2g|∇φ|2g − |∆gu|2

− 1

2
|Hessu|2g − 8|∇u|2g|∇φ|2g

≥ 1

2
|Hessu|2g − (m+ 5)|∇u|2g|∇φ|2g − |∆gu|2.

Accordingly

|Hessu|2g ≤ C
[
H4η|Hessg̃ u|2g̃ + η2|∇u|2g|∇ logH|2g + |∆gu|2

]
,

and

H(m−2p)η|Hessu|pg dvolg ≤C
[
|Hessg̃ u|pg̃ dvolg̃(63)

+H(m−2p)η|∇u|pg|∇ logH|pg dvolg +H(m−2p)η|∆gu|p dvolg

]
.
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From (62) we get∫
M
|Hessg̃ u|pg̃ dvolg̃ ≤ A1

∫
M
|u|p dvolg̃ +A2

∫
M
|∆g̃u|p dvolg̃

≤ C
[∫

M
|u|p dvolg̃ +

∫
M
H−2ηp|∆gu+ (m− 2)g(∇u, η∇ logH)|p dvolg̃

]
≤ C

[∫
M
Hmη|u|p dvolg +

∫
M
H(m−2p)η|∆gu|p dvolg

+

∫
M
H(m−2p)η|∇u|pg|∇ logH|pg dvolg

]
.

Inserting in (63) gives∫
M
H(m−2p)η|Hessu|pg dvolg ≤C

[∫
M
Hmη|u|p dvolg +

∫
M
H(m−2p)η|∆gu|p dvolg(64)

+

∫
M
H(m−2p)η|∇u|pg|∇ logH|pg dvolg

]
.

Recall that u = H
−η(m

p
−2)

ϕ. Then

H
η(m

p
−2)|∇gu| ≤ C[|∇gϕ|+H−1ϕ|∇gH|],

H
η(m

p
−2)|∆gu| ≤ |∆gϕ|+ C[H−1|∇gϕ||∇gH|+H−2ϕ|∆gH|],

and
H
η(m

p
−2)|Hessu| ≥ |Hessϕ| − C[H−1|∇gϕ||∇gH|+H−2ϕ|HessH|].

Combining these latter with (64) we obtain∫
M
|Hessϕ|pg dvolg ≤C

[∫
M
H2pη|ϕ|p dvolg +

∫
M
|∆gϕ|p dvolg

+

∫
M
H−p|∇ϕ|pg|∇H|pg dvolg +

∫
M
H−2p|ϕ|p|HessH|pg dvolg

]
≤C

[∫
M
H2pη|ϕ|p dvolg +

∫
M
|∆gϕ|p dvolg +

∫
M
|∇ϕ|pg dvolg

]
.

where we used the fact that H is a strictly positive exhaustion function, |∇H| is uniformly bounded
and |HessH| ≤ CHη. Applying [16, Proposition 3.10 a)] with ε small enough, we finally get∫

M
|Hessϕ|pg dvolg ≤ C

[∫
M
H2pη|ϕ|p dvolg +

∫
M
|∆gϕ|p dvolg

]
as desired. �

6.3. Omori-Yau maximum principle. We end this section with a remark on the Omori-Yau
maximum principle. Recall that a Riemannian manifold (M, g) is said to satisfy the full Omori-Yau
maximum principle for the Hessian if for any function u ∈ C2(M) with u∗ = supM u < +∞, there
exists a sequence {xn}n ⊂M with the properties

(i)u(xn) > u∗ − 1

n
, (ii) |∇u(xn)| < 1

n
, (iii) Hess(u)(xn) <

1

n
g,

for each n ∈ N. In [24] it was proved that the full Omori-Yau maximum principle for the Hessian
holds e.g. if the radial sectional curvature of M (i.e. the sectional curvature of 2-planes containing
∇r), satisfies

Sectrad ≥ −C2(1 + r2)

j̄∏
j=1

(
ln[j](r)

)2
,



HIGHER ORDER DISTANCE-LIKE FUNCTIONS AND SOBOLEV SPACES 39

where ln[j] stands for the j-th iterated logarithm. In [20] we proved that the same is true if

|Ricg| (x) ≤ D2(1 + r(x)2), injg(x) ≥ i0
D(1 + r(x))

> 0 on M.

Using Theorem 1.2 and reasoning as in [20], we get that assuming

|Ricg| (x) ≤ C2r2
j̄∏
j=1

(
ln[j](r)

)2
, injg(x) ≥ i0

r
∏j̄
j=1 ln[j](r)

outside a compact set of M is enough.

Appendix A. Some commutation formulas

Using again the “∗” notation defined in Section 2, we have the validity of the following

Lemma A.1. Let u ∈ C∞(M). Then

∆∇q−2u−∇q−2∆u = Riem ∗ ∇q−2u+∇Ric ∗ ∇q−3u+ . . .∇q−3Ric ∗ ∇u

Proof. (Sketch). We work in a normal frame {Ei} orthonormal at p ∈M , and in frame computations
we will use the convention of lowering all indices, summing over repeated indices. Recall that we
are adopting the following sign conventions for curvatures:

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ];

Riem(X,Y, Z,W ) = g(R(X,Y )Z,W )

Ric(X,Y ) = tr Riem(X, ·, ·, Y ).

Moreover, for the ease of notation we will write in coordinates Rijkl for Riemijkl. Letting u ∈
C∞(M), recall the following commutation rules

(∇i∇j −∇j∇i)u = 0,(65)

(∇k∇j −∇j∇k)∇iu = −∇tuRtijk.(66)

More generally one can compute that, for any l ≥ 2,

(
∇il∇il−1

−∇il−1
∇il
)
∇il−2

. . .∇i1u =−∇il−2
. . .∇i2∇tuRti1il−1il −∇il−2

. . .∇i3∇t∇i1uRti2il−1il

(s)

− . . .−∇t∇il−3
∇i1uRtil−2il−1il .

If one is interested in the commutation rule for the (s−1)-th and the s-th derivative of u of a total of
q derivatives, it suffices to take ∇q−s of formula (s). When studying a term like ∆∇q−2u−∇q−2∆u,
one hence realizes that the higher order derivatives of curvature terms arise from commutators
of the 2-nd and the 3-rd (of the total q) derivatives. There are two such terms in the telescopic
development of ∆∇q−2u−∇q−2∆u, namely

∇q−5
iq ...i6
∇i5∇p [(∇p∇i2∇i1 −∇i2∇p∇i1)u]

=∇q−5
iq ...i6
∇i5∇p [−∇tuRti1i2p]

=−∇q−5
iq ...i6

[∇i5∇p∇tuRti1i2p +∇p∇tu∇i5Rti1i2p +∇i5∇tu∇i5∇pRti1i2p +∇tu∇i5∇pRti1i2p] ,

and

∇q−5
iq ...i6
∇i5∇i2 [(∇p∇i1∇p −∇i1∇p∇p)u] = ∇q−5

iq ...i6
∇i5∇i2 [−∇tuRtpi1p]

Using Bianchi’s identities each of these terms can be written in the form

Riem ∗ ∇q−2u+∇Ric ∗ ∇q−3u+ . . .+∇q−3Ric ∗ ∇u.
�
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Appendix B. Weitzenböck formula for ∆Sym

Given h a totally symmetric (0, k − 1) tensor, {Ei} a local orthonormal frame on M , recall that

(DSh)(X1, X2, . . . , Xk) =ksk(∇h)(X1, X2 . . . , Xk) =
1

(k − 1)!

∑
σ∈Πk

(∇h)(Xσ(1), . . . , Xσ(k)),


(D∗Sh)(X1, . . . , Xk−2) =−

∑
i

(∇Eih)(Ei, X1, . . . , Xk−2).

For the sake of completeness we provide here a proof of the following

Lemma B.1 ([26]). Letting ∆Sym = D∗SDS −DSD
∗
S, we have that

∆Symh = ∆Bh− R̃(k−1)(h) + S̃(k−1)(h)(67)

= ∆Bh−Ric(h),

where

R̃(k−1)(h)(X1, . . . , Xk−1)
.
=
k−1∑
i=1

∑
j

h(X1, . . . , Ej , . . . , Xk−1)Ric(Xi, Ej);

S̃(k−1)(h)(X1, . . . , Xk−1)
.
=
∑
p<i

∑
j,l

h(X1, . . . , El, . . . , Ej , . . . , Xk−1)·

· (Riem(El, Xp, Xi, Ej) + Riem(El, Xi, Xp, Ej)) ,

the definition of Ric has been recalled in (41), and ∆B = −tr12(∇2) = ∇∗∇, with ∇∗ the formal
L2-adjoint of ∇.

Proof. Assume that we perform computation at a point p ∈ M in a normal frame, so that all
covariant derivatives of vector fields vanish at p. We have that

(D∗SDSh)(X1, . . . , Xk−1) = −
∑
i

(∇EiDSh)(Ei, X1, . . . , Xk−1)

=− 1

(k − 1)!

∑
i

∇Ei ((k − 1)!∇Eih(X1, . . . , Xk−1) + (k − 1)!∇X1h(Ei, X2, . . . , Xk−1) + . . .

+(k − 1)!∇Xk−1
h(Ei, X1, . . . , Xk−2)

)
=−

∑
i

(∇Ei∇Eih(X1, . . . , Xk−1) +∇Ei∇X1h(Ei, X2, . . . , Xk−1)

+ . . .+∇Ei∇Xk−1
h(Ei, X1, . . . , Xk−2)

)
.

While,

(DSD
∗
Sh)(X1, . . . , Xk−1) = (k − 1)sk−1(∇D∗Sh)(X1, . . . , Xk−1)

=
1

(k − 2)!

(
(k − 2)!∇X1D

∗
Sh(X2, . . . , Xk−1) + . . .+ (k − 2)!∇Xk−1

D∗Sh(X1, . . . , Xk−2)
)

=−
∑
i

(
∇X1∇Eih(Ei, X2, . . . , Xk−1) + . . .+∇Xk−1

∇Eih(Ei, X1, . . . , Xk−2)
)
.
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Hence

∆Symh = (D∗SDS −DSD
∗
S)h

=∆Bh+
∑
i

(∇X1∇Eih(Ei, X2, . . . , Xk−1)−∇Ei∇X1h(Ei, X2, . . . , Xk−1)

+∇X2∇Eih(Ei, X1, X3, . . . , Xk−1)−∇Ei∇X2h(Ei, X1, X3, . . . , Xk−1) + . . .

+∇Xk−1
∇Eih(Ei, X1, . . . , Xk−2)−∇Ei∇Xk−1

h(Ei, X1, . . . , Xk−2)
)

Since h is symmetric, a standard computation gives that

(R(X,Y )h) (X1, . . . , Xk−1) =−
∑
l

(h(El, X2, . . . , Xk−1)Riem(X,Y,X1, El)

+ . . .+ h(X1, . . . , El)Riem(X,Y,Xk−1, El)) .

Hence,∑
i

(∇X1∇Eih(Ei, X2, . . . , Xk−1)−∇Ei∇X1h(Ei, X2, . . . , Xk−1))

=
∑
i

(R(X1, Ei)h)(Ei, X2, . . . , Xk−1)

=−
∑
i,l

(h(El, X2, . . . , Xk−1)Riem(X1, Ei, Ei, El) + h(Ei, El, X3, . . . , Xk−1)Riem(X1, Ei, X2, El)

+ . . .+ h(Ei, X2, . . . , Xk−2, El)Riem(X1, Ei, Xk−1, El)) ,

and analogously for the other terms. We thus get the validity of the first equality in (67). The
second equality is a direct computation, using the expression (41) for Ric. �
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