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Abstract

The aim of this thesis is to explore innovative methods in Bayesian nonparametrics (BNP)
for modeling observations in the context of survival analysis. To achieve this, the goal is to
leverage the flexibility of BNP methods to address some issues present in the literature on
this subject, while also considering the practical implementability of the proposed models
to ensure they are applicable in real-case scenarios. This manuscript is a collection of two
projects, each of which explores different BNP tools to address two distinct problems in
survival analysis.
The manuscript is organized around two distinct research questions. In particular, in Chap-
ter 2, we focus on the study of survival datasets in contexts where it is reasonable to as-
sume a strictly positive probability of recovery, called cure rate. Such datasets are usually
modeled using the so-called cure rate models, for which various examples exist in both
the frequentist and Bayesian literature. We align ourselves with the BNP framework by
proposing the use of a class of processes typically employed in feature sampling problems,
called stable-beta scaled processes, which prove to be particularly suitable for survival anal-
ysis. We will demonstrate how they are interesting both in terms of theoretical properties
and applicability in real-case scenarios. Chapter 3, on the other hand, focuses on datasets
consisting of different groups of survival times, raising the question of whether it is more
advantageous to model each group of observations independently each others or if it is more
reasonable to use a single model that estimates the survival of each group simultaneously.
We adopt the latter approach, introducing a novel BNP hierarchical model that accounts
for the survival of each group of observations while considering potential correlations be-
tween them. This approach allows the estimation of each group to improve the estimation
of all others, following the principle of borrowing of information, which is well-known in the
BNP literature.
In summary, this thesis aims to provide two examples of how BNP methods allow address-
ing research questions using similar sets of theoretical tools, highlighting their potential in
terms of depth and flexibility.
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Listen, for the party scene I’ll give you
a nice jam of light, I’ll lay it all out,
okay? I’m not going to do anything
fancy. That way, wherever you go, it’ll
look good.

D. Patanè
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Chapter 1

Introduction

Bayesian Nonparametrics (BNP) and Survival Analysis have developed independently within
the statistical field, but in recent decades the application of BNP methods for inference on
censored survival times has been studied extensively in the literature. The aim of this
chapter is to summarize some basic concepts of BNP and survival analysis, with particular
focus on tools that will be used in the next chapters. Specifically, Section 1.1 is dedicated
to introducing the main assumptions of BNP and some classical results. In Section 1.2, the
main concepts of survival analysis are summarized, with particular attention to classical
models for inference. Since the next chapters are dedicated to the introduction of BNP
models for survival analysis, a summary of the main tools used in the literature is provided
in Section 1.3. In Section 1.1.1 the concepts of exchangeability and partial exchangeability,
which are the basis of Bayesian models, will be summarized. Then, the main methods for
building nonparametric priors and some classical examples will be reviewed in Section 1.1.2.
Finally, in Section 1.1.3 we will briefly introduce hierarchical models in the case of partially
exchangeable data.

1.1 Bayesian Nonparametrics

Even in the frequentist framework, the nonparametric (or semiparametric) approach is
generally preferred since it allows to avoid arbitrary assumptions about the parametric
model, which can even be unverifiable. Therefore, while the preference for Bayesian methods
over the frequentist ones can be traced back to the coherency of the Bayesian framework,
the choice of developing Bayesian Nonparametric (or semiparametric) models is motivated
by the same reasoning. The aim of this section is to introduce the Bayesian Nonparametric
framework, its modeling assumptions and our main tools. Note how this topic is addressed
in a complete and exhaustive manner in Ghosal and van der Vaart (2017) and Regazzini
(1996), to which we refer for further information.
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Chapter 1. Introduction

1.1.1 Exchangeability and partial exchangeability

The standard Bayesian approach relies on the exchangeability assumption of the obser-
vations. Let us therefore consider a probability space (Ω,A,P), a measurable space X0

equipped with its Borel σ-algebra X0 and an infinite sequence of observations (Xi)i≥1 de-
fined on the common space (Ω,A) and taking values in (X0,X0). The usual assumption
on X0 is that it is a Polish space, i.e., a separable and completely metrizable topological
space. Typically, the assumption on the data is that they are exchangeable: in particular,
the infinite sequence (Xi)i≥1 is exchangeable if its law is invariant under finite permutations
of its elements. Let us summarize the concept in the following definition.

Definition 1.1.1 (Exchangeability). A sequence of observations (Xi)i≥1 is exchangeable if
and only if

(X1, . . . , Xn)
d
= (Xπ(1), . . . , Xπ(n)),

where π is a permutation of the set {1, . . . , n} for any n ≥ 1.

Exchangeability is basically an assumption of homogeneity within the observations, in
a mathematical sense, which is quite reasonable in a variety of contexts with different
datasets, since it can be seen as an irrelevance of the order in which the observations are
recorded. The well known de Finetti’s representation theorem, introduced in Finetti (1937),
states the equivalence between exchangeability and conditional independence and identi-
cally distribution of infinite sequences. The main upside of the nonparametric approach is
that in this framework the distribution of the observations is completely unknown. Hence,
the "parameter space" is the space P of all the probability measures on (X0,X0), while
the law of the data is the random probability measure p̃. In order to precisely define this
notion, note first that we are interested in the probability distribution of the whole sequence
X := (Xi)i≥1, so if we set X := X∞

0 , we can choose the product σ-algebra X on X, which
is the σ-algebra generated by all the sets

A = A1 × . . .×An × X0 × . . . ,

where Ai is a measurable element of X for each i = 1, . . . , n and n ≥ 1. Under this notation,
the sequence X can be seen as the random element

X : (Ω,A) → (X,X ),

where X is measurable with respect to the corresponding σ-algebra. In order to define a
σ-algebra over the space P , i.e., over the space of all the probability measures on (X0,X0),

2



1.1. Bayesian Nonparametrics

for any A ∈ X0 let us define the map

νA :P → [0, 1]

p 7→ p(A),

that is a function of p for each A. Let us call P the σ-algebra on P generated by the family
of functions (νA)A∈X0 . We now introduce the following definition.

Definition 1.1.2 (Random probability measure). A measurable map

p̃ : (Ω,A) → (P ,P)

is called random probability measure on (X0,X0).

Note how a random probability measure is a function of two variables. In particular, for
any element ω ∈ Ω, p̃(ω, ·) ∈ P is a probability measure on (X0,X0). On the other hand,
for any event A ∈ X0, p̃(·, A) is a random variable: it follows that the random probability
measure p̃ can be seen as a stochastic process indexed by the events of the σ-algebra X0

instead of being indexed by time. This is why in BNP literature, specific random measures
are often referred to as processes. Note also that considering the probability measure P on
the space (Ω,A), a random measure p̃ has its own probability distribution γ = P ◦ p̃−1 on
(P ,P). Let us write p̃ ∼ γ.
In the Bayesian parametric framework the conditional independence of the data induces
exchangeability. In the nonparametric framework, if we consider a random probability
measure p̃ with distribution γ and the sequence of observations Xis, assuming that the
observations are i.i.d. with distribution p̃ conditionally on p̃ means that

P(X1 ∈ A1, . . . , Xn ∈ An) =

∫
P

n∏
i=1

p(Ai)γ(dp)

as n ≥ 1. In short, let us write

Xi | p̃
i.i.d.∼ p̃, i ≥ 1.

While in the parametric context we talk about independence of the observations condition-
ally on a parameter, here we refer to the previous expression saying that the distribution
of the observations X is a mixture of laws of a sequence of i.i.d. random variables, and we
refer to γ as the mixing measure. Similarly to what happens in the parametric case, this
implies the exchangeability of the data. In fact, let us consider a probability measure γ

3



Chapter 1. Introduction

on (P ,P), i.e., γ is the distribution of a random probability measure p̃ on (X0,X0). Let
us denote by p∞ the probability distribution of the sequence of observations X; then X is
exchangeable and it has law

P(X ∈ A) =

∫
P
p∞(A)γ(dp),

where and A ∈ X . Indeed, X is a σ-algebra generated by sets of the form

A = A1 × . . .×An × X0 × . . . ,

and the previous equality for such sets holds true since

P(X ∈ A) = P(X1 ∈ A1, . . . , Xn ∈ An) =

∫
P

n∏
i=1

p(Ai)γ(dp) =

= P(Xπ(1) ∈ A1, . . . , Xπ(n) ∈ An),

for any permutation π of {1, . . . , n}. Moreover, the de Finetti representation theorem
guarantees the reverse implication, i.e., a sequence of observations is exchangeable if and
only if its distribution is a mixture of laws of a sequence of i.i.d. random variables. So the
exchangeability assumption guarantees the existence of the mixing measure γ such that

Xi | p̃
i.i.d.∼ p̃, i ≥ 1

p̃ ∼ γ,
(1.1)

i.e., the observations are i.i.d. with distribution p̃ conditionally on p̃, and p̃ is distributed
according to γ. What discussed above is summarized by the following theorem.

Theorem 1.1.1 (de Finetti). Let X0 be a Polish space and X0 its Borel σ-algebra. Then,
the following conditions are equivalent.

(i.) (Xi)i≥1 is a sequence of exchangeable observations.

(ii.) There exist a random probability measure p̃ on (X0,X0) such that (Xi)i≥1 are i.i.d.
conditionally on p̃.

(iii.) There exist a probability measure γ on (P ,P) such that

P(X1 ∈ A1, . . . , Xn ∈ An) =

∫
P

n∏
i=1

p(Ai)γ(dp),

4



1.1. Bayesian Nonparametrics

for any A1, . . . , An ∈ X0 and n ≥ 1.

Note that thanks to Theorem 1.1.1, the exchangeability of the observations is a sufficient
assumption in order to assure the existence of the measure γ in model (1.1), which therefore
can be considered as a prior distribution.
On the other hand, in numerous applications the exchangeability assumption can be too
restrictive, in particular when we deal with data coming from multiple studies that shows
some relations with each other. For example, this situation can happen when the data come
from the same experiment but performed under different conditions. The most appropriate
assumption in these case is the partial exchangeability, first introduced in Finetti (1938).
Data are partially exchangeable when they are organized into a finite number of groups
and they are exchangeable, in the sense of Definition 1.1.1, only within each group. In
particular, let us consider d groups of X0-valued observations, where we denote by Xi,j the
ith observation of group j, for j = 1, . . . , d, where Nj is the number of observations in group
j; each observation Xi,j is a X0-valued random element defined on the common probability
space (Ω,A,P).

Definition 1.1.3 (Partial exchangeability). The sequences of observations ((Xi,j)i≥1)
d
j=1

are partially exchangeable if and only if

(X1,j , . . . , Xn,j)
d
= (Xπj(1),j , . . . , Xπj(nj),j),

for any nj ≥ 1 and πj is a permutation of the set {1, . . . , nj}, for any j = 1, . . . , d.

Note that the de Finetti representation theorem holds true even in this context, as
summarized in the following theorem.

Theorem 1.1.2 (de Finetti). The sequences (Xi,j)i≥1;j=1,...,d are partially exchangeable if
and only if there exists a probability measure γd over P d, which is the d-dimensional product
space with respect to P , such that

P

 d⋂
j=1

Nj⋂
i=1

{Xi,j ∈ Ai,j}

 =

∫
Pd
X

d∏
j=1

Nj∏
i=1

pi(Ai,j)γd(dp1, ..,dpd),

for any (N1, . . . , Nd) ∈ Nd and for any collection of Borel sets Ai,j ∈ X0, as j = 1, . . . , d

and i = 1, . . . , Nj.

Note again how the d-dimensional mixing measure of the previous expression works as
a prior distribution. Let us refer to the measure γ and γd of Theorem 1.1.1 and Theorem
1.1.2 as de Finetti measures.
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Chapter 1. Introduction

1.1.2 Nonparametric priors

The choice of an appropriate de Finetti measure for the modelling of exchangeable or
partially exchangeable observations is a problem that can be addressed in different ways
and it depends on the type of data and on the approach. A common way to build a random
probability measure, relies on the use of finite-dimensional distributions. Let

p̃ : (Ω,A) → (P ,P)

be a random probability measure on (X0,X0) with distribution γ and, for any ordered
sample (A1, . . . , Ak) of distinct elements from X0, let γA1,...,Ak

be the probability distribution
of (p̃(A1), . . . , p̃(Ak)). We refer to γA1,...,Ak

as a finite-dimensional distribution of p̃. In
fact, γA1,...,Ak

is a probability measure on ([0, 1]k,B([0, 1]k)), and if we define the function
ΦA1,...,Ak

as

ΦA1,...,Ak
:P → [0, 1]k

p 7→ (p(A1), . . . , p(Ak)),

the finite dimensional distribution γA1,...,Ak
can be written in therms of γ as

γA1,...,Ak
= γ ◦ Φ−1

A1,...,Ak
.

Finally, let us denote by Γ the set of all finite dimensional distributions of p̃. The fol-
lowing result, discussed in Daley and Vere-Jones (2008), allows to characterize a random
probability measure by means of its finite dimensional distributions.

Theorem 1.1.3. Let X0 be a Polish space equipped with the Borel σ-algebra X0. Let Γ be a
family of probability distributions as previously described. Then, the measure p̃ is a random
probability measure if and only if the following four conditions are satisfied.

(C1) For any γA1,...,Ak
∈ Γ and for any permutation π of {1, . . . , k},

γA1,...,Ak
= γAπ(1),...,Aπ(k)

◦ f−1
π ,

where fπ(x1, . . . , xk) =
(
xπ(1), . . . , xπ(k)

)
for any x1, . . . , xk.

(C2) γX0 = δ{1}.

(C3) For any γA1,...,Ak
∈ Γ, let (B1, . . . , Bm) be any measurable partition of X0 that is equal

6



1.1. Bayesian Nonparametrics

or finer with respect to the partition generated by (A1, . . . , Ak). Then:

γA1,...,Ak
= γB1,...,Bm ◦ s−1,

where the function s is defined as

s : [0, 1]m → [0, 1]k

(x1, . . . , xm) 7→

∑
(1)

xi, . . . ,
∑
(k)

xi

 ,

where the sums are performed over the set (j) := {i : Aj ⊃ Bi}, i.e., over the indexes
of the sets of the finer partition included in Aj.

(C4) For any sequence (An)n≥1, An ∈ X0 such that An ↘ ∅ as n → ∞, then γAn weakly
converges to δ{0}.

Another common way to define random probability measures is the stick-breaking con-
struction, which allows to define almost surely discrete random probability measures on
(X0,X0) of the type

p̃ =
∑
j≥1

p̃jδθ̃j ,

where the locations θ̃j are i.i.d. random atoms distributed according to a probability P0

on (X0,X0), while the p̃js forms a set of normalized positive weight, i.e.,
∑

j≥1 p̃j = 1

almost surely. These weights are defined according to the stick-breaking strategy as follows.
Let us consider a sequence of random variables (Yn)n≥1 in [0, 1]; starting from a stick of
length 1, it is broken in two peaces of length Y1 and 1− Y1, putting p̃1 = Y1. The residual
stick of length 1 − Y1 is then splitted again in two sticks of length Y2 and 1 − Y2, putting
p̃2 = (1 − Y1) · Y2. Note that the remaining stick has length (1 − Y1) · (1 − Y2). Iterating
the procedure, we obtain that the weights are equal to

p̃1 = Y1, p̃j = Yj

j−1∏
i=1

(1− Yi) for any j > 1.

Note that the weights obtained via the aforementioned stick-breaking construction are
normalized thanks to the following result, discussed in Ghosal and van der Vaart (2017).

Theorem 1.1.4. Let us consider an infinite sequence of i.i.d. random variables (Yn)n≥1

in [0, 1]. Then
∑

j≥1 p̃j = 1 almost surely if and only if P(Y1 > 0) > 0.

7



Chapter 1. Introduction

Note how this condition assure that the random measure p̃ obtained via the stick-
breaking construction is a probability measure.
While the construction of nonparametric priors can be performed in different ways, the main
issue is the possibility of investigating the posterior distribution. In general, the posterior
distribution of a nonparametric prior is unknown, and since it is a infinite-dimensional
object, even its approximation is a tricky task. In this sense, a historically important step
forward in the theory of BNP has been made by introducing a first example of a tractable
prior, both in the sense of posterior distribution and in simplicity of construction. This is
the case of the Ferguson-Dirichlet process, introduced in Ferguson (1973). This process can
be defined in different ways. Here we report the constructions obtained according to the
aforementioned methods, i.e., the finite-dimensional distributions and the stick-breaking
methods. Let us therefore consider a finite measure α on a Polish space with its Borel
σ-algebra, (X0,X0), with α(X0) = a < ∞. Let us consider a set of elements A1 . . . , Ak in
X0 and let us define the finite-dimensional distribution γA1,...,Ak

as

γA1,...,Ak
= γB1,...,Bm ◦ s−1

k ,

where (B1, . . . , Bm) is the partition generated by (A1, . . . , Ak) in the sense that

Ai =
⋃
(i)

Bj , where (i) := {j : Bj ⊆ Ai} ,

sk is defined as

sk(x1, . . . , xk) =

∑
(1)

xi, . . . ,
∑
(k)

xi


and we set

γB1,...,Bm = Dm(α(B1), . . . , α(Bm)),

i.e., γB1,...,Bm is the Dirichlet distribution with parameters (α(Bi))
k
i=1. Finally, if m = 1,

we set γX0 = δ{1}. The existence of the corresponding random probability measure p̃ is
guaranteed by Theorem 1.1.3, and it is usually called Dirichlet process. Let us write

p̃ ∼ Dα.

An equivalent representation of the Dirichlet process exploits the stick-breaking method
described above, and was first described by Sethuraman (1994). The construction is sum-
marized by the following theorem, which also guarantees the equivalence between the two

8
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definitions of the Dirichlet process.

Theorem 1.1.5 (Sethuraman). Let θ̃1, θ̃1, . . .
i.i.d.∼ α

a , and let Y1, Y2, . . .
i.i.d.∼ Beta(1, a),

where the two sequences are independent. The random probability measure

p̃ :=
∑
j≥1

Yj

j−1∏
i=1

(1− Yi)δθ̃j

has distribution Dα.

Note that in the previous construction the locations are sampled from the measure α,
which characterizes the specific Dirichlet process. Note that clear advantage of a method
such as the stick-breaking is that it allows to construct random probability measures in
an algorithmic way, thus also allowing an estimation of the approximation error, which is
inevitable in the estimation of infinite-dimensional objects.
An appealing feature of the Dirichlet process is its conjugacy. In fact, the posterior dis-
tribution of a Dirichlet process is again a Dirichlet process with updated parameter. This
result is summarized in the following theorem.

Theorem 1.1.6 (Ferguson). Let (Xn)n≥1 be an exchangeable sequence of observations on
the probability space (Ω,A,P), with Dα as the de Finetti measure of this sequence, namely

Xi | p̃
i.i.d.∼ p̃, i ≥ 1

p̃ ∼ Dα,

where α is a finite measure on (X0,X0). Then the posterior distribution of p̃ is again a
Dirichlet process with parameter αn = α+

∑n
i=1 δXi , i.e.,

p̃ | (Xi)
n
i=1 ∼ Dαn .

The BNP literature provides several random probability measures which generalizes the
Dirichlet process. The most famous one is probably the Pitman-Yor process, introduced
in Pitman and Yor (1997). There are several equivalent definition for this process; here we
report the representation via a stick-breaking construction.

Definition 1.1.4 (Pitman-Yor process). Let ᾱ be a non-atomic probability measure on
(X0,X0) and let σ ∈ (0, 1) and a > −σ be two real parameters. The two-parameter
Pitman-Yor process is a random probability measure p̃ on (X0,X0) having the stick-breaking

9
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representation
p̃ =

∑
j≥1

p̃jδθ̃j ,

where the atoms θ̃js are sampled from ᾱ and the weights p̃js are constructed as follows:

p̃1 = Y1, p̃j = Yj

j−1∏
i=1

(1− Yi) for any j > 1,

where Yj
i.i.d.∼ Beta(1− σ, a+ jσ) as j ≥ 1. Let us write

p̃ ∼ PY(σ, a; ᾱ).

Note that when σ = 0, the Pitman-Yor process reduces to a the Dirichlet process with
total mass a. Moreover, it is also possibile to further generalize both the Dirichlet and the
Pitman-Yor processes seeing them as part of the larger class of the so called Gibbs-type
priors, which represent the most natural generalization of the Dirichlet process that is still
tractable. For a review of this class of priors and its properties see De Blasi et al. (2015).
The Pitman-Yor process is not conjugate, but it is quasi-conjugate, as summarized by the
following theorem.

Theorem 1.1.7 (Pitman & Yor). Let (Xn)n≥1 be an exchangeable sequence of observations
on the probability space (Ω,A,P), with PY(σ, a; ᾱ) as the de Finetti measure of this sequence,
namely

Xi | p̃
i.i.d.∼ p̃, i ≥ 1

p̃ ∼ PY(σ, a; ᾱ),

where ᾱ is a probability measure on (X0,X0). Let Kn be the number of distinct values out of
X1, . . . , Xn, denoted as X∗

1 , . . . , X
∗
Kn

, and let n1, . . . , nKn be the corresponding frequencies.
Then the posterior distribution of p̃ can be written as

p̃ | (Xi)
n
i=1 =

Kn∑
j=1

W̃jδX∗
j
+ W̃Kn+1 q̃,

where the vector of random variables (W̃1, . . . , W̃Kn+1) is jointly distributed as a Kn + 1

dimensional Dirichlet distribution with parameters (n1 − σ, . . . , nKn − σ, a+Knσ), and

q̃ ∼ PY(σ, a+Knσ; ᾱ).

10
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1.1.3 Hierarchical processes

As mentioned above, the motivation to relax the exchangeability assumption on the obser-
vations emerges naturally from applications. A classic example regards document analysis:
the overall population of observed values are the words in a collection of documents, but
it is reasonable to assume that each document constitutes a sub-population with its own
distribution. In these cases, the partial exchangeability as defined in Definition 1.1.3 is the
most suitable assumption. In fact, first of all the partial exchangeability implies a intrinsic
heterogeneity of the observations, and it is consistent with a dependence assumption be-
tween groups. On the other hand, Theorem 1.1.2 assures that it is sufficient to guarantee
the existence of a de Finetti measures, which encapsulate the prior opinion on the data
and on the dependence between their groups. In general, an extensive literature has been
developed to underline the inferential problems arising under a ill-posed exchangeability
assumption in Bayesian nonparametrics. See for example the seminal works MacEachern
(1999) and MacEachern (2000), or the reviews Dunson (2010) and Teh and Jordan (2010).
Therefore, in a partially exchangeable framework the issue becomes the construction of
an adequate de Finetti measure, which must adequately model the observations and the
dependence between the groups, and at the same time be tractable, in particular to what
extent the inference from its posterior distribution. A class of models widely used in the
literature concerning Bayesian nonparametrics for modeling partially exchangeable data
exploits hierarchical processes as nonparametric priors. For a given d ≥ 1, let us consider
d random probability measure (p̃i)

d
i=1 on (X0,X0) and a further random probability mea-

sure p̃0 on (X0,X0), independent from the first set of measures. The general structure of a
d-dimensional hierarchical processes is

p̃i | p̃0
i.i.d.∼ L̃0, i = 1, . . . , d

p̃0 ∼ L0,
(1.2)

where L̃0 is the probability distribution of each p̃i conditionally to p̃0, i.e.,

E [p̃i | p̃0] =
∫
P
pL̃0(dp),

while L0 is such that

E [p̃0] =

∫
P
pL0(dp) = P0,

for a certain fixed and non-atomic probability measure P0. Note that this type of process is
designed to be used as nonparametric prior for a set of d-groups of partially exchangeable
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observations. According to this approach, each group of observations is modeled according
to a different random probability measure p̃i, while the dependence between the groups
is modeled by the further random probability measure p̃0. In fact, in general the p̃is are
dependent and their marginal distribution is assumed unknown; they are i.i.d. with known
distribution L̃0 only conditionally on p̃0. Note also that a majority of literature concern-
ing these topics considers vector of discrete random probability measure (p̃1, . . . , p̃d), thus
assuming the possibility of shared values within each sample; moreover, the assumption of
shared atoms across the d samples entails positive probabilities of ties across the samples
themselves. Assuming partially exchangeable data, the idea behind this Bayesian approach
is that it is somehow preferable to model the d groups of data together rather than model
each group under independent priors. In fact, the goal is to exploit the information used
to model one group of observations to improve the modelling of all the other groups. This
concept is called borrowing of information, or borrowing of strength, and it is a crucial point
when it comes to justify the adoption of these kind of models. See for example Dunson
(2009).
At a historical level, Teh et al. (2006) were the first to introduce and study an example of
a tractable hierarchical process, in particular as regards its posterior distribution. This is
the case of the hierarchical Dirichlet process (HDP), introduced in Teh et al. (2006) as a
nonparametric extension of the well known Latent Dirichlet Allocation (LDA) model. First
introduced in Blei et al. (2003) in the field of information retrieval, LDA overcomes the clas-
sical exchangeability assumption between the observations (words) of the set of documents
which constitute the dataset, also known in this context as "bag of words" assumption,
assuming otherwise that each word of a document arises from a number of latent clusters,
or "topics", and modeling each cluster as a multinomial probability distribution on words
from some basic vocabulary. HDP provides a nonparametric generalization of LDA, in or-
der to allow the sharing of clusters between documents in the corpora, as well as to allow
for multiple corpora, thus investigating to what extent the latent topics that are shared
among documents are also shared across groups of documents. The approach proposed
reposes on the Dirichlet process. In particular, relying on the previous notation, a HDP is
a distribution over P d characterized by a set of random probability measure (p̃i)

d
i=1 as in

(1.2), such that

p̃i | p̃0
i.i.d.∼ Dp̃0 , i = 1, . . . , d

p̃0 ∼ Dα,
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where α is a baseline probability measure. The HDP can also be constructed via a stick-
breaking scheme, as

p̃i =
∑
j≥1

πi,jδθ̃j , i = 1, . . . , d

p̃0 =
∑
j≥1

βjδθ̃j ,

where the locations θ̃js are i.i.d. sampled from α and the weights β := (βj)j≥1s are such
that

β1 = Y1, βj = Yj

j−1∏
i=1

(1− Yi) for any j > 1,

where Yj
i.i.d.∼ Beta(1, a) as j ≥ 1, and

(πi,j)j≥1 | β ∼ Dβ.

Here, both πi := (πi,j)j≥1 and β are interpreted as probability measures on the positive
integers. The original work which introduced HDP also provides different sampling strat-
egy in order to perform inferential tasks; please refer again to Teh et al. (2006). Note that
the subsequent literature has introduced other examples of hierarchical processes, as well
as investigating general representations and properties for this class of processes; see for
example Camerlenghi et al. (2019).
Hierarchical processes are just one example of a nonparametric prior for partially exchange-
able data, since in the literature numerous nonparametric priors to model dependent groups
of observations can be found. Examples of such models are given, for instance, by the nested
processes, such as the nested Dirichlet process introduced in Rodŕıguez et al. (2008), and
the compound random measures introduced in Griffin and Leisen (2017). Another example
is given by the Dependent Dirichlet Processes and their extensions: see Quintana et al.
(2022) for a complete review.

1.2 Survival Analysis

Survival analysis is a branch of statistics which aims to infer useful information from
datasets reporting survival times, i.e., times elapsed until the occurrence of an event, be it
the event being analyzed or a censorship that prevents verifying whether the event occurred
or not. Let us first set the notation.

13
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Let T1, . . . , Tn be positive random variables i.i.d. distributed according to the distribu-
tion F , and let C1, . . . , Cn be another set of random variables distributed according to the
distribution G, i.e.,

T1, . . . , Tn
i.i.d.∼ F, and

C1, . . . , Cn
i.i.d.∼ G.

The first set of variables measures the time until the event, while the second set of variables
measures the time until the censorship. Note the there can be different types of censorship
mechanism; here we will always focus on the right censorship. This means that the observed
values are

{(Xi,∆i)}ni=1 , where

Xi = min {Ti, Ci} and ∆i = 1(0,Ci](Ti) for each i = 1, . . . , n,

i.e., we record the time elapsed until the occurrence of the first occurrence for each subject,
be it the event Ti or the censorship Ci, and a variable indicating whether the observed
occurrence is the event or the censorship. Let us call the observed variables Xis survival
times. If the ith observation is such that ∆i = 1, it is called exact. Let us consider for
example a pharmaceutical trial where a drug is administered to a group of patients, and
the time elapsed until the desired effect occurs is measured. The event may not be observed
when a given censoring occurs, which may be given by the end of the observation period, the
death of the patient or other mechanisms. Note that the censorship mechanism is common
between the patients, but each censorship is independent from all the others.
The statistical methods developed within the context of survival analysis focus on the inves-
tigation of some objects of interest. In particular, the first object represents the probability
for a patient of being still alive after a given time, i.e., of not having yet experienced the
censorship, according to the following definition.

Definition 1.2.1 (Survival function). Let F be the distribution of the times Tis. Then,
the survival function is defined as

S(t) = 1− F (t),

for each time t ∈ R+.

Let T ∼ F . Note that, since F (t) = P(T ≤ t) for each t > 0, it follows that S(t) = P(T >

t), i.e., the function S indicates the probability for a generic subject of the considered group

14



1.2. Survival Analysis

of being still alive after time t. Another quantity of interest is the probability of instant
death. Assuming that the distribution F has a density, let us introduce the following object.

Definition 1.2.2 (Hazard rate function). Let F be the distribution of the times Tis and
S(·) = 1 − F (·) be the corresponding survival function. Then, the hazard rate function is
defined as

h(t) = −S′(t)

S(t)
,

for each time t ∈ R+.

Note that, assuming the existence of a density for the distribution F , the hazard rate
is the instant probability of death at time t given the survival up to time t. In fact, let us
consider a variable T ∼ F , and let us define the probability of death at t give the survival
up to t as

h(t)dt = P(T ∈ (t, t+ dt) | T > t),

and note therefore that

h(t)dt =
P(T ∈ (t, t+ dt))

P(T > t)
=

F ′(t)dt

1− F (t)
= −S′(t)

S(t)
dt,

since S′(t) = −F ′(t) for any t. The expression reported in Definition 1.2.2 follows. Inte-
grating the instant rate of death h(t) over time, we obtain the cumulative probability of
death up to a certain moment. On the other hand, this is only possible when h exists, i.e.,
when F has a density. Let us therefore introduce the following definition.

Definition 1.2.3 (Cumulative hazard function). Let F be the distribution of the times Tis
and S(·) = 1 − F (·) be the corresponding survival function. Then, the cumulative hazard
function is defined as

H(t) = −
∫ t

0

dS(u)

S(u−)
,

for each time t ∈ R+, where

S(u−) = 1− F (u−) = 1− lim
z↘0

F (u− z).

Note that the object defined above always exists, as well as the survival function. They
are related through the integral relation reported in Definition 1.2.3, or viceversa, through
a product integral relation. Let us recall that given a non-decreasing and right-continuous
function

g : R+ → R+,
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a positive value t ∈ R+ and a partition of [0, t]

0 = t0 < t1 < . . . < tm−1 < tm = t

such that
lim

m→∞

(
max

i=1,...,m
| ti − ti−1 |

)
= 0,

the product integral is the function

t 7→
∏

s∈(0,t]

(1 + dg(s)) := lim
m→∞

m∏
i=1

(1 + g(ti)− g(ti−1)).

Moreover, let g be a function defined on R+ as the sum of a discrete and a continuous
component, as follows:

g(t) :=
∑
j≥0

wj1(0,tj ](t) + gc(t), for any t > 0,

where each tj is the jth element of the aforementioned partition, wj < 1 for each j and gc

the continuous part. Then the product integral can be equivalently defined as

t 7→
∏

s∈(0,t]

(1 + dg(s)) := e−
∫ t
0 dgc(t) ·

∏
j:tj≤t

(1 + wj).

The following result explains the link between the survival function and the cumulative
hazard function, thus justifying Definition 1.2.3.

Proposition 1.2.1. Let H : R+ → R+ be a non-decreasing and right-continuous function
such that

H(t) =
∑
j≥0

wj1(0,tj ](t) +Hc(t), for any t > 0,

where wj < 1 and H(t) < ∞ for each t ∈ R+. Then the function

t 7→ S(t) =
∏

s∈(0,t]

(1 + dH(s))

is the survival function associated to H and H is the correspondent cumulative hazard
function. Viceversa, if S is a survival function such that supp(S) = (0,∞), then the
function

t 7→ H(t) = −
∫ t

0

dS(u)

S(u−)
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is the cumulative hazard function associated to S.

Therefore, while the hazard rate could not exist, the survival function and the cumu-
lative hazard functions always exist and they are related via the previous proposition. On
the other hand, if the distribution F has a density, then the hazard rate h is defined and
the expression of the cumulative hazard reported in Definition 1.2.3 boils down to

H(t) = −
∫ t

0

dS(u)

S(u−)
=

∫ t

0
−S′(u)

S(u)
du =

∫ t

0
h(u)du,

which intuitively expresses how the cumulative hazard is the integral of the hazard rate over
time. It is also possible to obtain the expression from the ordinary differential equation
defining the hazard rate as in Definition 1.2.2, i.e.,

h(t) = −S′(t)

S(t)
,

which leads to

S(t) = exp

(
−
∫ t

0
h(s)ds

)
= e−H(t).

So, if the distribution F has a density, the relationship between the functions S and H

expressed in Proposition 1.2.1 boils down to

S(t) = e−H(t) and H(t) = − logS(t)

for each t > 0.
The problem of estimating survival and cumulative hazard functions is faced in the literature
in different ways. The classical approach relies on frequentist estimators which allow to
estimate the survival function and the cumulative hazard function without any parametric
assumptions and managing the censored data. In particular, the Kaplan-Meier estimator
was introduced in Kaplan and Meier (1958) for the estimation of the survival function,
while the Nelson-Aalen estimator was independently introduced in Nelson (1969) and in
Aalen (1978) for the estimation of the cumulative hazard function. In both the estimators
the observations are summarized through two counting processes, i.e.,

N(t) =

n∑
i=1

1(0,t](Xi)∆i =

n∑
i=1

1(0,t](Ti)1(0,Ci](Ti) for each t > 0,
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which counts the number of observed failures at time t, and

Y (t) =
n∑

i=1

1[t,∞)(Xi) =
n∑

i=1

1[t,∞)(Ti)1[t,∞)(Ci) for each t > 0,

which counts the number of subjects still alive at time t. The process Y is also called at-risk
process, since it counts the number of subject in the dataset which are still susceptible to
failure at each time t. The Nelson-Aalen estimator for the cumulative hazard function H

is defined as

Ĥ(t) =

∫ t

0

dN(s)

Y (s)
1(0,∞)(Y (s)),

while the Kaplan-Meier estimator for the survival function S is defined as the survival
function related to the Nelson-Aalen estimator (according to Proposition 1.2.1), i.e.,

Ŝ(t) =
∏

s∈(0,t]

(
1− dĤ(t)

)
=
∏

s∈(0,t]

(
1− dN(s)

Y (s)
1(0,∞)(Y (s))

)
.

Note that the aforementioned estimators are nonparametric, since they do not rely on any
parametric assumption on the structure of the data. The frequentist literature provides
numerous alternatives to this models. For example, the Fleming-Harrington estimator was
introduced in Fleming and Harrington (1984) as a modified version of the Kaplan-Meier
estimator including weights for the observations, thus addressing dataset with a high num-
ber of censored observations. Moreover, the well known Cox model, also known as the
proportional hazards model, was introduced in Cox (1972) as a semi-parametric regression
model for the estimation of the hazard rate in presence of a set of covariates. Several works
were then dedicated to the study and extension of the Cox model: see for example Breslow
(1974), which introduced a new estimator for the cumulative hazard function, and Efron
(1977), which extended the Breslow estimator to the case of tied events. A common al-
ternative to the proportional hazard model is the accelerated failure time (AFT) model, a
parametric model which assumes a linear relationship between survival times and covari-
ates; please refer to Kalbfleisch and Prentice (2002) for details.
Regarding the Bayesian framework, literature provides different parametric approaches
when it comes to the inference on survival times. In these cases, the analysis relies on
a parametric assumption on the conditional distribution of the data and on the choice of
a prior for the model parameters. Moreover, various frequentist models are suitable for a
Bayesian parametric approach; for example, both the Cox model and the AFT models are
often used in the Bayesian framework, inferring from then posterior distribution of their
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parameters. About this topic, please refer to Carlin and Louis (2000) and Ibrahim et al.
(2001). The development of Bayesian nonparametric methods in survival analysis requires
more theoretical tools, and a brief introduction on this topic will be the object of the next
section.

1.3 BNP models in Survival Analysis

The application of BNP methods to survival analysis is a widely discussed topic in the
literature. The aim of this section is to briefly introduce the statistical tools and the
general framework, while the original contributions are discussed in the next chapters. For
a complete discussion of the subject, see for example Daley and Vere-Jones (2008), Lijoi
and Prünster (2010) and Ghosal and van der Vaart (2017).
The main idea is to find a suitable prior on the object of interest, being it for example the
survival function or the cumulative hazard function, and to find effective way to perform
inference on the posterior distribution. Let us consider the notation introduced in the
previous sections. When it comes to BNP methods in survival analysis, a widely used
family of nonparametric processes is the family of the neutral to the right (NTR) processes,
introduced in Doksum (1974). Let us therefore introduce the following definition.

Definition 1.3.1 (NTR). A random probability measure p̃ on (R+,B(R+)) is called a
neutral to the right (NTR) process if, for any integer k ≥ 1 and any partition 0 ≤ t1 < t2 <

. . . tk < ∞ of R+, the random variables

F̃ (t1),
F̃ (t2)− F̃ (t1)

1− F̃ (t1)
, . . . ,

F̃ (tk)− F̃ (tk−1)

1− F̃ (tk−1)

are independent, where F̃ (t) = p̃((0, t]) for each t > 0.

A core feature of these processes is that they have a standard representation as function-
als of specific random measures called completely random measures (CRMs), first introduced
in Kingman (1967). Let us therefore consider the generic measure space (Ω,A,P), the Pol-
ish space with its Borel σ-algebra (X0,X0) and the space M of boundedly finite measures on
(X0,X0), with its corresponding Borel σ-algebra M. Let introduce the following definition.

Definition 1.3.2 (CRM). A measurable map

µ̃ : (Ω,A,P) → (M ,M)
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is a completely random measure (CRM) if for any set A1, . . . , An ∈ X0 such that Ai∩Aj = ∅
for each i ̸= j, the random variables µ̃(A1), . . . , µ̃(An) are mutually independent.

In other words, a random measure is completely random if it maps mutually disjoint
events into mutually independent random variables. A CRM µ̃ is usually represented as
the sum of three components, as

µ̃ = µ̃c + µ̃f + ν̃d.

In the previous expression, µ̃c is functional of a marked Poisson process (J̃i, X̃i)i≥1, as

µ̃c =
∑
i≥1

δ(J̃i,X̃i)
=
∑
i≥1

J̃iδX̃i
,

i.e., both the positive jumps J̃is and the X0-valued locations X̃is are random, while the
measure µ̃f can be represented as the finite sum

µ̃f =

N∑
i=1

ViδXi ,

where the locations X1, . . . , XN ∈ X are fixed values, as N ∈ N ∪ {∞}, and the jumps
V1, . . . , VN are positive random variables, mutually independent as well as independent
from µ̃c. Finally, the component ν̃d is a deterministic drift. Note that, when it comes to
the applications of CRMs in the definition of nonparametric priors, the usual choice is to
consider only the completely random component, thus ignoring the discrete measure and
the deterministic drift. So from now on let us assume that µ̃ = µ̃c. Note that the measure
µ̃ can be also written as

µ̃ =
∑
i≥1

J̃iδX̃i
=

∫
R+

sÑ(ds, dx),

where the element
Ñ =

∑
i≥1

δ(J̃i,X̃i)

can be represented via its Laplace functional as

E
[
e−

∫
gdÑ
]
= E

[
e−

∑
i≥1 g(J̃i,X̃i)

]
= exp

(
−
∫
R+×X0

(
1− e−g(s,x)

)
ν(ds, dx)

)
,
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for any measurable function g : R+ × X0 → R such that∫
| g | dÑ < ∞ almost surely,

where ν is a measure on R+ × X0 such that for any B ∈ X0,∫
B×R+

min {1, s} ν(ds, dx) < ∞.

So, for any measurable function f : X0 → R such that∫
| f | dµ̃ < ∞ almost surely,

the Laplace functional of µ̃ is

E
[
e
−

∫
X0

f(x)µ̃(dx)
]
= exp

(
−
∫
R+×X0

(
1− e−sf(x)

)
ν(ds, dx)

)
.

The measure ν characterizes the CRM µ̃ since it contains all the information about the
distribution of the jumps and the locations, and it is called Lévy intensity of µ̃. Let us
write

µ̃ ∼ CRM(ν).

So it follows that a CRM is almost surely discrete, which means that its realizations are
discrete measures with probability 1. The intensity of a CRM is usually written as

ν(ds, dx) = ρx(ds)α(dx),

where α is a measure on (X0,X0) and ρ is a transition kernel on X0 × B(R+), i.e., the
function

x 7→ ρx(A)

is X0-measurable for any A ∈ B(R+) and ρx is a measure on (R+,B(R+)) for any x ∈
X0. If the jumps and the locations of µ̃ are independent, then we write ρx = ρ and the
corresponding Lévy intensity is called homogeneous.
The relationship between NTR processes and CRMs is explained by the following result.

Proposition 1.3.1 (Doksum). A random probability measure p̃ is neutral to the right if
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and only if there exists a CRM µ̃ on (R+,B(R+)) satisfying

lim
t→∞

µ̃((0, t]) = ∞ almost surely

such that the law of
{
F̃ (t) : t ≥ 0

}
coincides with the law of

{
1− e−µ̃((0,t]) : t ≥ 0

}
, where

F̃ (t) = p̃((0, t]) for any t ≥ 0. Let us write

p̃ ∼ NTR(µ̃).

For convenience, we will call F̃ the NTR process. So, from Proposition 1.3.1 it follows
that each NTR process can be uniquely identified by the Lévy intensity of its correspondent
CRM. For instance, the prior guess for p̃ ∼ NTR(µ̃) can be written as

E
[
F̃
]
= 1− E

[
e−µ̃((0,t])

]
= 1− e−

∫ t
0

∫
R+ (1−e−s)ρx(ds)α(dx),

where µ̃ ∼ CRM(ν) and ν(ds, dx) = ρx(ds)α(dx). The reason for the popularity of these
processes as nonparametric priors in survival analysis is twofold: first of all, as represented
above, their prior distribution can be completely characterized by the Lévy intensity of
a CRM; on the other hand, NTR processes forms a class of conjugate priors in survival
analysis, thus even in presence of a censorship mechanism, and so also their posterior
distributions are completely characterized by the Lévy intensity of the correspondent CRM.
The conjugacy of the NTR processes is stated in the following theorem, due to Doksum
(1974).

Theorem 1.3.1 (Doksum). Let us consider a set of exchangeable observations X1, . . . , Xn,
and the model

X1, . . . , Xn | F̃ i.i.d.∼ F̃ ,

where F̃ is a NTR(µ̃). Then the posterior distribution of F̃ is

F̃ | X1, . . . , Xn ∼ NTR(µ̃∗),

where µ̃∗ is a CRM with fixed point of discontuinity.

Note that the previous result proves that the NTR processes are a class of conjugate
priors, but in this context the term "conjugacy" does not indicate that the posterior process
has the same probability distribution of the prior process with updated parameters (as for
example the Dirichlet process described in Section 1.1), while it indicates a structural
conjugacy, i.e., the posterior process belongs to the same class of nonparametric process.
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On the other hand, the CRM characterizing the posterior distribution of a NTR is not
necessarily of the same type as the prior. Moreover, the posterior distribution of a NTR
process can be written as

F̃ (t) | X1, . . . , Xn = 1− e−µ̃((0,t]) = 1− e
−

∑
i≥1 J̃iδX̃i

−
∑N

i=1 ViδXi ;

note that the result stated in Theorem 1.3.1 does not provide an explicit description of
this distribution. An explicit description of the posterior CRM µ̃∗ has been provided in
Ferguson (1974). Let us report the result in the following theorem.

Theorem 1.3.2 (Ferguson). Let us consider a set of exchangeable observations X1, . . . , Xn,
and the model

X1, . . . , Xn | F̃ i.i.d.∼ F̃ ,

where F̃ is a NTR(µ̃), µ̃ ∼ CRM(ν) and ν(ds, dx) = ρx(ds)α(dx). Let X∗
1 , . . . , X

∗
k be

the k distinct observations among X1, . . . , Xn. Then the posterior distribution of F̃ can be
written as

F̃ | X1, . . . , Xn ∼ NTR(µ̃∗),

µ̃∗ = µ̃∗
c +

k∑
i=1

ViδX∗
i
,

µ̃∗
c ∼ CRM(ν∗),

ν∗(ds, dx) = e−Y (x)sρx(ds)α(dx),

where the CRM µ̃c is independent from the jumps V1, . . . , Vk and the Vks are mutually
independent, and the function Y (x) is the at-risk process related to the dataset X1, . . . , Xn.

It is also possible to determine the probability density of the jumps Vi. Let us therefore
consider the distinct observations and let us assume, without loss of generality, that they
are increasingly ordered, i.e.

X∗
1 < . . . < X∗

1 .

Moreover, let us consider the counting process

ni =

n∑
j=1

δXj ({X∗
i }) = Y (X∗

i )− Y
(
X∗

i+1

)
, for any i = 1, . . . , k,

i.e., the frequency of the ith distinct observation X∗
i , assuming X∗

k+1 = ∞. Then the
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probability density of the jump Vi is infinitesimally proportional on R+ to

(1− e−s)nie−sn̄i+1ρX∗
i
(ds),

where n̄i is the number of ordered and distinct observations from the ith onwards, i.e.,

n̄i =

k∑
j=i

nj = Y (X∗
i ) for any i = 1, . . . , k.

Note that if the Lev́y intensity of the CRM µ̃ is homogeneous, then ρX∗
i
= ρ for any i,

and the distribution of each Vi does not depend on the location where the jumps occurs.
Note also that the posterior characterization does not take into account the possibility that
the data are subject to a censoring mechanism according to which not all observations are
exact. The following result, introduced in Ferguson and Phadia (1979), provides a posterior
characterization for NTR priors even when the observations are survival times, thus with
censoring.

Theorem 1.3.3 (Ferguson & Phadia). Let us consider a set of exchangeable survival data
D = {(Xi,∆i)}ni=1, and the model

(Xi,∆i) | F̃
i.i.d.∼ F̃ for each i,

where F̃ is a NTR(µ̃), µ̃ ∼ CRM(ν) and ν(ds, dx) = ρx(ds)α(dx). Let X∗
1 , . . . , X

∗
k be

the k distinct observations among X1, . . . , Xn. Then the posterior distribution of F̃ can be
written as

F̃ | D ∼ NTR(µ̃∗),

µ̃∗ = µ̃∗
c +

∑
i:∆i=1

ViδX∗
i
,

where:

• µ̃∗
c ∼ CRM(ν∗) and

ν∗(ds, dx) = e−Y (x)sρx(ds)α(dx);

• the jumps Vis are mutually independent and the probability density of the jump Vi is
infinitesimally proportional on R+ to

(1− e−s)nie−s(n̄i+1+ñc
i )ρX∗

i
(ds),
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where

ni =
n∑

j=1

1(Xj=X∗
i ;∆j=1) and nc

i =
n∑

j=1

1(Xj=X∗
i ;∆j=0)

are the number of exact and censored observations equal to X∗
i , for each i = 1, . . . , k,

while

n̄i =
k∑

j=i

ni and ñc
i =

k∑
j=i

nc
j for any i = 1, . . . , k.

Moreover, µ̃∗
c is independent from the jumps Vis.

So the result stated in Theorem 1.3.3 guarantees that NTR processes form class of conju-
gate priors even when the data are survival times, and provides a closed form representation
for the posterior distribution.

1.3.1 Conjugate NTR processes

As said before, under a NTR prior the posterior is distributed again as a NTR process, but
in general it is distributed as a different one. This is the case of the Dirichlet process.

Proposition 1.3.2. Let us consider a random probability measure p̃ on (R+,B(R+)) and
a probability measure α on R+. Then, p̃ ∼ Dα if and only if there exists a µ̃ ∼ CRM(ν)

such that

p̃ ∼ NTR(µ̃) and ν(ds, dx) =
e−sα((x,∞))

1− e−s
α(dx)ds.

So, each Dirichlet process is a NTR process. Note that according to Theorem 1.3.3 it
follows that the posterior distribution of the Dirichlet random distribution function F̃ is
NTR(µ̃∗), where µ̃∗ is a CRM whose Lévy intensity

ν∗(ds, dx) =
e−(α((x,∞))+Y (x))s

1− e−s
α(dx)ds,

and the distribution of each jump Vi at each exact distinct observation X∗
i such that ∆i = 1

is equal to the distribution of the variable − log(Bi), where Bi ∼ Beta (α((X∗
i ,∞)) + n̄i+1 + ñc

i , ni),
for any i = 1, . . . , k. Note that if the observations are all exact, then F̃ | D is a Dirichlet
process with parameter α+

∑n
i=1 δXi , recovering the well-known result proved by Ferguson

(1973). On the other hand, if the data are censored, the posterior process is not a Dirichlet
process anymore, while having the distribution of a different NTR process. As discussed
before, this is a topic that naturally arises when it comes to search for NTR priors in
survival analysis: while they all shows a structural conjugacy, one may ask whether there
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exist particular NTR processes that show even a parametric conjugacy in this context. A
first example is given by the beta-stacy process, introduced in Walker and Muliere (1997)
as nonparametric prior for survival functions.

Definition 1.3.3 (Beta-stacy process). Let α be a probability measure on R+ which is
absolutely continuous with respect to the Lebesgue measure, and let c : R+ → R+ be some
piecewise continuous function. A random probability distribution F̃ is a beta-stacy process
with parameters α and c if it is a NTR(µ̃) such that µ̃ ∼ CRM(ν), where

ν(ds, dx) =
e−sc(x)α((x,∞))

1− e−s
c(x)dsα(dx).

Let us write
p̃ ∼ Beta-Stacy(α, c),

where p̃ is the random probability measure whose correspondent distribution is F̃ .

Note that when c(x) ≡ c ∈ R+ for any x ∈ R+, this process boils down to the Dirichlet
process. Moreover, the posterior beta-stacy process is distributed as another beta-stacy
process, with updated parameter. Let us therefore state the following theorem, that can be
found in Walker and Muliere (1997).

Theorem 1.3.4 (Walker & Muliere). Let us consider a set of exchangeable survival data
D = {(Xi,∆i)}ni=1, and the model

D | F̃ i.i.d.∼ F̃

F̃ ∼ Beta-Stacy(α, c),

for a certain probability measure α on R+ and a piecewise continuous function c : R+ →
R+. Then the posterior process F̃ | D is distributed as another beta-stacy process, with
parameters α∗ and c∗, where

α∗((0, t]) = 1−
∏

x∈[0,t]

[
1− c(x)dα((0, x]) + dN(x)

c(x)α([x,∞)) + Y (x)

]
, and

c∗(x) =
c(x)α([x,∞)) + Y (x)−

∑n
i=1 δXi({x})δ∆i ({1})

α∗([x,∞))
,

where N is the counting process for the uncensored observations introduced in the previous
section, while

∏
x∈[0,t] is the product integral.
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Note that the parameters of the posterior beta-stacy process show a clear dependence
on the data. According to Theorem 1.3.4, the prior random survival function is

S̃(t) = e−µ̃((0,t]) for any t ≥ 0,

where µ̃ is the CRM of a beta-stacy process. Moreover, the posterior distribution of the
survival function under the beta-stacy model is

S̃(t) | D = e−µ̃∗((0,t]) for any t ≥ 0,

where µ̃∗ is the CRM of the posterior NTR process F̃ | D. Note also that the posterior
characterizations for NTR process presented in Theorem 1.3.3 and Theorem 1.3.4 have
an additional advantage, since they reduce the problem of sampling from the posterior
distribution of a NTR to the problem of approximating a CRM. This will be discussed in
the next chapters.
A second example of NTR process which shows parametric conjugacy is the beta process,
introduced in Hjort (1990) for the estimation of the cumulative hazard function. The idea
is to assess a prior for the cumulative hazard, which is linked to the random distribution
function F̃ via the usual relation

F̃ (t) = 1−
∏

x∈[0,t]

{
1− dH̃x

}
for any t ≥ 0,

where
∏

x∈[0,t] is the product integral. It follows that assessing a prior for F̃ implies assessing

a prior for the random cumulative hazard process H̃ =
{
H̃t : t ≥ 0

}
. Note that in the

following we write H̃t to indicate the cumulative hazard function H̃ evaluated at time t.
The idea is to model H̃ via a suitable CRM µ̃ by setting

t 7→ H̃t := µ̃((0, t]).

Let us therefore introduce the following definition.

Definition 1.3.4 (Beta process). Let c : R+ → R+ be some piecewise continuous function
and let H0 be a baseline cumulative hazard. The random process

H̃ = {µ̃((0, t]) : t ≥ 0}
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is a beta process with parameters c and H0 if µ̃ ∼ CRM(ν), where

ν(ds, dx) = c(x)s−1(1− s)c(x)−1dsdH0,x

as s ∈ (0, 1) and x ≥ 0. Let us write

H̃ ∼ Beta(c,H0).

Note that
E
[
H̃t

]
= H0,t for any t ≥ 0,

so the baseline hazard H0 plays the role of prior guess on the cumulative hazard function
under a beta prior. Moreover, the relation between modelling the cumulative hazard with a
CRM and specifying a NTR prior for the distribution function is clarified by the following
theorem, proved in Hjort (1990).

Theorem 1.3.5 (Hjort). Let us consider a CRM µ̃. Then, a random distribution function
F̃ is NTR(µ̃) if and only if the corresponding cumulative hazard is a independent increments
process with Lévy intensity ν(ds, dx) = ρx(s)dsα(dx) satisfying the condition∫ ∞

1
ρx(s)ds = 0.

Note that the previous theorem states that the Lévy intensity should be concentrated
on [0, 1], implying that the jumps of the CRM µ̃ should be in [0, 1]. According to Definition
1.3.4, the beta process satisfies this condition. As far as the posterior characterization is
concerned, note that Hjort (1990) also provides a general theory for a generic CRM cumula-
tive hazard, in terms of an updated CRM with fixed point of discontinuity corresponding to
the exact and distinct observations. The link between the priors for cumulative hazards and
NTR processes is deepened and expanded for example in Dey et al. (2003). The appealing
feature of the beta process is its parametric conjugacy: the posterior beta process is again
a beta process, with updated parameters. Let us state the result, due to Hjort (1990).

Theorem 1.3.6 (Hjort). Let us consider a set of exchangeable survival data D = {(Xi,∆i)}ni=1
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and the model

(X1, . . . , XN ) | F̃ ∼F̃

F̃ (t) =1−
∏

s∈(0,t]

{
1− dH̃s

}
for any t ≥ 0

H̃ ∼Beta(c,H0),

for a certain basline hazard H0 and a piecewise continuous function c : R+ → R+. Then
the posterior process H̃ | D is distributed as

H̃ | D ∼ Beta
(
c+ Y,

∫
cdH0 + dN

c+ Y

)
,

where N and Y are the usual counting processes introduced before.

Note that according to Theorem 1.3.6, the Bayes estimator of H̃ and F̃ with respect to
a squared loss function are

E
[
H̃t | D

]
=

∫ t

0

cdH0 + dN

c+ Y
and

E
[
F̃ (t) | D

]
= 1−

∏
[0,t]

[
1− cdH0 + dN

c+ Y

]
respectively. As discussed for the beta-stacy process, letting c → 0 the two estimators
converges to the Nelson-Aalen and to the Kaplan-Meier estimators respectively. Note that
beta-stacy and beta processes are also discussed in Lijoi and Prünster (2010), where authors
consider other priors proposed in the BNP literature applied to survival analysis, which arise
as suitable transformations of CRMs. Other noteworthy BNP contributions to survival
problems include Kim (1999) and James (2006). In particular, in James (2006) the author
propose a new family of priors called spatial neutral to the right processes, which are useful
when one is interested in modelling survival times coupled with variables which take place
in a general space (usually, a spatial component).

1.3.2 Other contributions

A number of papers have focused on the issue of specifying a prior for the hazard rate,
instead of the cumulative hazard or the survival function. In many of these works, this is
achieved via the so-called life-testing models. In particular, in this models a prior for the
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hazard rate
h(t) =

F ′(t)

1− F (t)

is specified in terms of a mixture with respect to a CRM. Let k(· | ·) be a kernel on R+×Y,
for a further Polish space (Y,Y), i.e., k is measurable with respect to both its variables and
one has ∫

B
k(x | y)dx for any bounded B ∈ B(R+).

Then, in this context a prior for the hazard rate is the probability density of the random
hazard rate

h̃(t) =

∫
Y
k(x | y)µ̃(dy),

where µ̃ is a CRM on (Y,Y). For example, in Dykstra and Laud (1981) the authors
introduced a random hazard called extended gamma process. Other models were proposed
in Lo and Weng (1989) and James (2005). In particular, in James (2005) the author
obtains a representation of the posterior distribution of the CRM µ̃, considering the second
variable y of the kernel k as a latent variable. For further references on this topic, see for
example Nieto-Barajas and Walker (2002), Nieto-Barajas and Walker (2004) and Ishwaran
and James (2004).

1.4 Main contributions of the Thesis

In this chapter, after briefly introducing the basic concepts of Bayesian nonparametrics and
survival analysis, we provided an essential review of BNP methods in survival analysis, with
a specific focus on the case of exchangeable survival times. We also provided some notable
examples of nonparametric priors which, like the beta and the beta-stacy processes, not
only exhibit parametric conjugacy, but prove also to be a standard in the literature and
have been the subject of numerous extensions. The rest of this work is dedicated to the
analysis and development of innovative BNP methods to address certain research questions
related to survival analysis.
In particular, in Chapter 2 we consider the class of survival models known as cure-rate
models, which are used to handle survival time datasets which show a strictly positive
probability (called cure rate) of not observing the failure event. This implies that a frac-
tion of the population is either cured or not susceptible to the event and, therefore, will
not experience failure. Assuming exchangeable survival times, we then introduce a class
of nonparametric priors useful for modeling both the survival and the cumulative hazard
functions, which allow for the estimation of the strictly positive cure rate. In addition to
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providing a comprehensive analysis of the prior and posterior processes, we also demon-
strate how priors of this class can be estimated particularly efficiently through appropriate
approximation algorithms.
In Chapter 3, we contribute to the line of research dedicated to exploring BNP methods for
the modeling of partially exchangeable data, an assumption that proves reasonable in sur-
vival analysis across various applications. For example, consider a clinical trial conducted
with the same drug but on groups of patients located in different facilities, or more gener-
ally, under different conditions. Motivated by these observations, we present a hierarchical
extension of the well-known NTR processes, which are traditionally used as nonparamet-
ric priors for exchangeable times. This extension allows for modeling survival functions
of groups of observations conditionally on a baseline measure, which captures the depen-
dence between the groups. The analysis of the posterior distribution of the introduced
process enables us to appreciate the borrowing of information from each group to all oth-
ers. Additionally, by leveraging an appropriate representation of the posterior distribution
of our hierarchical process, it is possible to develop a conditional algorithm that allows for
sampling trajectories of the survival functions for each group.
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Chapter 2

Cure rate models based on scaled processes

2.1 Introduction

In various applications of survival analysis, it is natural to consider a strictly positive
probability of not observing the failure event. For example, consider the case of a clinical
study on a cohort of patients, a percentage of whom are long-term survivors. The standard
cure rate model introduced in Berkson and Gage (1952) is a mixture model defined by

Spop(t) = π + (1− π)S(t) for any t ≥ 0,

where π ∈ (0, 1) is the cure rate and S(t) is a proper survival function, i.e.,

lim
t→∞

S(t) = 0.

Therefore, the survival function of the population Spop(t) converges to the positive cure rate
π as t → ∞. Thus, if we assume that the distribution of the survival times has density and
we consider the usual relationship with the cumulative hazard function of the population
Hpop(t), we have that

Hpop(t) = − log (Spop(t)) ,

which implies that the cumulative hazard function converges to − log π as t → ∞. Lit-
erature provides many works which extensively study the standard cure rate model: see
for example the classical Kuk and Chen (1992), Maller and Zhou (1992), Maller and Zhou
(1995), Sy and Taylor (2000) and the alternative model proposed in Yakovlev and Tsodikov
(1996). Comprehensive reviews and discussion on cure rate models can be found for ex-
ample in Ibrahim et al. (2001b), Tsodikov et al. (2003) and more recently in Amico and
Van Keilegom (2018). Among the Bayesian literature, cure rate models were introduced
for example in Chen et al. (1999), in Ibrahim et al. (2001a) and in Nieto-Barajas and Yin
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(2008). On the other hand, while the BNP literature provides a substantial amount of
contributions regarding survival analysis, it addresses this problem to a much lesser extent
when there is a non-zero probability of cure, i.e., a cure rate. This is also due to the fact
that the Bayesian nonparametric literature for survival analysis focuses usually on priors
which induce a proper estimate of the survival function, i.e., a survival function which con-
verges to zero as time goes to infinity. The reason for this is partly practical, as in various
applications it is reasonable to assume zero survival at infinite time, and partly theoretical:
classical neutral to the right (NTR) nonparametric priors, for example, induce a survival
function that naturally converges to zero. For more information, see for example Daley and
Vere-Jones (2008) and Lijoi and Prünster (2010). This work therefore falls within the field
of BNP research applied to survival analysis, with the aim of proposing a model applicable
in the presence of a strictly positive probability of cure.
More specifically, in this work we aim to introduce a class of nonparametric priors in order
to deal with survival datasets with a cure rate. In particular, we show how this can be done
by considering the scaled processes (SP), a class of nonparametric processes that are useful
in various settings; as shown in Camerlenghi et al. (2022), for example, they are valuable in
species sampling models. Scaled processes can be constructed starting from a completely
random measure (CRM) (see Kingman (1967)), whose jumps are ordered and re-scaled by
the biggest one, which is further re-scaled by a random factor. The law of the re-scaling
factor and the Lévy intensity of the starting CRM define the specific SP. In particular,
again in Camerlenghi et al. (2022), the authors introduce a specific scaled process called
stable-beta scaled process (SB-SP), whose parametric assumptions allows, when they are
assumed as prior distribution, to obtain closed form representation of the quantities of in-
terest, such as the posterior distribution. In this work we aim to apply SB-SPs as priors in
survival analysis. We will show that SB-SPs are a flexible class of processes in the survival
framework. First, it is possible to develop a general theory for SPs in survival analysis
and derive the results for SB-SPs as a special case. Second, the main results concerning
SB-SPs lead to closed-form formulas. Finally, SB-SPs can also be obtained from different
nonparametric processes, such as the well-known 3-parameter Indian Buffet Process (IBP);
see Teh and Gorur (2009).
The outline of the chapter is as follows. In Section 2.2, following Camerlenghi et al. (2022)
we introduce the scaled processes and its main particular case, i.e., the stable-beta scaled
processes, only focusing on the definitions. Our survival model is introduced in Section 2.3:
in particular, we focus on the general theory for SPs as nonparametric priors in survival
analysis, particularly when adopted as priors for the cumulative hazard function. The main
results of this work are discussed in Section 2.4: here we develop the theory of SB-SPs as
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nonparametric priors for cumulative hazard functions, obtaining relatively simple forms for
the marginal and the posterior distributions. Moreover, we show how SB-SPs can be also
obtained as gamma-mixtures of 3-parameter Indian Buffet Process, thus underlying the
link between these processes and the standard nonparametric prior for cumulative hazard
functions, the beta process introduced in Hjort (1990). The closed form of the posterior
distribution of a SB-SP allows to develop a conditional algorithm in order to sample tra-
jectories for the cumulative hazard function from the posterior distribution itself, as well as
a marginal algorithm: both the strategies are discussed in Section 2.5. Finally, Section 2.6
is focused on the application of the conditional algorithm on the estimation of the survival
functions of a set of simulated survival times and, finally, of the well known Bone-Marrows
Transplantation dataset already used for example in Nieto-Barajas and Yin (2008). Proofs
and other technical details are deferred to the Appendix.

2.2 Background on scaled processes

The aim of this section is to introduce the main tools of this paper, i.e., the class of random
measures known as scaled processes (SPs). First introduced in James et al. (2015), and
used in Camerlenghi et al. (2022) for the estimation of unseen genetic variation, our goal
is to exploit them to build a survival cure rate model. This will be discussed in the next
sections. Therefore, let us now introduce the notation and the definitions, that will be used
in the next sections of this paper.
Let us consider a measurable space (X,X ), where X is a Polish space with its Borel σ-
algebra X , and let µ̃ ∼ CRM(ν) be a CRM on X whose homogeneous Lévy intensity on
R+ × X is

ν(ds, dx) = ρ(s)dsα(dx),

where α is a measure on (X,X ) and ρ is a transition kernel such that∫
R+

min{s, 1}ρ(s)ds < ∞.

It is well known from Kingman (1967) that µ̃ is functional of a marked Poisson process
(h̃k, x̃k)k≥1 on R+ ×X, such that

∑
k≥1 h̃k < ∞ and the x̃k’s are i.i.d. and independent of

the h̃k’s for each k ≥ 1.

µ̃ =
∑
k≥1

h̃kδx̃k
. (2.1)
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Starting from the CRM µ̃, the random measure whose jumps are the ordered jumps of µ̃
re-scaled by its biggest jump is called generalized Dickman measure, as summarized in the
following definition. For further details, see again James et al. (2015).

Definition 2.2.1 (Generalized Dickman Measure). Let us consider µ̃ ∼ CRM(ν) as in
(2.1). Let ∆1 > ∆2 > . . . be the decreasingly ordered h̃k’s. The discrete random measure

µ̃∆1 =
∑
k≥1

∆k+1

∆1
δx̃k+1

, (2.2)

i.e., the CRM with locations x̃2, x̃3, . . . and scaled jumps ∆2
∆1

, ∆3
∆1

, . . ., is called generalized
Dickman measure. The variables ∆2,∆3, . . . are independent given the largest jump ∆1.

Assuming the Lévy intensity ν(ds, dx) = ρ(s)dsα(dx) of the CRM µ̃, it is well known
from Wolpert and Ickstadt (1998) that the biggest jump ∆1 is distributed according to

∆1 ∼ F∆1(da) = f∆1(a)da, where f∆1(a) = exp

{
−
∫ ∞

a
ρ(s)ds

}
ρ(a). (2.3)

Let us furthermore denote by Ga the conditional law of the scaled jumps, i.e.,(
∆k+1

∆1

)
k≥1

| ∆1 = a ∼ Ga.

Our goal is to define the family of scaled processes, starting from the generic measure
introduced in Definition 2.2.1. Let us therefore consider a non-negative function h and let
us define a re-scaled random biggest jump ∆1,h with density

f∆1,h
(a) = h(a)f∆1(a).

Therefore, let us write the law of the scaled jumps conditional on the random biggest jump
∆1,h as (

∆k+1

∆1

)
k≥1

| ∆1 = ∆1,h ∼ G∆1,h
.

Let us now define the scaled processes, a random measure whose (0, 1)-valued jumps are
distributed as G∆1,h

.

Definition 2.2.2 (SP). A Scaled Process (SP) is defined as

µ̃∆1,h
=
∑
k≥1

τkδx̃k+1
, where (τk)k≥1 ∼ G∆1,h

.
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We further write
µ̃∆1,h

∼ SP(ν, h)

to denote the distribution.

In other words, scaled processes are random measures whose jumps are (0, 1)-valued
variables distributed as the scaled ordered jumps of the starting CRM µ̃ conditional on the
random and re-scaled bigger jump ∆1,h. Note that, as recalled in (2.3), the distribution
of the biggest jump ∆1 is known. Therefore, a scaled process is completely defined by the
Lévy intensity ν(ds, dx) = ρ(s)dsα(dx) of µ̃ and the scaling function h(·). Suitable choices
for the transition kernel ρ(·) and the function h(·) can have appealing analytical properties.
In particular, stable scaled processes (S-SP) are a subclass of SP introduced in James et al.
(2015) and they are characterized by the σ-stable CRM arising from µ̃, as described in
Kingman (1975) and summarized in the following definition.

Definition 2.2.3 (S-SP). Let us consider µ̃ ∼ SP(ν, h) as in Definition 2.2.2. If

ρ(s) = σs−1−σ

for some σ ∈ (0, 1), we say that µ̃ is distributed as a Stable Scaled Process (S-SP). We
further write

µ̃∆1,h
∼ S-SP(νσ, h)

to denote the distribution.

As a noteworthy example of S-SPs we will focus on the Stable-Beta Scaled Processes
(SB-SP). A SB-SP is a process introduced in Camerlenghi et al. (2022), and it can be
obtained by specifying a suitable specification of the non-negative function h. The idea
is to define a specific function h in order to obtain a more tractable density for the re-
scaled jump. This approach simplifies the further analysis, leading to useful theoretical
results, which will be detailed and explained in the following sections, where the practical
and theoretical implications of this re-scaling will be explored. This is summarized in the
following definition.

Definition 2.2.4 (SB-SP). Let us consider µ̃ ∼ S-SP(νσ, h) as in Definition 2.2.3. If the
function h can be written as

hc,β(a) =
βc+1

Γ(c+ 1)
a−cσ exp{−(β − 1)a−σ}
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for some positive constants c, β > 0, the process is called Stable-Beta Scaled Process (SB-
SP). We further write

µ̃∆1,hc,β
∼ SB-SP(νσ, hc,β)

to denote the distribution.

The aim of the next sections is to construct a nonparametric model assuming scaled
processes as priors for exchangeable survival time. A further set of results and observations
concerning scaled processes is reported in Section 2.A.

2.3 Scaled processes in survival analysis

The aim of this section is to present a general theory for scaled processes as nonparametric
priors in survival analysis. In particular, in Section 2.3.1 we introduce the survival model
and the result on the prior distribution, while Section 2.3.2 is dedicated to the Bayesian
analysis on the posterior distribution.

2.3.1 SP survival model

The aim of this section is to introduce our survival model for the cumulative hazard function
under a SP prior, thus showing the expected value a priori. Note that X = R+, and
let us assume to be provided with a set of survival times (T1, . . . , TN ), along with the
corresponding right censoring variables (Θ1, . . . ,ΘN ), where

Θi =

{
1 if Ti ≤ Ci

0 otherwise
,

and let Xi = min(Ti,Θi) be the ith observation. In the sequel we will denote by D the
vector containing all the observations Xi’s and the corresponding variables Θi’s, namely

D := ((Xi,Θi) : i = 1, . . . , N),

where N is the number of observations. The observations, which are R+-valued survival
times, are assumed to come from an infinite array of exchangeable random variables.
The idea behind this section is to put a SP prior on the cumulative hazard function H. Let
us therefore consider the following model:
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(X1, . . . , XN ) | F̃ ∼F̃

F̃ (t) =1−
∏

s∈(0,t]

{
1− dH̃s

}
for any t ≥ 0

H̃t =µ̃∆1,h
(0, t] for any t ≥ 0

µ̃∆1,h
∼SP(ν, h).

(2.4)

Note that the second expression in (2.4) is the well-known relations between distribution
and hazard functions and it is written in terms of the product integral: if G : R+ → R+ is
a non-decreasing and right-continuous function and 0 = t0 < t1 < . . . < tm is a partition
such that

lim
m→∞

[
max
i≥1

| ti − ti−1 |
]
= 0,

the product integral is the function

t 7→
∏

s∈(0,t]

{1 + dGs} = lim
m→∞

m∏
i=1

{1 +G(ti)−G(ti−1)} .

In the following, we will state and prove the main results, i.e., the expression for the marginal
and posterior distributions according to the model in (2.4). Let us first fix the notation.
Let us denote by X∗

1 , . . . , X
∗
K the distinct observations among X1, . . . , XN ; let us also

assume that they are ordered, i.e., X∗
1 < X∗

2 < . . . < X∗
K . Moreover, let us write

Θ∗
r = max

i:Xi=X∗
r

Ci for each r = 1, . . . ,K,

i.e., the variable Θ∗
r indicates whether there is at least a exact observation equal to X∗

r .
Let K∗ be the number of distinct observations X∗

r ’s having Θ∗
r = 1; note that K∗ ≤ N .

Moreover, let

nr =
N∑
i=1

1(Xi=X∗
r ,Θi=1) and nc

r =
N∑
i=1

1(Xi=X∗
r ,Θi=0),

be the counting processes indicating the number of exact and censored observations equal
to X∗

r respectively, and let

n̄r =
N∑
i=1

1(Xi>=X∗
r ,Θi=1) and ñc

r =
N∑
i=1

1(Xi>=X∗
r ,Θi=0),
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be the cumulative counting processes indicating the number of exact and censored obser-
vations greater or equal to X∗

r respectively. Finally, let us define the at-risk process Y (x)

as

Y (x) =

N∑
i=1

1[x,∞)(Xi).

It is now possible to obtain the expression of the prior expected value for the cumulative
hazard H̃ in model (2.4), as summarized in the following proposition; the proof is reported
in Section 2.B.

Proposition 2.3.1. Let us consider the model (2.4). Then the prior expected value for H̃

under a SP(ν, h) prior is

E
[
H̃t

]
= α((0, t]) ·

∫
R+

∫ 1

0
syρ(ys)dsf∆1,h

(y)dy

for any t ≥ 0, where f∆1,h
(y) is the density of the jump ∆1,h.

Note that the expected cumulative hazard function H̃ is proportional to the measure
α; such as in the beta process, introduced in Hjort (1990), the base measure of the CRM µ̃

can be interpreted as the prior guess on the function H̃. In particular, under a Beta prior,
the prior guess of H̃ is exactly equal to α.

2.3.2 Bayesian analysis of SP survival model

The aim of this section is to analyze the marginal and posterior distributions under the
survival model 2.4. First of all, it is possible to obtain the expression of the marginal
distribution of the data arising from model (2.4), as summarized by the following theorem,
whose proof is reported in Section 2.B.

Theorem 2.3.1. The distribution of the data D arising from the model (2.4) is infinitesi-
mally equal to

∫
R+

yK
∗

K∏
r=1:Θ∗

r=1

[
α(dX∗

r )

∫ 1

0
snr(1− s)n̄r+1+ñc

rρ(ys)ds

]
×

× exp

{
−y

∫
R+

∫ 1

0

(
1− (1− s)Y (x)

)
ρ(ys)dsα(dx)

}
f∆1,h

(y)dy,

(2.5)
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where f∆1,h
(y) is the density of the jump ∆1,h.

Note how from the results reported in Proposition 2.3.1 and Theorem 2.3.1 it is evident
the dependence of the expressions on the Lévy intensity ν(ds, dx) = ρ(s)dsα(dx) of µ̃ and
on the distribution of the scaling function h. The expressions reported in these results can
be therefore semplified via a suitable choise of ν and h. A notable example of a specific
scaled process is the SB-SP introduced in Section 2.2; the next section will be dedicated
to analyze how the expression of the generic results for scaled processes become sensibly
easier in the case of this particular process.
The expression of the posterior distribution from (2.4) under a SP(ν, h) prior can be de-
scribed via a hierarchical construction. The result is summarized in the following theorem.

Theorem 2.3.2. Let us consider the model in (2.4). The posterior distribution of µ̃∆1,h
∼

SP(ν, h) can be described as

µ̃∆1,h
| D,∆1,h = µ̃∗

c +
K∑

r:Θ∗
r=1

JrδX∗
r

∆1,h | D ∼ F∆1,h|D,

(2.6)

where:

i. µ̃∗
c ∼ CRM(ν∗), where

ν∗(ds, dx) = (1− s)Y (x)∆1,hρ (∆1,hs)1(0,1)(s)dsα(dx),

ii. the jumps Jr’s, as r = 1, . . . ,K and Θ∗
r = 1, have density proportional to

snr(1− s)n̄r+1+ñc
r∆1,hρ (∆1,hs)1(0,1)(s)ds,

iii. F∆1,h|D is the posterior distribution of the jump ∆1,h.

The previous hierarchical expression is useful when the distribution of the jump ∆1,h, in
particular when it comes to exploit the posterior representation to construct a conditional
sampling algorithm; this will be the case of the SB-SP, discussed in the next section. On
the other hand, in the case of the SB-SP it is also possible to obtain a straightforward
representation of the posterior distribution without relying on hierarchical constructions,
thus obtaining appealing analytical properties that will be as well described in the following
section.
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The last result of this section is the expression of the posterior estimator for the random cu-
mulative hazard function under a quadratic loss assuming model (2.4). This is summarized
in the following proposition, proved in Section 2.B.

Proposition 2.3.2. Let us consider the model in (2.4). Then the posterior estimator under
a quadratic loss for the cumulative hazard H̃ is

E
[
H̃t | D

]
=

∫
R+

[∫ t

0

∫ 1

0
s(1− s)Y (x)yρ(ys)dsα(dx)+

+

K∑
r=1;Θ∗

r=1,X∗
r≤t

∫ 1
0 snr+1(1− s)n̄r+1+ñc

rρ (ys) ds∫ 1
0 tnr(1− t)n̄r+1+ñc

rρ (yt) dt

 f∆1,h|D(y)dy,

where f∆1,h|D(y) is the posterior density for the jump ∆1,h.

Remark 2.3.1. Note that the ratio∫ 1
0 snr+1(1− s)n̄r+1+ñc

rρ (ys) ds∫ 1
0 tnr(1− t)n̄r+1+ñc

rρ (yt) dt

from the expression in Proposition 2.3.2 is the expected value of a variable with density

snr(1− s)n̄r+1+ñc
rρ (ys)1(0,1)(s).

The expression from Proposition 2.3.2 is clearly obtained marginalizing the posterior
jump ∆1,h | D out from the expect value of a CRM with both a continuous and discrete
component. More details of this construction are reported in Sections 2.A and 2.B. Note
also that the expression can be semplified when the posterior distribution ∆1,h | D is known,
as in the case of a SB-SP. The next section will be focused on an extensive analysis of the
SB-SP as nonparametric prior in survival analysis, as a particular case of scaled process.

2.4 Stable-beta scaled priors

The results discussed in the previous section provide a general theory for scaled processes as
nonparametric priors for cumulative hazard functions of exchangeable survival times. The
expressions obtained show the dependence of the results on the choice of the base CRM µ̃

and the re-scaling function h.
The aim of this section is to study the survival model (2.4) under a particular scaled prior,
namely a stable-beta scaled process. There are different appealing features of a SB-SP as
nonparametric prior in survival analysis. First of all, the prior and posterior properties can
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be derived from the general theory for scaled priors presented in Section 2.3, and the main
results (e.g., marginal and posterior distributions) are available in a closed and relatively
simple form; the study of these properties will be discussed in Section 2.4.1. Moreover,
SB-SPs can also be derived as a Gamma-mixture of the well known Indian Buffet Process
(IBP), therefore the prior and posterior results can be derived from the theory about IBP
(see Teh and Gorur (2009)); this link will be shown and discussed in Section 2.4.2. Finally,
thanks to a suitable hierarchical construction of the posterior SB-SPs, the process can be
simulated via stanadrd sampling algorithms; this topic will be described in Section 2.5.

2.4.1 Main results

The aim of this section is to specialize the results obtained in the previous section to the
case of a SB-SP prior, which is characterized by a specific expression for both µ̃ and h,
which lead to a close and analytically tractable expressions. An appealing feature of the
stable-beta scaled prior is that it can be represented in different ways. The first result of
this section shows how a SB-SP prior in model (2.4) can be also represented as a negative
binomial point process, as described for example in Griffiths et al. (2024). Let us first recall
the following definition (see Gregoire (1984); Griffiths et al. (2024)).

Definition 2.4.1 (negative binomial random measure). Let ρ(s | x) be a transition kernel,
let α be a random probability measure and let r > 0. A negative binomial random measure
µ̃ is characterized by a Laplace functional equal to

E
[
e−µ̃(g)

]
=

(
1 +

∫
R+×R+

(
1− e−sg(x)

)
ρ(s | x)dsα(dx)

)−r

for any bounded non-negative measurable function g on R+. Let us write

µ̃ ∼ BN(r, ρ, α).

Let us now state the aforementioned result. The proof is reported in Section 2.C.

Proposition 2.4.1. Let µ̃∆1,hc,β
∼ SB-SP(νσ, hc,β). Then

µ̃∆1,hc,β
∼ BN

(
c+ 1,

σ

β
s−1−σ, α

)
.

Proposition 2.3.1 and Theorem 2.3.1 provide general results for the expression of the
prior expected value, as well as the marginal and distribution, according to model (2.4)
under a SP prior. The results about the SB-SP priors can be obtained simply specializing
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the aforementioned results, specifying the Lévy intensity of the generating CRM µ̃ and the
expression of the re-scaling factor h.
Let us now summarize the expected value of the cumulative hazard H under SB-SP priors.
The result is proved in Section 2.C.

Corollary 2.4.1. Let us consider the model (2.4) with s SB-SP prior. Then the expected
value for H̃ is equal to

E
[
H̃t

]
=

σ(c+ 1)

(1− σ)β
α((0, t]).

for any t ≥ 0.

Remark 2.4.1. From the Corollary 2.4.1, since

α((0, t]) → 1 as t → ∞,

it is possible to observe that the prior guess for the limit value of H̃t is

σ(c+ 1)

(1− σ)β
.

Under our model, this is the prior guess for the cure rate at the cumulative hazard scale.

Let us now state the expression for the marginal distribution under a SB-SP prior as a
corollary of Theorem 2.3.1. The proof is reported in Section 2.C.

Corollary 2.4.2. Let us consider the model in (2.13) with a SB-SP prior. Then, the
distribution of the data D arising from this model is infinitesimally equal to

Γ (K∗ + c+ 1)σK∗
βc+1

Γ(c+ 1) (β + σησ)
K∗+c+1

×

 K∏
r=1:Θ∗

r=1

α(dX∗
r )B (nr − σ, n̄r+1 + ñc

r + 1)

 , (2.7)

where

ησ =

K∑
r=1

α((X∗
r−1, X

∗
r ])

N∗
r∑

k=1

(−1)k−1

(
N∗

r

k

)
1

k − σ
and N∗

r =

K∑
g=r

n∗
g,

and n∗
g is the number of observations equal to X∗

g . Moreover, the posterior distribution of
∆1,hc,β

is such that

∆−σ
1,hc,β

| D ∼ Gamma (K∗ + c+ 1, β + σησ) ,
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i.e.,

f∆1,hc,β
|D(y) =

σ (β + σησ)
K∗+c+1

Γ(K∗ + c+ 1)
y−(K∗+c+1)σ−1e−(β+σησ)y−σ

.

Remark 2.4.2. Note that in the expression (2.7) the product is performed over the distinct
observations X∗

r such that Θ∗
r = 1, i.e., over the distinct observations with which at least

one exact observation coincides. For this reason, it follows that in the product in (2.7)
nr ≥ 1, so nr − σ ≥ 0 for each r, so the Beta function is well-defined.

The importance of the result reported in the previous corollary is twofold. First of all,
it provides a closed and tractable expression for the marginal distribution, that allows to
sample the value of the parameters σ, c and β from their full-conditional distributions via
a suitable MCMC simulation algorithm. Moreover, it provides the posterior distribution of
the jump ∆1,hc,β

; this result, along with the hierarchical expression for the posterior distri-
bution of a generic SP prior provided in Theorem 2.3.2, reduces the problem of sampling
from the posterior of SPs to the problem of sampling from a CRM conditionally to a variable
with known distribution, i.e., the posterior jump ∆1,hc,β

| D. Although the aforementioned
hierarchical expression is useful for computational purposes, the following result provides
a closed form for the posterior distribution of a SB-SP prior, which allows us to capture
some analytical properties of interest. The proof is reported in Section 2.C.

Corollary 2.4.3. Let us consider the model in (2.4) with a SB-SP prior. Then the posterior
distribution can be written as:

µ̃∆1,hc,β
| D = µ̃∗

c +
K∑

r:Θr∗=1

JrδX∗
r
, (2.8)

where:

i. µ̃∗
c is a negative binomial random measure, i.e., µ̃∗

c ∼ BN(K∗ + c+ 1, ρ∗, α), where

ρ∗(s | x)ds = σ

β + σησ
(1− s)Y (x)s−1−σds,

ii. the jumps Jr’s are distributed as a

Beta(nr − σ, n̄r+1 + ñc
r + 1).

Remark 2.4.3. Note that the sum in (2.8) is performed over the distinct observations X∗
r

such that Θ∗
r = 1, i.e., over the distinct observations with which at least one exact obser-

vation coincides. For these indices r’s, nr ≥ 1, so nr − σ ≥ 0. It follows that the Beta
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distributions
Beta(nr − σ, n̄r+1 + ñc

r + 1)

are well-defined.

The importance of the posterior representation summarized in Corollary 2.4.3 lies in
the fact that it shows the quasi-conjugacy property of the SB-SPs. Combining the results
of Proposition 2.4.1 and Corollary 2.4.3, in fact, it emerges that SB-SPs forms a family of
quasi-conjugate processes in the class of negative binomial point processes. On the other
hand, they are not conjugate in the scaled processes class. The posterior process represented
in Corollary 2.4.3, in fact, is not a scaled process anymore.
Let us now state the last result of the section, that reports a closed form expression of
the estimator for the cumulative hazard function under a quadratic loss, under the SB-SP
model as in (2.4). The proof is reported in Section 2.C.

Corollary 2.4.4. Let us consider the model in (2.4) with a SB-SP prior, i.e., with

µ̃∆1,hc,β
∼ SB-SP(νσ, hc,β).

Then the estimator for the cumulative hazard under a quadratic loss is

E
[
H̃t | D

]
=

σ(K∗ + c+ 1)

β + σησ
ηt +

K∑
r=1;Θ∗

r=1,X∗
r≤t

nr − σ

n̄r+1 + ñc
r + nr + 1− σ

,

where

ηt :=

Kt∑
r=1

α
(
(X∗

r−1, X
∗
r ∧ t]

)
B(1− σ,N∗

r + 1), and Kt = min{g : X∗
g ≥ t}

and ησ is defined in Corollary 2.4.2.

Remark 2.4.4. Note that

lim
t→∞

E
[
H̃t | D

]
=

σ(K∗ + c+ 1)

β + σησ
η∞ +

K∑
r=1;Θ∗

r=1

nr − σ

n̄r+1 + ñc
r + nr + 1− σ

,

where

η∞ :=

K∑
r=1

α
(
(X∗

r−1, X
∗
r ]
)
B(1− σ,N∗

r + 1),

that is, the posterior estimate for the cure rate at the cumulative hazard scale.
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The previous result is useful in order to construct a marginal algorithm for the estimation
of the posterior distribution of the cumulative hazard function. More details about this
topic will be provided in Section 2.5. Also note how the results presented in this section,
although concerning the cumulative hazard function, can naturally be extended to the
survival function scale. Section 2.E dedicated to this purpose.

2.4.2 Gamma-mixtures of Indian Buffet Processes

Up to this point we have shown how SB-SPs can be obtained equivalently in different
ways. In particular, in Section 2.2 we showed how they are a particular case of scaled
processes, therefore inheriting their prior and posterior properties described in Section 2.3.
On the other hand, in Section 2.4.1 we showed how they are part of the family of negative
binomial point processes, within which they show a quasi-conjugate behaviour. Another
useful hierarchical construction of the scaled processes, already cited in the previous sections
and inherited by the SB-SPs, is described in Section 2.A and shows how they are a CRM
conditionally on the jump ∆1,h.
The aim of this section is to show a further construction for this family of processes, hence
providing a useful link to the well known 3-parameter Indian Buffet Process, also known
as Stable Beta Process and introduced in Teh and Gorur (2009). Let us first recall the
definition.

Definition 2.4.2 (IBP). A random measure µ̃ induces a Stable Beta Process, or 3-parameter
Indian Buffet Process (IBP), if

µ̃ ∼ CRM(ν) and

ν(ds, dx) = γ
Γ(1 + θ)

Γ(1− σ)Γ(θ + σ)
s−1−σ(1− s)θ+σ−1dsα(dx),

where γ > 0 is a mass parameter, θ > −σ is a concentration parameter, σ ∈ [0, 1) is a
stability exponent and α is a probability measure. Let us write

µ̃ ∼ IBP(γ, θ, σ).

Since a IBP is a CRM, the theory for the IBP as nonparametric prior for the cumulative
hazard function is entirely induced by the general theory for the CRMs. In particular, the
survival model is the following:
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(X1, . . . , XN ) | F̃ ∼F̃

F̃ (t) =1−
∏

s∈(0,t]

{
1− dH̃s

}
for any t ≥ 0

H̃t =µ̃(0, t] for any t ≥ 0

µ̃ ∼IBP(γ, θ, σ).

(2.9)

The link between the model in (2.4) and (2.9) is provided by the following result, which
shows how a SB-SP can be obtained as a Gamma-mixture of IBPs with θ = 1 − σ. The
proof is reported in Section 2.C.

Proposition 2.4.2. Let us consider the following hierarchical definition:

µ̃ | γ ∼IBP(γ, 1− σ, σ),

γ ∼Gamma
(
c+ 1,

β(1− σ)

σ

)
,

(2.10)

where σ > 0 and β, c > 0. Then

µ̃ ∼ SB-SP(νσ, hc,β),

where νσ is the intensity of the IBP defined in Definition 2.4.2 and hc,β is the re-scaling
factor of a SB-SP defined in Definition 2.2.4.

Note that the main results concerning IBP as nonparametric prior in model (2.9) can be
obtained as a direct application of the general results for CRMs (see, for example, Ferguson
and Phadia (1979); Lijoi and Prünster (2010)). Section 2.D reports the expression for
the expected value of the cumulative hazard function under a IBP prior in model (2.9),
and its posterior estimator under a quadratic loss, as well as the marginal and posterior
distributions. It follows that, according to Proposition 2.4.2, all the main results stated in
Section 2.4.1 can also be obtained starting from the general results for the IBP, assuming
θ = 1− σ and integrating out the gamma variable γ. Moreover, note how the link between
IBP and SB-SP is useful to underline the connection between the SB-SP and the beta
process (see Hjort (1990)), since a beta process with parameters θ and α can be recovered
as a IBP with parameters γ = 1, and σ = 0. Finally, note that the hierarchical definition
of a SB-SP reported in Proposition 2.4.2 leads to an alternative strategy for constructing a
sampling algorithm, since it reduces the problem of approximating a SB-SP to the problem
of approximating a CRM, i.e., approximating a IBP with a random parameter γ. Note that
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this observations holds true even for the posterior distribution of a SB-SP, since the IBP
in model (2.9) is conjugate.

2.5 Sampling Algorithm

The aim of this section is to describe a sampling algorithm that allows to sample from
the posterior distribution of the survival model (2.4) under a SB-SP prior. In particular,
we are interested in the estimation of the survival function arising from this model; let
us denote by S̃t such random survival function evaluated at time t ≥ 0. Note that all
the results reported in Section 2.4.1 refer to the cumulative hazard function, but that
they can all be adapted to the survival function; obviously, the expression of the marginal
distribution does not change. Please refer to Section 2.E for more details about these results
on the survival function arising from model (2.4). In this section we introduce two different
strategies: a marginal algorithm, which obtain a survival function marginalizing out the
random measures; and a conditional algorithm, which allow to simulate the trajectories of
the posterior survival functions.
Note that the prior process is entirely defined by the measure α and the parameters σ, β
and c. Let us therefore assume that α is a uniform measure

Uniform(0, τ), τ ∈ R+,

where τ is a suitable positive value. Finally, in order to rely on a full Bayesian approach,
let us assume gamma priors on the parameters β, c > 0, and a beta prior on the parameter
σ ∈ (0, 1).

2.5.1 Marginal algorithm

A marginal algorithm can be obtained exploiting the posterior estimator of the survival
function S̃t | D under a quadratic loss arising from SB-SP model. Let us report the
expression of the estimator for each time t ≥ 0 (please refer to Section 2.E for the details):

E
[
S̃t | D

]
=

(
β + σησ

β + σησ + σηt

)K∗+c+1

×
K∏

r=1;Θ∗
r=1,X∗

r≤t

n̄r+1 + ñc
r + 1

n̄r+1 + ñc
r + nr + 1− σ

, (2.11)
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where

ηt :=

Kt∑
r=1

α
(
(X∗

r−1, X
∗
r ∧ t]

)
B(1− σ,N∗

r + 1), and Kt = min{g : X∗
g ≥ t}.

A numerical approximation of E
[
S̃t | D

]
can be obtained via a suitable MCMC algorithm;

to this end, the full conditional distributions of the parameters σ, β, c must be identified.
The expressions of the full-conditional distributions derive directly from the marginal distri-
bution reported in Corollary 2.4.2, and they are reported in Section 2.F. At each step of the
marginal algorithm the model parameters are sampled according to their full-conditional
distributions; then, the corresponding estimated survival function can be evaluated on a
time-grid according to the expression (2.11). Finally, the posterior estimate can be ob-
tained as a Monte-Carlo approximation exploiting the samples obtained with the marginal
algorithm.

2.5.2 Conditional algorithm

The aim of this section is to describe a conditional algorithm that generates trajectories
from the posterior distribution of the survival function assuming the model (2.4) under a
SB-SP prior, with the assumption about the measure α and the model parameters described
before. Note that this algorithm is useful since it allows to estimate the actual posterior
distribution of the survival function under our model, as well as credible intervals for the
estimated quantities.
The goal can be achieved relying on a hierarchical construction derived from Theorem
2.3.2 in the case of a stable-beta scaled prior. In particular, the posterior random survival
function for each t ≥ 0 can be represented as

S̃t | D = e
−µ̃F

∆1,hc,β
((0,t])|D

,

where the posterior distribution of the random measure µ̃F
∆1,hc,β

, i.e., the distribution of

µ̃F
∆1,hc,β

| D, can be hierarchically described as

µ̃F
∆1,hc,β

| D, (∆1,hc,β
= y) = µ̃∗,F

c +

K∑
r:Θ∗

r=1

JF
r δX∗

r

∆−σ
1,hc,β

| D ∼ Gamma (K∗ + c+ 1, β + σησ) .
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In the previous expression:

i. µ̃∗,F
c ∼ CRM(ν∗F ), with Lévy intensity

ν∗F (ds, dx) = σy−σe−s(Y (x)+1)(1− e−s)−1−σ
1(0,∞)(s)dsα(dx),

and

ii. the jumps JF
r ’s, as r = 1, . . . ,K and Θ∗

r = 1, are such that

1− e−JF
r ∼ Beta(nr − σ, n̄r+1 + ñc

r + 1).

Please refer to Section 2.E for more details about the previous construction. Note that,
according to this construction, the discrete jumps JF

r ’s can be sampled as transformed
Beta variables. Moreover, the sampling procedure from the absolutely continuous part can
be divided in two parts: first of all, the jump ∆1,hc,β

can be sampled from its posterior
distribution (a transformed Gamma distributions); then, the problem of approximate the
random measure µ̃F

∆1,hc,β
reduces to sample from a CRM, i.e., the measure µ̃F

∆1,hc,β
condi-

tional on the jump ∆1,hc,β
. The CRM with the inhomogeneous Lévy intensity as in (i) can

be approximated relying on the algorithm described in Wolpert and Ickstadt (1998): relying
on the representation of CRMs described in Ferguson and Klass (1972), it approximates
the CRM µ̃∗,F

c as the finite sum

µ̃∗,F,M
c :=

M∑
k=1

ĥ′kδx̂′
k
,

for M > 0 big enough, where the set of locations (x̂′k)
M
k=1 is independently sampled from

the base measure α ∼ Uniform(0, τ). Moreover, as k = 1, . . . ,M , the kth approximated
jump ĥ′k is obtained as the zero of the function in the variable s

ξ(s) =

∫ ∞

s
ν ′(v, x̂′k)dv − σk,

where

ν∗F (ds, dx) = ν ′(s, x)dsα(dx) and ν ′(s, x) = σy−σe−s(Y (x)+1)(1− e−s)−1−σ
1(0,∞)(s),

and σk =
∑k

b=1Eb, as Ek ∼ Exponential(1) for each k. Since ξ is a decreasing function, we
simply assume ĥ′k = 0 if ξ(ϵ) < 0, where ϵ is a defined tolerance. Finally, note that at each
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iteration of the MCMC algorithm the parameters σ, c and β can be sampled from their full-
conditional distributions, which are reported in Section 2.F. Note that each trajectory of the
survival function sampled following the previous scheme can then be evaluated on a grid of
times, and that functional of the posterior distribution can be Monte Carlo-approximated,
such as the mean survival curve and the quantiles. The conditional algorithm will be applied
in the next section to a set of simulations studies and to a real dataset.

2.6 Illustrations

In the Section 2.5.2 we described an algorithmic strategy in order to sample trajectories
of the survival function from the posterior distribution of a stable-beta scaled process,
as presented in Corollary 2.4.3. The aim of this section is to apply the aforementioned
algorithm to a set of simulated survival times and to a real dataset. Note that the aim of a
sampling algorithm for our cure rate model is twofold: first of all, the resulting estimated
survival curve should approximate the real survival function; then, the value of the tail of
the estimated survival curve should approximate the cure rate arising from the available
data. This will be evident in the simulation study, since the data will be sampled from
a known distribution having a strictly positive cure rate value, so that the comparison
between the estimated and real survival curves are straightforward.
In particular, in Section 2.6.1 we apply the conditional algorithm to 3 different sets of
exchangeable survival times, simulated from a geometric distribution. Then, in Section
2.6.2 we exploit the algorithm to find suitable estimations of the survival curves arising
from the well-known bone marrow transplantation (BMT) dataset, according to the SB-SP
model.

2.6.1 Simulation study

In order to study the estimation of survival curves under the SB-SP model, the aim of
this section is apply the conditional algorithm described in Section 2.5.2 to different sets
of simulated datasets. In particular, our aim is to compare the estimated survival curve
from the SB-SP model with the real one, as well as to the Kaplan-Meier estimation, with
an increasing number of available and exchangeable observations.
Let us therefore consider a geometric distribution with parameter p = 0.3. For our simula-
tion study we consider a cure rate equal to pc = 0.2. Therefore, the simulation of the set of
survival times from this distribution can be performed in two steps: first of all, we sample
survival times from the aforementioned Geometric (p = 0.3) distribution with probability
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0.8; otherwise, we assign a large value to the survival time, i.,e., we sample a survival time
associated with a cured patient with probability 0.2. In the second step, we independently
apply the censorship mechanism.
Following the previous schema, we sample 3 sets of observations containing an increasing
number of observations: 10, 50 and 200. To each resulting survival dataset we apply the
conditional algorithm described in Section 2.5.2 under the same assumptions; in particular
we assume that the measure α is distributed as

α ∼ Uniform(0, τ),

where τ is a positive real number large enough such that all the observations are included
in (0, τ). Moreover, we assume a Beta prior on the parameter σ and two Gamma priors on
the parameters c and β. In particular, let us consider the priors

σ ∼ Beta(0.1, 0.1),

β ∼ Gamma(shape = 2, scale = 2) and

c ∼ Gamma(shape = 2, scale = 2).

Moreover, for each dataset we also compute the Kaplan-Meier estimation of the survival
functions. Note that since the survival function for geometrically distributed survival times
is equal to

Sg(t) = (1− p)⌊t⌋ for each t ≥ 0,

it follows that the real survival curve in our simulated framework is equal to

S(t) = pc + (1− pc)Sg(t) for each t ≥ 0,

where p is the parameter of the geometric distribution and pc is the cure rate defined above.
Figure 2.1 reports the results of the simulation study. First of all, note how with

an increasing number of observations both the Kaplan-Meier and the SB-SP estimations
become closer and closer to the real curve, providing a more precise approximation. Note
also how the SB-SP estimation becomes closer to the Kaplan-Meier estimation as the size
of the dataset increases. In fact, note how in Figure 2.1a the small number of data induces
a greater effect of the prior in estimating the posterior distribution of the survival curve.
On the other hand, while the number of observations increases, Figure 2.1b and 2.1c show
that the posterior estimates under the SB-SP model relies more and more on the data and
the effect of the prior assumptions is less perceptible. Therefore, since the Kaplan-Meier

57



Chapter 2. Cure rate models based on scaled processes

(a) Simulation: 10 observations

(b) Simulation: 50 observations

(c) Simulation: 200 observations

Figure 2.1: Plots of estimated survival curve from the SB-SP model (blue line), the
Kaplan-Meier estimator (green line) and the real survival curve (red line). The blue area is
the the 95% confidence interval of the SB-SP estimate.
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estimator completely relies on the data, this means that as the number of observations
increases the Kaplan-Meier and SB-SP estimates tend to get closer to each other, and both
to the true survival curve. Finally, as expected, the width of the 95% confidence interval
becomes increasingly smaller as the size of the dataset increases, since a greater number of
data leads to a reduction in the posterior variance. As far as the cure rate is concerned,
its estimation becomes more precise increasing the number of observations, as expected for
both SB-SP model and Kaplan-Meier estimator.

2.6.2 Application: BMT dataset

Let us now apply the discussed algorithm to a real dataset. In particular, following Nieto-
Barajas and Yin (2008) we consider the well-known bone marrow transplantation (BMT)
dataset, which contains information about patients with Hodgkin’s desease or with non-
Hodgkin’s lymphoma and who consequently were treated with procedures that led to de-
struction of bone marrow. BMT is a procedure that replace the destroyed bone marrow in
order to restore its ability to produce functioning blood cells in adequate numbers. There
are two types of BMT: allogenic BMT, an infusion of bone marrow from a donor, and au-
togenic BMT, a reinfusion of the patient’s own marrow that had been removed prior to the
treatment. The BMT dataset is composed by 43 rows, each row reports data on a different
patient; in particular, we are interested in the variables reporting the time to death, or
relaps, of the patient (in days) and the possible censorship of the observation, and in the
variable reporting wheter the adopted BMT procedure for that patient was allogenic or
autogenic. We apply the conditional algorithm independently on the datasets composed
by the patients treated with allogenic and autogenic BMT; note that the first dataset is
composed by 16 rows while the second dataset is composed by 27 rows. In both our cases,
we assume again that the measure α underlying the SB-SP model is distributed as

α ∼ Uniform(0, τ),

where τ is a positive real number large enough such that all the observations of the group are
included in (0, τ). In both the applications, we assume again the same priors on the model
parameters as in Section 2.6.1. The results of the algorithms are reported in Figure 2.2.

Note how, from Figure 2.2, the survival curves estimated independently in the two
groups present a different slope, and how for both groups a cure rate is appreciable, i.e., a
strictly positive probability of recovery. In particular, the allogenic BMT group, according
to our model, shows a slower decline in the probability of survival than the autogenic BMT
group. Furthermore, looking at the right tails of the plots, a patient in the allogenic BMT
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Figure 2.2: Plots of estimated survival curve from the SB-SP model applied to the group
of allogenic BMT patients (blue line) and autogenic BMT patients (dotted red line). The
blue and red areas are the the 90% confidence interval of the SB-SP estimate for allogenic
and autogenc BMT groups respectively.

group shows a higher probability of recovery than that of a patient in the autogenic BMT
group. The number of data for both groups is relatively small (less than 50, please refer to
Section 2.6.1), so for both groups it is possible to see the effect of the priors in the decay
of the survival functions, and also how the jumps occur corresponding to the exact and
distinct observations, as expected (see Section 2.5.2). Due to the low dimensions of the
datasets, note how the confidence intervals are quite large, indicating a large variance of
the posterior distribution of the survival functions for both groups.
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Appendix

This appendix is organized in different sections. In particular, Section 2.A shows some
further considerations on scaled processes which are not reported in the main sections
of this chapter, with a particular focus on a hierarchical representation of SPs. Sections
2.B and 2.C are dedicated to the proofs of the results reported in Sections 2.3 and 2.4
respectively. Section 2.D delves deeper into what was introduced in Section 2.4.2, explicitly
presenting the prior and posterior results of the nonparametric Bayesian survival model
under a 3-parameter IBP prior for the cumulative hazard function. Section 2.E presents all
the theoretical results obtained for the cumulative hazard function at the survival function
scale, specifically deriving the posterior distribution under an SB-SP prior; this result is
used in Sections 2.5 and 2.6 to derive the marginal and conditional algorithms. Finally,
Section 2.F provides further details on the aforementioned algorithms, hence completing
the discussion reported in Section 2.5.

2.A Further considerations on scaled processes

The proofs of the results of this paper make extensive use of a result regarding the behavior
of an SP conditional on the re-scaled highest jump. This result, proved in Section S2.1 of
Camerlenghi et al. (2022), is reported in the following lemma.

Lemma 2.A.1. Let µ∆1,h
∼ SP(ν, h) be a scaled process governed by the Lévy intensity

ν(ds, dx) = ρ(s)dsα(dx) on R+ × X. Then

µ̃∆1,h
| ∆1,h ∼ CRM(ν ′), where

ν ′(ds, dx) = ρ′(s)dsα(dx),

ρ′(s) = ∆1,hρ(∆1,hs)1(0,1)(s),

The law of the jump ∆1,h characterizes the process, therefore the conditional represen-
tation reported in Lemma 2.A.1 allows us to exploit the generic results of the CRMs used
as nonparametric priors for exchangeable survival times.
In the case of the SB-SPs, the law of the jump ∆1,h simplifies to a tractable expression, as
summarized by the next lemma.

Lemma 2.A.2. Let µ̃∆1,hc,β
∼ SB-SP(νσ, hc,β) be a stable-beta scaled process. Then the

jump ∆1,h has density
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f∆1,hc,β
(y) =

σβc+1

Γ(c+ 1)
y−1−(c+1)σe−βy−σ

,

i.e.,

∆−σ
1,hc,β

∼ Gamma (c+ 1, β) .

Proof. First of all, applying (2.3) to the transition kernel of a S-SP ρ(s) = σs−1−σ we have
that

f∆1(y) = σy−1−σe−y−σ
.

Since f∆1,hc,β
(y) = hc,β(y)f∆1(y) and

hc,β(y) =
βc+1

Γ(c+ 1)
y−cσ exp{−(β − 1)y−σ},

the thesis follows.

Note that the model defined in (2.4) directly induces a nonparametric model for the
survival function, since the CRM defined in Lemma 2.A.1 can be transposed at the scale
of the survival function with the change of variable

s 7→ 1− e−s.

The following definition summarized this construction.

Definition 2.A.1. Let us consider µ̃ ∼ SP(ν, h) as in Definition 2.2.2. The measure µ̃F
∆1,h

such that

µ̃F
∆1,h

| ∆1,h ∼ CRM(ν ′F ), where

ν ′F (ds, dx) = ρ′F (s)dtα(dx),

ρ′F (s) = ∆1,hρ(∆1,h(1− e−s))e−s
1(0,∞)(s).

(2.12)

is called Beta-Stacy Scaled Process (BS-SP). Let us write

µ̃F
∆1,h

∼ BS-SP(ν, h).

If µ̃∆1,hc,β
∼ SB-SP(νσ, hc,β), the measure µ̃F

∆1,hc,β
is called Stable-Beta-Stacy Scaled Process

(SBS-SP). Let us write
µ̃F
∆1,hc,β

∼ SBS-SP(νσ, hc,β).

65



Chapter 2. Cure rate models based on scaled processes

Note that this definition induces a nonparametric model on the survival function the
same way the Beta-Stacy process is induced by the beta process; see Walker and Muliere
(1997). In particular, the corresponding nonparametric model on the survival function
S̃ = 1− F̃ is

(X1, . . . , XN ) | F̃ ∼F̃

F̃ (t) =1− e
−µ̃F

∆1,h
(0,t]

for any t ≥ 0

µ̃F
∆1,h

∼BS-SP(ν, h).

(2.13)

Note that, given a survival dataset D,

Eµ̃∆1,h
|∆1,h

[1D] = Eµ̃F
∆1,h

|∆1,h
[1D] ,

i.e., the models (2.4) and (2.13) induce the same likelihood for the data D.

2.B Proofs of Section 2.3

Proof of Proposition 2.3.1. Thanks to the conditional representation reported in Lemma
2.A.1, the expected value can be written as

E
[
H̃t

]
= E

[
µ̃∆1,h

(0, t]
]
= E∆1,h

[
Eµ̃∆1,h

|∆1,h

[
µ̃∆1,h

(0, t] | ∆1,h

]]
= E∆1,h

[∫ t

0

∫
R+

sν ′(ds, dx)

]
= E∆1,h

[∫ t

0

∫
R+

s∆1,hρ(∆1,hs)1(0,1)(s)dsα(dx)

]
.

So the thesis follows.

Proof of Theorem 2.3.1. Note that the likelihood is

E [1D] = E∆1,h

[
Eµ̃∆1,h

|∆1,h
[1D]

]
and recall that

Eµ̃∆1,h
|∆1,h

[1D] = Eµ̃F
∆1,h

|∆1,h
[1D] ,

is the likelihood of the data D arising from the models in (2.4) and in (2.13), as underlined
in the Section 2.A. For ease of calculation, we are going to compute

Eµ̃F
∆1,h

|∆1,h
[1D] .
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So according to Definition 2.A.1 we have that

µ̃F
∆1,h

| ∆1,h ∼ CRM(ν ′F ),

where

ν ′F (ds, dx) = ρ′F (s)dsα(dx) and

ρ′F (s) = ∆1,hρ(∆1,h(1− e−s))e−s
1(0,∞)(s).

Exploiting the general result for the expression of likelihood under CRM priors reported in
Ferguson and Phadia (1979), it follows that

Eµ̃∆1,h
|∆1,h

[1D] =
K∏

r=1 Θ∗
r=1

[
α(dX∗

r )

∫
R+

(1− e−s)nre−s(n̄r+1+ñc
r)ρ′(s)ds

]

× exp

{
−
∫
R+

∫
X

(
1− e−Y (x)s

)
ν ′(ds, dx)

}
.

Since
E∆1,h

[
Eµ̃∆1,h

|∆1,h
[1D]

]
=

∫
R+

Eµ̃∆1,h
|∆1,h=y [1D] f∆1,h

(y)dy,

it follows that the likelihood is infinitesimally equal to

∫
R+

yK
∗

K∏
r=1 Θ∗

r=1

[
α(dX∗

r )

∫
R+

(1− e−s)nre−s(n̄r+1+ñc
r+1)ρ(y(1− e−s))ds

]

× exp

{
−y

∫
R+

∫
R+

(
1− e−Y (x)s

)
ρ(y(1− e−s))e−sdsα(dx)

}
f∆1,h

(y)dy.

The thesis follows with the change of variable 1− e−s 7→ s.

Proof of Proposition 2.3.2. Let us recall that

µ̃F
∆1,h

| ∆1,h ∼ CRM(ν ′F ),

where ν ′F (ds, dx) is described in (2.12). Exploiting the general results for the CRMs re-
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ported in Ferguson and Phadia (1979), it follows that

µ̃F
∆1,h

| D = µ̃∗,F
c +

K∑
r:Θ∗

r=1

JF
r δX∗

r
,

where:

i. µ̃∗,F
c ∼ CRM(ν∗,Fc ), where

ν∗,Fc (ds, dx) = e−Y (x)sye−sρ
(
y(1− e−s)

)
1(0,∞)(s)dsα(dx),

ii. the jumps JF
r ’s have density proportional to

(1− e−s)nre−s(n̄r+1+ñc
r)ye−sρ

(
y(1− e−s)

)
1(0,∞)(s)ds.

The thesis follows with the change of variable 1− e−s 7→ s.

Proof of Proposition 2.3.2. From Theorem 2.3.2,

E
[
H̃t | D

]
=E

[
µ̃∆1,h

(0, t] | D
]
= E∆1,h|D

[
Eµ̃∆1,h

|D,∆1,h

[
µ̃∆1,h

(0, t] | D,∆1,h

]]
=E∆1,h|D

Eµ̃∆1,h
|D,∆1,h

µ̃∗
c(0, t] +

K∑
r:Θ∗

r=1

JrδX∗
r
(0, t]


=

∫
R+

Eµ̃∆1,h
|D,∆1,h=y [µ̃

∗
c(0, t]] +

K∑
r:Θ∗

r=1,X∗
r≤t

Eµ̃∆1,h
|D,∆1,h=y[Jr]

 f∆1,h|D(y).

Note that from Theorem 2.3.2 follows that

Eµ̃∆1,h
|D,∆1,h=y [µ̃

∗
c(0, t]] =

∫ t

0

∫
R+

sν∗(ds, dx),

and that the density function for the jump Jr is

snr(1− s)n̄r+1+ñc
rρ (ys) ds∫ 1

0 tnr(1− t)n̄r+1+ñc
rρ (yt) dt

so the thesis follows.
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2.C Proofs of Section 2.4

Proof of Proposition 2.4.1. Let us show it via the Laplace functional. Let us consider a
measurable function

g : R+ → R such that
∫

| g | dµ̃F
∆1,hc,β

< ∞.

Then,

E
[
e
−µ̃∆1,hc,β

(g)
| ∆1,hc,β

= y

]
= exp

{
−
∫
R+

∫ 1

0

(
1− e−sg(x)

)
yσy−1−σs−1−σdsα(dx)

}
= exp

{
−σy−σ

∫
R+

∫ 1

0

(
1− e−sg(x)

)
s−1−σdsα(dx)

}
.

Let us define

I :=

∫
R+

∫ 1

0

(
1− e−sg(x)

)
s−1−σdsα(dx).

Therefore, integrating the jump ∆1,hc,β
out we have that

E
[
e
−µ̃F

∆1,hc,β
(g)
]
=

∫
R+

e−σy−σI σβc+1

Γ(c+ 1)
y−1−(c+1)σe−βy−σ

dy

=
σβc+1

Γ(c+ 1)

∫
R+

y−1−(c+1)σe−(σI+β)y−σ
dy

=
σβc+1

Γ(c+ 1)
× Γ(c+ 1)

σ(σI + β)c+1
=

(
β

σI + β

)c+1

=

(
1 +

σ

β
I

)−(c+1)

=

(
1 +

∫
R+

∫ 1

0

(
1− e−sg(x)

) σ

β
s−1−σdsα(dx)

)−(c+1)

.

So the thesis follows.

Proof of Corollary 2.4.1. Note that the results of Proposition 2.3.1 can be specialized con-
sidering that

ρ(ys) = σy−1−σs−1−σ

and that, from Lemma 2.A.2,

f∆1,hc,β
(y) =

σβc+1

Γ(c+ 1)
y−1−(c+1)σe−βy−σ

.
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So we have that the expected value is

E
[
H̃t

]
= α((0, t]) ·

∫
R+

∫ 1

0
syρ(ys)dsf∆1,hc,β

(y)dy

= α((0, t]) ·
∫
R+

∫ 1

0
syσy−1−σs−1−σds

σβc+1

Γ(c+ 1)
y−1−(c+1)σe−βy−σ

dy

=
σ2βc+1α((0, t])

Γ(c+ 1)

∫
R+

y−1−(c+2)σe−βy−σ
dy

∫ 1

0
s−σds

=
σ2βc+1α((0, t])

(1− σ)Γ(c+ 1)

∫
R+

y−1−(c+2)σe−βy−σ
dy.

Note that the function inside the integral is proportional to the density of variable X such
that X−σ is distributed as a gamma with shape equal to c+ 2 and rate equal to β. Then

E
[
H̃t

]
=

σ2βc+1α((0, t])

(1− σ)Γ(c+ 1)

∫
R+

y−1−(c+2)σe−βy−σ
dy

=
σ2βc+1

(1− σ)Γ(c+ 1)
× Γ(c+ 2)

σβc+2
× α((0, t]).

So the thesis follows.

Proof of Corollary 2.4.2. In order to specialize the expression in (2.5), let us recall that if
µ̃∆1,hc,β

∼ SB-SP(νσ, hc,β), then

ρ(ys) = σy−1−σs−1−σ,

f∆1,hc,β
(y) =

σβc+1

Γ(c+ 1)
y−1−(c+1)σe−βy−σ

,

i.e., thanks to Lemma 2.A.2,

∆−σ
1,hc,β

∼ Gamma(c+ 1, β).

So, exploiting (2.5) we obtain that the likelihood is infinitesimally equal to
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∫
R+

σK∗
y−K∗σ

K∏
r=1:Θr∗=1

[
α(dX∗

r )

∫ 1

0
snr−1−σ(1− s)n̄r+1+ñc

rds

]
× exp

{
−σy−σ

∫
R+

[∫ 1

0

(
1− (1− s)Y (x)

)
s−1−σds

]
α(dx)

}
× σβc+1

Γ(c+ 1)
y−1−(c+1)σe−βy−σ

dy

=

∫
R+

σK∗+1y−1−(K∗+c+1)σe−βy−σ βc+1

Γ(c+ 1)
×

K∏
r=1:Θr∗=1

B (nr − σ, n̄r+1 + ñc
r + 1)

× exp

{
−σy−σ

∫
R+

[∫ 1

0

(
1− (1− s)Y (x)

)
s−1−σds

]
α(dx)

}
dy.

Note that the at-risk process Y (x) is a piecewise constant function that can be written as

Y (x) =

N∑
i=1

1[x,∞)(Xi) =

K∑
r=1

K∑
g=r

n∗
g1(X∗

r−1,X
∗
r ]
(x),

where n∗
g is the number of observations equal to X∗

r and we assume X∗
0 = 0. Let us define

N∗
r :=

K∑
g=r

n∗
g,

and note that Y (x) = 0 for any x > X∗
K . So we can write the exponential in the expression

of the likelihood as

exp

{
−σy−σ

∫
R+

[∫ 1

0

(
1− (1− s)Y (x)

)
s−1−σds

]
α(dx)

}
=exp

{
−σy−σ

K∑
r=1

∫ X∗
r

X∗
r−1

[∫ 1

0

(
1− (1− s)N

∗
r

)
s−1−σds

]
α(dx)

}

=exp

{
−σy−σ

K∑
r=1

α((X∗
r−1, X

∗
r ])

[∫ 1

0

(
1− (1− s)N

∗
r

)
s−1−σds

]}
.

Note that if N∗
r = 0, ∫ 1

0

(
1− (1− s)N

∗
r

)
s−1−σds = 0.
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If N∗
r ≥ 1 the integral becomes

∫ 1

0

(
1− (1− s)N

∗
r

)
s−1−σds =

∫ 1

0

1− N∗
r∑

k=0

(−1)k
(
N∗

r

k

)
sk

 s−1−σds

=

N∗
r∑

k=1

(−1)k−1

(
N∗

r

k

)∫ 1

0
sk−1−σds

=

N∗
r∑

k=1

(−1)k−1

(
N∗

r

k

)
1

k − σ
,

since 0 < σ < 1 ≤ k. Therefore, we get

exp

{
−σy−σ

∫
R+

[∫ 1

0

(
1− (1− s)Y (x)

)
s−1−σds

]
α(dx)

}

=exp

−σy−σ
K∑
r=1

α((X∗
r−1, X

∗
r ])

N∗
r∑

k=1

(−1)k−1

(
N∗

r

k

)
1

k − σ

 .

Let us define

ησ :=
K∑
r=1

α((X∗
r−1, X

∗
r ])

N∗
r∑

k=1

(−1)k−1

(
N∗

r

k

)
1

k − σ
,

hence, we finally obtain that the likelihood is infinitesimally equal to

K∏
r=1 Θr∗=1

α(dX∗
r )B (n̄r+1 + ñc

r + 1, nr − σ)

× σK∗+1βc+1

Γ(c+ 1)

∫
R+

y−1−(K∗+c+1)σe−(β+σησ)y−σ
dy.

From the previous expression we note that the posterior density of the jump ∆1,hc,β
is

proportional to

y−(K∗+c+1)σ−1e−(β+σησ)y−σ
,

i.e.,
∆−σ

1,hc,β
| D ∼ Gamma (K∗ + c+ 1, β + σησ)

and

f∆1,hc,β
|D(y) =

σ (β + σησ)
K∗+c+1

Γ(K∗ + c+ 1)
y−(K∗+c+1)σ−1e−(β+σησ)y−σ

.
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The thesis now follows.

Proof of Corollary 2.4.3. Let us first consider the model in (2.13) with a SBS-SP prior, i.e.,
with

µ̃F
∆1,hc,β

∼ SBS-SP(νσ, hc,β).

Let us prove that its posterior distribution can be written as:

µ̃F
∆1,hc,β

| D = µ̃∗,F
c +

K∑
r:Θr∗=1

JF
r δX∗

r
, (2.14)

where:

i. µ̃∗,F
c is a negative binomial random measure, i.e., µ̃∗,F

c ∼ BN(K∗ + c + 1, ρ∗,F , α),
where

ρ∗,F (s | x)ds = σ

β + σησ
e−s(Y (x)+1)(1− e−s)−1−σds,

ii. the jumps JF
r ’s have density proportional to

(1− e−s)nr−1−σe−s(n̄r+1+ñc
r+1)ds.

Then the thesis follows from (2.14) with the reparametrization s 7→ 1−e−s. Note that after
the change of variable the jumps Jr’s have density proportional to

snr−1−σ(1− s)n̄r+1+ñc
rds.

Let us now prove the posterior expression in (2.14). The posterior distribution of µ̃F
∆1,hc,β

can be obtained via its posterior Laplace functional. In particular, note that for any mea-
surable function

g : R+ → R such that
∫

| g | d
(
µ̃F
∆1,hc,β

| D
)
< ∞,

Lµ̃F
∆1,hc,β

|D(g) = E

[
e
−

∫
R+ g(x)

(
µ̃F
∆1,hc,β

|D
)
(dx)
]

= E∆1,hc,β
|D

[
Eµ̃F

∆1,hc,β
|∆1,hc,β

,D

[
e
−

∫
R+ g(x)

(
µ̃F
∆1,hc,β

|D
)
(dx)
]]

=

∫
R+

L
µ̃F
∆1,hc,β

|
(
∆1,hc,β

=y
)
,D

(g)f∆1,hc,β
|D(y)dy,
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where f∆1,hc,β
|D is the posterior density of the jump ∆1,hc,β

(see Corollary 2.4.2). Since

µ̃F
∆1,hc,β

| ∆1,hc,β
∼ CRM(ν ′F ), from Ferguson and Phadia (1979) it is well known that

L
µ̃F
∆1,hc,β

|
(
∆1,hc,β

=y
)
,D

(g) =

K∏
r=1:Θ∗

r=1

∫
R+ e−sg(X∗

r )(1− e−s)nre−s(n̄r+1+ñc
r+1)yρ(y(1− e−s))ds∫

R+(1− e−s)nre−s(n̄r+1+ñc
r+1)yρ(y(1− e−s))ds

× exp

{
−
∫
R+

∫
R+

(1− e−sg(x))e−s(Y (x)+1)yρ(y(1− e−s))dsα(dx)

}
=

K∏
r=1 Θ∗

r=1

∫
R+ e−sg(X∗

r )(1− e−s)nre−s(n̄r+1+ñc
r+1)ρ(y(1− e−s))ds∫

R+(1− e−s)nre−s(n̄r+1+ñc
r+1)ρ(y(1− e−s))ds

× exp

{
−y

∫
R+

∫
R+

(1− e−sg(x))e−s(Y (x)+1)ρ(y(1− e−s))dsα(dx)

}
.

(2.15)

Note that (2.15) provides the posterior Laplace functional under a SP prior. When the
prior is a SB-SP, we can continue the equalities as follows.

L
µ̃F
∆1,hc,β

|
(
∆1,hc,β

=y
)
,D

(g) =

K∏
r=1 Θ∗

r=1

∫
R+ e−sg(X∗

r )(1− e−s)nre−s(n̄r+1+ñc
r+1)σy−1−σ(1− e−s)−1−σds∫

R+(1− e−s)nre−s(n̄r+1+ñc
r+1)σy−1−σ(1− e−s)−1−σds

× exp

{
−y

∫
R+

∫
R+

(1− e−sg(x))e−s(Y (x)+1)σy−1−σ(1− e−s)−1−σdsα(dx)

}
=

K∏
r=1 Θ∗

r=1

∫
R+ e−sg(X∗

r )(1− e−s)nr−1−σe−s(n̄r+1+ñc
r+1)ds∫

R+(1− e−s)nr−1−σe−s(n̄r+1+ñc
r+1)ds

× exp

{
−σy−σ

∫
R+

∫
R+

(1− e−sg(x))e−s(Y (x)+1)(1− e−s)−1−σdsα(dx)

}
.

Since

∆−σ
1,hc,β

| D ∼ Gamma (K∗ + c+ 1, β + σησ) ,
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we obtain that

Lµ̃F
∆1,hc,β

|D(g) =

∫
R+

K∏
r=1 Θ∗

r=1

∫
R+ e−sg(X∗

r )(1− e−s)nr−1−σe−s(n̄r+1+ñc
r+1)ds∫

R+(1− e−s)nr−1−σe−s(n̄r+1+ñc
r+1)ds

×

× exp

{
−σy−σ

∫
R+

∫
R+

(1− e−sg(x))e−s(Y (x)+1)(1− e−s)−1−σdsα(dx)

}
×

× σ (β + σησ)
K∗+c+1

Γ(K∗ + c+ 1)
y−(K∗+c+1)σ−1e−(β+σησ)y−σ

dy =

=
K∏

r=1 Θ∗
r=1

∫
R+ e−sg(X∗

r )(1− e−s)nr−1−σe−s(n̄r+1+ñc
r+1)ds∫

R+(1− e−s)nr−1−σe−s(n̄r+1+ñc
r+1)ds

×

× σ (β + σησ)
K∗+c+1

Γ(K∗ + c+ 1)

∫
R+

e−(β+ση+σησ)y−σ
y−σ(K∗+c+1)dy,

where

η =

∫
R+

∫
R+

(1− e−sg(x))e−s(Y (x)+1)(1− e−s)−1−σdsα(dx).

Note that

σ (β + σησ)
K∗+c+1

Γ(K∗ + c+ 1)

∫
R+

e−(β+ση+σησ)y−σ
y−σ(K∗+c+1)dy =

=
σ (β + σησ)

K∗+c+1

Γ(K∗ + c+ 1)
× 1

σ
× Γ(K∗ + c+ 1)

(β + ση + σησ)K
∗+c+1

=

(
1 +

σ

β + σησ
η

)−(K∗+c+1)

.

So finally

Lµ̃F
∆1,hc,β

|D(g) =

K∏
r=1 Θ∗

r=1

∫
R+ e−sg(X∗

r )(1− e−s)nr−1−σe−s(n̄r+1+ñc
r+1)ds∫

R+(1− e−s)nr−1−σe−s(n̄r+1+ñc
r+1)ds

×

×
(
1 +

∫
R+

∫
R+

(1− e−sg(x))
σ

β + σησ
e−s(Y (x)+1)(1− e−s)−1−σdsα(dx)

)−(K∗+c+1)

,

hence the thesis follows.

Proof of Corollary 2.4.4. To prove the statement it is enough to specialize the expression
in Proposition 2.3.2 by noticing that

ρ(ys) = σy−1−σs−1−σ
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and

f∆1,hc,β
|D(y) =

σ (β + σησ)
K∗+c+1

Γ(K∗ + c+ 1)
y−(K∗+c+1)σ−1e−(β+σησ)y−σ

,

thanks to Lemma 2.A.2. So it follows that∫ t

0

∫ 1

0
s(1− s)Y (x)ρ(ys)dsα(dx) =σy−σ

∫ t

0

∫ 1

0
s−σ(1− s)Y (x)dsα(dx) =

=σy−σ
Kt∑
r=1

α
(
(X∗

r−1, X
∗
r ]
) ∫ 1

0
s−σ(1− s)N

∗
r ds =

=σy−σ
Kt∑
r=1

α
(
(X∗

r−1, X
∗
r ]
)
B(1− σ,N∗

r + 1),

where
Kt = min{g : X∗

g ≥ t}.

Note that

B(1− σ,N∗
r + 1) =

∫ 1

0
s−σ(1− s)N

∗
r ds =

=

N∗
r∑

k=0

(
N∗

r

k

)
(−1)k

∫ 1

0
sk−σds =

=

N∗
r∑

k=0

(
N∗

r

k

)
(−1)k

1

k + 1− σ
.

Let us define

ηt :=

Kt∑
r=1

α
(
(X∗

r−1, X
∗
r ]
)
B(1− σ,N∗

r + 1).

So finally ∫ t

0

∫ 1

0
s(1− s)Y (x)ρ(ys)dsα(dx) = σy−σηt. (2.16)

Note also that

exp

{
−
∫ t

0

∫
R+

(1− e−s)e−s(Y (x)+1)ρ(y(1− e−s))dsα(dx)

}
= e−σy−σηt .
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Moreover,∫ 1
0 snr+1(1− s)n̄r+1+ñc

rρ (ys) ds∫ 1
0 tnr(1− t)n̄r+1+ñc

rρ (yt) dt
=

σy−1−σ
∫ 1
0 snr−σ(1− s)n̄r+1+ñc

rds

σy−1−σ
∫ 1
0 tnr−σ−1(1− t)n̄r+1+ñc

rdt

=

∫ 1

0

snr−σ(1− s)n̄r+1+ñc
rds

B(nr − σ, n̄r+1 + ñc
r + 1)

ds =
nr − σ

n̄r+1 + ñc
r + nr + 1− σ

,

(2.17)

since the last integral is the expected value of a Beta(nr−σ, n̄r+1+ ñc
r+1) random variable.

Note also that
1− e−JF

r

is distributed again as a Beta(nr − σ, n̄r+1 + ñc
r + 1) random variable. So, merging (2.16)

and (2.17) into the expression of Proposition 2.3.2, it follows that

E
[
H̃t | D

]
=

∫
R+

[∫ t

0

∫ 1

0
s(1− s)Y (x)yρ(ys)dsα(dx)+

+
K∑

r=1;Θ∗
r=1,X∗

r≤t

∫ 1
0 snr+1(1− s)n̄r+1+ñc

rρ (ys) ds∫ 1
0 tnr(1− t)n̄r+1+ñc

rρ (yt) dt

 f∆1,hc,β
|D(y)dy =

=

∫
R+

σy−σηt +

K∑
r=1;Θ∗

r=1,X∗
r≤t

nr − σ

n̄r+1 + ñc
r + nr + 1− σ

 f∆1,hc,β
|D(y)dy =

=σηt

∫
R+

y−σf∆1,hc,β
|D(y)dy +

K∑
r=1;Θ∗

r=1,X∗
r≤t

nr − σ

n̄r+1 + ñc
r + nr + 1− σ

.

Note that the integral in the previous expression can be explicitly calculated as follows:∫
R+

y−σf∆1,hc,β
|D(y)dy =

σ (β + σησ)
K∗+c+1

Γ(K∗ + c+ 1)

∫
R+

y−(K∗+c+2)σ−1e−(β+σησ)y−σ
dy =

=
σ (β + σησ)

K∗+c+1

Γ(K∗ + c+ 1)
× Γ(K∗ + c+ 2)

σ (β + σησ)
K∗+c+2

.

It follows that ∫
R+

y−σf∆1,hc,β
|D(y)dy =

K∗ + c+ 1

β + σησ
,

hence the thesis follows.
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Proof of Proposition 2.4.2. The random measure hierarchically defined in the statement is

µ̃ | γ ∼CRM(ν),

ν(ds, dx) =γ
Γ(2− σ)

Γ(1− σ)Γ(1)
s−1−σdsα(dx),

γ ∼Gamma
(
c+ 1,

β(1− σ)

σ

)
,

i.e.,

µ̃ | γ ∼CRM(ν),

ν(ds,dx) =γ(1− σ)s−1−σdsα(dx),

γ ∼Gamma
(
c+ 1,

β(1− σ)

σ

)
.

We are going to show that the Laplace functional of µ̃ coincides with that of a negative
binomial random measure. The Laplace functional of µ̃, for any measurable function

f : R+ → R such that
∫

| f | dµ̃ < ∞,

is

E
[
e−µ̃(f)

]
=

∫
R+

E
[
e−µ̃(f) | γ

] 1

Γ(c+ 1)

(
β(1− σ)

σ

)c+1

γc exp

{
−β(1− σ)

σ
γ

}
dγ =

=
1

Γ(c+ 1)

(
β(1− σ)

σ

)c+1 ∫
R+

exp {−γ(1− σ)I} γc exp
{
−β(1− σ)

σ
γ

}
dγ,

where

I :=

∫
R+

∫ 1

0
(1− e−sf(x))s−1−σdsα(dx).

So the Laplace functional of µ̃ is

E
[
e−µ̃(f)

]
=

1

Γ(c+ 1)

(
β(1− σ)

σ

)c+1 ∫
R+

γc exp

{
−γ

(
(1− σ)I +

β(1− σ)

σ

)}
dγ =

=
1

Γ(c+ 1)

(
β(1− σ)

σ

)c+1

× Γ(c+ 1)

(
σ

σ(1− σ)I + β(1− σ)

)c+1

=

=

(
1 +

σ

β
I

)−(c+1)

,
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which is the Laplace functional of the negative binomial random measure with distribution

BN
(
c+ 1,

σ

β
s−1−σ, α

)
.

The thesis follows From Proposition 2.4.1.

2.D IBP as nonparametric prior in Survival Analysis

Let us consider the model (2.9). The aim of this section is to present some prior and
posterior results assuming a 3-parameter IBP as nonparametric prior for the cumulative
hazard function. The proofs are a direct application of the general results regarding CRMs.
The first result is the prior expected value for the cumulative hazard in model (2.9).

Proposition 2.D.1. The prior expected value for µ̃ ∼ IBP(γ, θ, σ) is

E [µ̃(0, t]] = γ
Γ(1 + θ)

Γ(1− σ)Γ(θ + σ)
B(1− σ, θ + σ)α((0, t]) (2.18)

for any t ≥ 0.

Then, the following proposition summarizes the expression for the marginal distribution
arising from model (2.9).

Proposition 2.D.2. The distribution of the data D arising from the model in (2.9) is
infinitesimally equal to

γK
∗
(

Γ(1 + θ)

Γ(1− σ)Γ(θ + σ)

)K∗

×

×
K∏

r=1:Θ∗
r=1

[α(dX∗
r )B(nr − σ, n̄r+1 + ñc

r + θ + σ)]×

× exp

−γ
Γ(1 + θ)

Γ(1− σ)Γ(θ + σ)

K∑
r=1

α((X∗
r−1, X

∗
r ])

N∗
r∑

k=1

(−1)k−1

(
N∗

r

k

)
B(k − σ, θ + σ)

 .

(2.19)

The posterior distribution of a IBP can be described as follows.

Proposition 2.D.3. Let us consider the model in (2.9) with a IBP prior, i.e., with

µ̃ ∼ IBP(γ, θ, σ).
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Then the posterior distribution can be written as

µ̃ | D = µ̃∗
c +

K∑
r:Θr∗=1

JrδX∗
r
, (2.20)

where:

i. µ̃∗
c ∼ CRM(ν∗), where

ν∗(ds, dx) = γ
Γ(1 + θ)

Γ(1− σ)Γ(θ + σ)
s−1−σ(1− s)Y (x)+θ+σ−1dsα(dx),

ii. the jumps Jr’s are distributed as a

Beta(nr − σ, n̄r+1 + ñc
r + θ + σ).

Note that ν∗ is the Lev́y intensity of an IBP with updated parameters

γ′ = γ
Γ(1 + θ)Γ(Y (x) + θ + σ)

Γ(Y (x) + θ + 1)Γ(θ + σ)
,

θ′ = θ + Y (x),

σ′ = σ,

i.e., IBP is a conjugate prior for survival times. Finally, let us state the expression for the
posterior estimator of a IBP under a quadratic loss.

Proposition 2.D.4. Let us consider the model in (2.9) with a IBP prior, i.e., with

µ̃ ∼ IBP(γ, θ, σ).

Then the posterior estimator of µ̃ is

E [µ̃(0, t] | D] =γ
Γ(1 + θ)

Γ(1− σ)Γ(θ + σ)

Kt∑
r=1

α((X∗
r−1, X

∗
r ])B(1− σ,N∗

r + θ + σ)+

+
K∑

r=1:Θ∗
r=1,X∗

r≤t

nr − σ

n̄r+1 + ñc
r + nr + θ

.

(2.21)
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2.E Stable Beta-Stacy Scaled priors for Survival Functions

The aim of this section is to transpose all the results for the Stable-Beta Scaled priors
for cumulative hazard functions to the scale of the survival function, hence providing a
nonparametric scaled prior for survival functions in a exchangeable framework. Almost all
the results can be recovered as direct transformations of the results already discussed for
the SB-SPs in Section 2.4.
Let us therefore consider the SBS-SP model (2.13). First of all, let us state and prove the
result summarizing the prior expected value for the survival function under this model.

Corollary 2.E.1. Let us consider the model (2.13) with a SBS-SP prior. Then the expected
value of S̃ under the prior is equal to

E
[
S̃t

]
=

(
β

σ
1−σα((0, t]) + β

)c+1

for any t ≥ 0.

Proof. Note that

E
[
S̃t

]
= E

[
e
−µ̃F

∆1,hc,β
(0,t]
]
= E

[
E
[
e
−µ̃F

∆1,hc,β
(0,t]

| ∆1,hc,β
= y

]]
=

= E
[
exp

{
−
∫ t

0

∫
R+

(1− e−s)ν(ds, dx)

}]
=

= E
[
exp

{
−σy−σ

∫ t

0

∫
R+

e−s(1− e−s)−σdsα(dx)

}]
=

= E
[
exp

{
− σ

1− σ
y−σα((0, t])

}]
=

=

∫
R+

exp

{
− σ

1− σ
y−σα((0, t])

}
f∆1,hc,β

(y)dy.

Since from Lemma 2.A.2

f∆1,hc,β
(y) =

σβc+1

Γ(c+ 1)
y−1−(c+1)σe−βy−σ

,
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it follows that∫
R+

exp

{
− σ

1− σ
y−σα((0, t])

}
f∆1,hc,β

(y)dy =

σβc+1

Γ(c+ 1)

∫
R+

exp

{
−
(

σ

1− σ
α((0, t]) + β

)
y−σ

}
y−1−(c+1)σdy

σβc+1

Γ(c+ 1)
× Γ(c+ 1)

σ
(

σ
1−σα((0, t]) + β

)c+1 =

(
β

σ
1−σα((0, t]) + β

)c+1

.

Hence the thesis follows.

Since
lim
t→∞

α((0, t]) = 1

it follows that

lim
t→∞

E
[
S̃t

]
=

(
β

σ
1−σ + β

)c+1

is the prior estimate for the cure rate under SBS-SP model (2.13).
Let us now state the expression for the posterior distribution of a SBS-SP; the proof is a
simple transformation of the posterior expression reported in Corollary 2.4.3 and exploited
in its proof (see Section 2.C).

Proposition 2.E.1. Let us consider the model in (2.13). The posterior distribution of
µ̃F
∆1,hc,β

∼ SBS-SP(ν, h) can be described as

µ̃F
∆1,hc,β

| D = µ̃∗,F
c +

K∑
r:Θr∗=1

JF
r δX∗

r
, (2.22)

where:

i. µ̃∗,F
c is a negative binomial random measure, i.e., µ̃∗,F

c ∼ BN(K∗ + c + 1, ρ∗,F , α),
where

ρ∗,F (s | x)ds = σ

β + σησ
e−s(Y (x)+1)(1− e−s)−1−σds,

ii. the jumps JF
r ’s are such that

1− e−JF
r ∼ Beta(nr − σ, n̄r+1 + ñc

r + 1).

On the other hand, in order to sample trajectories from the posterior survival function
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under the model (2.13) it is useful to re-scale the hierarchical construction reported in
Theorem 2.3.2 applying it to the model (2.13). It follows the hierarchical construction

µ̃F
∆1,hc,β

| D, (∆1,hc,β
= y) = µ̃∗,F

c +
K∑

r:∆∗
r=1

JF
r δX∗

r

∆−σ
1,hc,β

| D ∼ Gamma (K∗ + c+ 1, β + σησ) ,

(2.23)

where:

i. µ̃∗,F
c ∼ CRM(ν∗F ), where

ν∗F (ds, dx) = σy−σe−s(Y (x)+1)(1− e−s)−1−σ
1(0,∞)(s)dsα(dx),

ii. the jumps JF
r ’s are such that

1− e−JF
r ∼ Beta(nr − σ, n̄r+1 + ñc

r + 1).

Finally, let us state and prove the result summarizing the expression of the posterior esti-
mator of the survival function under a quadratic loss.

Corollary 2.E.2. Let us consider the model in (2.13) with a SBS-SP prior, i.e., with

µ̃F
∆1,hc,β

∼ SBS-SP(νσ, hc,β).

Then the estimator for the survival function under a quadratic loss is

E
[
S̃t | D

]
=

(
β + σησ

β + σησ + σηt

)K∗+c+1

×
K∏

r=1;Θ∗
r=1,X∗

r≤t

n̄r+1 + ñc
r + 1

n̄r+1 + ñc
r + nr + 1− σ

,

where

ηt :=

Kt∑
r=1

α
(
(X∗

r−1, X
∗
r ∧ t]

)
B(1− σ,N∗

r + 1), and Kt = min{g : X∗
g ≥ t}.

Proof. If
µ̃F
∆1,hc,β

∼ BS-SP(νσ, hc,β).
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The posterior estimator under a quadratic loss for the survival function S̃ is

E
[
S̃t | D

]
=

∫
R+

[
exp

{
−
∫ t

0

∫
R+

(1− e−s)e−s(Y (x)+1)yρ(y(1− e−s))dsα(dx)

}
×

×
K∏

r=1;Θ∗
r=1,X∗

r≤t

(
1− E

[
1− e−JF

r

]) f∆1,hc,β
|D(y)dy,

where JF
r is the rth jump of the posterior expression in Proposition 2.E.1. Note that

E
[
S̃t | D

]
=E

[
e
−µ̃F

∆1,hc,β
(0,t] | D

]
= E∆1,hc,β

|D

[
Eµ̃F

∆1,hc,β
|D,∆1,hc,β

[
e
−µ̃F

∆1,hc,β
(0,t]

| D,∆1,hc,β

]]

=E∆1,hc,β
|D

Eµ̃F
∆1,hc,β

|D,∆1,hc,β

e−µ̃∗,F
c (0,t] ×

K∏
r:∆∗

r=1

e−JF
r δX∗

r
(0,t]


=E∆1,hc,β

|D

Eµ̃F
∆1,hc,β

|D,∆1,hc,β

[
e−µ̃∗,F

c (0,t]
]
× Eµ̃F

∆1,hc,β
|D,∆1,hc,β

 K∏
r:∆∗

r=1

e−JF
r δX∗

r
(0,t]

 .

The elements of the previous expression can be can be made explicit. In particular,

Eµ̃F
∆1,hc,β

|D,∆1,hc,β

[
e−µ̃∗,F

c (0,t]
]
=exp

{
−
∫ t

0

∫
R+

(1− e−s)ν∗F (ds, dx)

}
=exp

{
−
∫ t

0

∫
R+

(1− e−s)e−s(Y (x)+1)yρ(y(1− e−s))dsα(dx)

}
,

while

Eµ̃F
∆1,hc,β

|D,∆1,hc,β

 K∏
r:∆∗

r=1

e−JF
r δX∗

r
(0,t]

 =
K∏

r:∆∗
r=1

E
[
e−JF

r 1(0,t](X
∗
r ) + 1− 1(0,t](X

∗
r )
]

=
K∏

r:∆∗
r=1

E
[
1− (1− e−JF

r )1(0,t](X
∗
r )
]

=

K∏
r:∆∗

r=1

(
1− E

[
(1− e−JF

r )1(0,t](X
∗
r )
])

.

It follows that the posterior estimator of S̃ under a quadratic loss can be written as
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E
[
S̃t | D

]
=E∆1,hc,β

|D

[
exp

{
−
∫ t

0

∫
R+

(1− e−s)ν∗F (ds, dx)

}
×

×
K∏

r:∆∗
r=1

(
1− E

[
(1− e−JF

r )1(0,t](X
∗
r )
])

=

∫
R+

[
exp

{
−
∫ t

0

∫
R+

(1− e−s)e−s(Y (x)+1)yρ(y(1− e−s))dsα(dx)

}

×
K∏

r=1;Θ∗
r=1,X∗

r≤t

(
1− E

[
1− e−JF

r

]) f∆1,hc,β
|D(y)dy

The previous expression can be simplified by considering

µ̃F
∆1,hc,β

∼ SBS-SP(νσ, hc,β).

In this case, the jumps Jrs are such that

1− e−JF
r ∼ Beta(nr − σ, n̄r+1 + ñc

r + 1),

so it follows that

K∏
r=1;Θ∗

r=1,X∗
r≤t

(
1− E

[
1− e−JF

r

])
=

K∏
r=1;Θ∗

r=1,X∗
r≤t

n̄r+1 + ñc
r + 1

n̄r+1 + ñc
r + nr + 1− σ

.

Moreover, in this case the kernel density ρ is such that

ρ(y(1− e−s)) = σy−1−σ(1− e−s)−1−σ,

so it follows that∫ t

0

∫
R+

(1− e−s)e−s(Y (x)+1)yρ(y(1− e−s))dsα(dx) =

=σy−σ

∫ t

0

∫
R+

e−s(Y (x)+1)(1− e−s)−σdsα(dx) =

=σy−σ

∫ t

0
B(1− σ, Y (x) + 1)α(dx) = σy−σ

Kt∑
r=1

B(1− σ,N∗
r + 1)α((X∗

r−1, X
∗
r ∧ t]) = σy−σηt.
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So the posterior estimator of S̃ under a quadratic loss with a SBS-SP prior can be written
as ∫

R+

[
exp

{
−
∫ t

0

∫
R+

(1− e−s)e−s(Y (x)+1)yρ(y(1− e−s))dsα(dx)

}
×

×
K∏

r=1;Θ∗
r=1,X∗

r≤t

(
1− E

[
1− e−JF

r

]) f∆1,hc,β
|D(y)dy =

=

∫
R+

e−σy−σηtf∆1,hc,β
|D(y)dy ×

K∏
r=1;Θ∗

r=1,X∗
r≤t

n̄r+1 + ñc
r + 1

n̄r+1 + ñc
r + nr + 1− σ

.

Moreover, the posterior density of ∆1,hc,β
is

f∆1,hc,β
|D(y) =

σ (β + σησ)
K∗+c+1

Γ(K∗ + c+ 1)
y−(K∗+c+1)σ−1e−(β+σησ)y−σ

,

so the integral in the previous expression can be simplified as follows:∫
R+

e−σy−σηtf∆1,hc,β
|D(y)dy =

σ (β + σησ)
K∗+c+1

Γ(K∗ + c+ 1)

∫
R+

y−(K∗+c+1)σ−1e−(β+σησ+σηt)y−σ
dy =

=
σ (β + σησ)

K∗+c+1

Γ(K∗ + c+ 1)
× Γ(K∗ + c+ 1)

σ (β + σησ + σηt)
K∗+c+1

=

=

(
β + σησ

β + σησ + σηt

)K∗+c+1

.

Hence the thesis follows.

2.F Material on sampling algorithm

The aim of this section is to present the full conditional distributions of the parameters σ,
β and c of the model (2.4) under a SB-SP prior, in order to rely on a full Bayesian approach
as described in Section 2.5. The full-conditional distributions presented in the following are
useful for both a marginal and conditional algorithm; moreover, we assume two Gamma
distributed priors for β and c, and a Beta distributed prior for σ.
Let us recall that according to Corollary 2.4.2 the distribution of the data D arising from

86



2.F. Material on sampling algorithm

the model in (2.13) with a SB-SP prior is infinitesimally equal to

Γ (K∗ + c+ 1)σK∗
βc+1

Γ(c+ 1) (β + σησ)
K∗+c+1

×

 K∏
r=1:Θ∗

r=1

α(dX∗
r )B (nr − σ, n̄r+1 + ñc

r + 1)

 ,

where

ησ =
K∑
r=1

α((X∗
r−1, X

∗
r ])

N∗
r∑

k=1

(−1)k−1

(
N∗

r

k

)
1

k − σ
and N∗

r =
K∑
g=r

n∗
g,

and n∗
g is the number of observations equal to X∗

g . Let us now state the expressions of the
full-conditional distributions of σ, β and c, which can be directly derived from Corollary
2.4.2.
Let us consider a Beta(A,B) prior on the parameter σ. Then the full conditional distribu-
tion of σ is

π (σ | β, c,D) =
σK∗+A−1(1− σ)B−1

(β + σησ)
K∗+c+1

×

 K∏
r=1:Θ∗

r=1

B (nr − σ, n̄r+1 + ñc
r + 1)

 .

On the other hand, if we consider a Gamma(shape = κ, rate = θ) prior on the parameter
β, the full conditional distribution of β is

π (β | σ, c,D) =
βc+κe−θβ

(β + σησ)
K∗+c+1

.

Finally, if we consider a Gamma(shape = κ, rate = θ) prior on the parameter c, the full
conditional distribution of c is

π (c | σ, β,D) =
βc+1cκ−1e−θc

(β + σησ)
K∗+c+1

K∗−1∏
r=0

(K∗ + c− r).
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Chapter 3

Hierarchical neutral to the right priors

3.1 Introduction

Neutral to The Right processes are popular tools in Bayesian Nonparametrics because of
their central role within the exchangeable framework as nonparametric priors in survival
analysis. These processes were firstly introduced in the seminal Doksum (1974) as conjugate
nonparametric priors for exchangeable data, even in the presence of censored observations,
while a closed form representation of the posterior NTR process was provided in Ferguson
and Phadia (1979). On the other hand Completely Random Measures (CRMs), introduced
in Kingman (1967), play a key role in Bayesian Nonparametrics since they allow the con-
struction of several nonparametric priors, as described for example in Lijoi and Prünster
(2010). In particular, each NTR process can be represented as functional of a CRM: this
one-to-one correspondence between NTR processes and CRMs is a key theoretical charac-
terization which will be widely used in this work. The appealing conjugacy property enjoyed
by NTR processes has provided a useful theoretical tool for the study of nonparametric pri-
ors for exchangeable survival times; see for example Hjort (1990) and Walker and Muliere
(1997), where two specific conjugate NTR priors are introduced for cumulative hazards and
survival functions respectively. Other approaches to Bayesian nonparametric modelling in
survival analysis problems under the exchangeability assumption can be found for example
in Dykstra and Laud (1981) and in and Lo and Chung-Sing (1989), who introduced a mix-
ture hazard prior with a gamma process as mixing measure, and in Ishwaran and James
(2004), who used a general class of random hazard rate-based models generalizing the pre-
vious two works from a nonparametric setting on R+ to a setting over general spaces.
On the other hand, the exchangeability assumption fails to hold when we consider observa-
tions coming from different (though similar) populations. Consider for example a clinical
study conducted on the same drug but in different hospitals: reasonably, the survival times
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of the patients can be considered exchangeable within each hospital, while there may be
factors specific to each hospital that express great influence on the observations. When
(as in the example) we consider observations from d > 1 groups in which the assump-
tion of exchangeability can be held only within each group, partial exchangeability is a
more suitable assumption for the dependence of the data. This motivates the extension
of Bayesian nonparametric models to the partially exchangeable setting. The BNP litera-
ture has introduced numerous models of this kind. Notable examples in this area includes
nonparametric priors such as the dependent vector of hazard rates introduced in Lijoi and
Nipoti (2014) and the two-dimensional extension of NTR priors proposed in Epifani and
Lijoi (2010): the last paper is particularly important for our work since it introduces the
idea of generalizing the NTR processes to the partially exchangeable framework. The work
presented in Riva Palacio and Leisen (2018) extends Epifani and Lijoi (2010) introducing
a nonparametric model for the survival functions of d ≥ 2 groups of survival times, mod-
eling the dependence structure via Lévy copulas. Moreover, in this context, hierarchical
processes are hugely popular Bayesian nonparametric models since they are ideally suited
to model relationships across multiple samples which may show some kind of dependence;
for example, they may share the values of distinct observations. More precisely, the general
structure of a hierarchical process is

(p̃1, . . . , p̃d) | p̃0
i.i.d.∼ L̃0,

p̃0 ∼ L0,

where L̃0 is the probability distribution of each random probability measure p̃i such that
EL̃0

[p̃i | p̃0] =
∫
pL̃0(dp) = p̃0, whereas L0 is such that EL0 [p̃0] =

∫
pL0(dp) = P0 for

some fixed non-atomic probability measure P0. In this setting, the vector of random prob-
ability measures (p̃1, . . . , p̃d) defines a prior for the probability distributions of d partially
exchangeable samples, while the measure p̃0 induces dependence across samples. The first
example of a hierarchical process is the hierarchical Dirichlet process introduced in Teh
et al. (2006), and since then, the literature has extensively addressed the topic. A study on
general representations and properties for this class of processes can be found in Camer-
lenghi et al. (2019). A notable example in the context of survival analysis can be found in
Camerlenghi et al. (2021), where the authors present a class of multivariate mixtures whose
distribution acts as a prior for the vector of sample-specific baseline hazard rates.
The contribution presented in this work fits within the research stream of Bayesian nonpara-
metrics applied to survival analysis, particularly in the presence of partially exchangeable
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data. Following the mentioned literature, out aim is to introduce a hierarchical model that
generalizes NTR processes to the partially exchangeable setting, hence naturally obtain-
ing a suitable family of nonparametric priors for partially exchangeable and right-censored
survival times. Although hierarchical processes are usually very complex, and handling
them typically requires introducing a large number of latent variables, we will show how
our model, on the contrary, allows for the introduction of a limited number of them while
still leading to closed-form formulas.
The outline of the chapter is as follows. In Section 3.2, after defining the notation, the
family of hierarchical Neutral To the Right (hNTR) processes is introduced, pointing out
how they can be suitable nonparametric priors for partially exchangeable survival times. A
complete analysis of the posterior behaviour of the hNTR processes is described in Section
3.3; the main result of this work, i.e., the posterior characterization of a hNTR prior, is
stated and analyzed in this section. In Section 3.4 an example of hNTR process is presented;
this process, called hierarchical beta-stacy, is then used as a hierarchical prior for partially
exchangeable survival times, studying its properties and posterior behavior; therefore, a
marginal and a conditional algorithms are proposed in Section 3.5 in order to approximate
the posterior distribution of this process. Finally some applications of the hierarchical
beta-stacy prior on simulated and real datasets are shown in Section 3.6. Proofs and other
technical details are deferred to the Appendix.

3.2 NTR processes in Survival Analysis

The aim of this section is to extend Neutral to The Right (NTR) processes to the partially
exchangeable framework. To do so, in Section 3.2.1 we recall some basic concepts regarding
NTR processes as nonparametric priors on exchangeable survival times, while in Section
3.2.2 we extend them defining the family of hierarchical Neutral to the Right (hNTR)
processes. Finally, Section 3.2.3 shows how hNTR processes can be used as nonparametric
priors for a set of partially exchangeable survival times.

3.2.1 Background material

Exchangeability is an ubiquitous assumption in Bayesian nonparametrics, which entails
homogeneity of observations. A sequence of observations (Xn)n≥1 is exchangeable if its law
is invariant under finite permutations of its elements. The celebrated de Finetti theorem
states that this is equivalent to the existence of a random probability measure p̃ such that
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Xi | p̃
i.i.d.∼ p̃

for any i ≥ 1. When the Xi’s are survival times, the usual choice for p̃ is a neutral to
the right process. For further details see Doksum (1974). The reason for the popularity of
these processes as nonparametric priors for exchangeable survival times is given by their
conjugacy property: a NTR prior leads to a NTR posterior (even on censored data), whose
closed form representation was provided in Ferguson and Phadia (1979). A useful prop-
erty of NTR processes, widely used in the literature, is that they can be characterized as
functionals of specific random probability measures known as completely random measures;
for an exhaustive treatment of the topic, refer to Kingman (1967); Daley and Vere-Jones
(2008); Lijoi and Prünster (2010). To fix the notation, let us denote by (Ω,A,P) a prob-
ability space, and let (X,X ) be a measurable space, where X is a Polish space with its
Borel σ-algebra X . Let us denote by M the space of boundedly finite measures on (X,X ),
and by M the corresponding Borel σ-algebra. Completely random measures (CRMs), i.e.,
measurable maps from (Ω,A) to (M ,M) which map disjoint events in X to independent
random variables, were introduced in Kingman (1967), and they play a key role in Bayesian
Nonparametrics since they allow the construction of several nonparametric priors, as de-
scribed for example in Lijoi and Prünster (2010). In this chapter we will focus on CRMs
without fixed atoms and without deterministic drifts: as shown in Kingman (1967), each
of these is a transformation of a marked Poisson process, therefore its distribution can be
characterized by means of its Laplace functional, which equals

E
[
e−

∫
X f(x)µ̃(dx)

]
= exp

(
−
∫
R+×X

(
1− e−sf(x)

)
ν(ds, dx)

)
,

for any measurable function f : X → R such that
∫
|f |dµ̃ < ∞ almost surely. The measure

ν in the previous expression is called Lévy intensity measure of the CRM µ̃. It is well known
that the Lévy intensity characterizes the CRM: we will write µ̃ ∼ CRM(ν) to denote the
distribution of a CRM µ̃ having Lévy intensity ν.
As for the exchangeable framework, Doksum (1974) shows that a NTR process on R+ is
completely characterized by a CRM. In particular, given a random probability measure p̃,
the process {p̃((0, t]) : t ≥ 0} is neutral to the right if and only if there exists a completely
random measure µ̃ on R+ such that

{p̃((0, t]) : t ≥ 0} d
= {1− e−µ̃((0,t]) : t ≥ 0}, where P

[
lim
t→∞

µ̃((0, t]) = ∞
]
= 1.
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Let us write p̃ ∼ NTR(µ̃). This one-to-one correspondence between NTR processes and
CRMs is a key theoretical characterization which will be widely used in this work. Despite
the conjugacy property holds for any NTR process, in applications it is often useful to con-
sider specific NTR processes which present useful theoretical or computational features, for
example a posterior distribution easy to compute. For example, the beta process introduced
in Hjort (1990) has a posterior form that is still a beta process, with updated parameters;
another example of conjugate NTR process is the beta-stacy process, introduced in Walker
and Muliere (1997) as nonparametric prior for survival functions in the exchangeable set-
ting. In particular, let α be a probability measure on R+ which is absolutely continuous
with respect to the Lebesgue measure, and let c : R+ → R+ be a piecewise continuous
function. Let us recall that the random probability distribution F̃ is a beta-stacy process
with parameters c and α if F̃ (t) = p̃((0, t]) for each time t > 0 and p̃ ∼ NTR(µ̃), where µ̃

is a CRM whose Lévy intensity is

ν(ds, dx) =
e−sc(x)α((x,∞))

1− e−s
c(x)dsα(dx).

In such a case we say that the CRM µ̃ is a log-Beta measure with parameters c and α. In
the sequel we write F̃ ∼ Beta-Stacy(c, α) and µ̃ ∼ log-Beta(c, α). It is known from Walker
and Muliere (1997) that in a model for exchangeable survival times, the beta-stacy process
(such as the beta process) is a conjugate nonparametric prior, i.e., assuming a beta-stacy
prior the posterior is a beta-stacy process with updated parameters.

3.2.2 Hierarchical neutral to the right processes

Exchangeability is too restrictive when the data are organized in groups, for example when
data are survival times of patients with the same pathology who are undergoing different
treatments. In these cases the most appropriate assumption is the partial exchangeability.
Therefore, let us assume that the data are d groups of X-valued observations, where we
denote by Xi,j the ith observation of group j, for j = 1, . . . , d, where Nj is the number
of observations in group j; each observation Xi,j is a X-valued random element defined on
the common probability space (Ω,A,P). The partial exchangeability of the observations is
equivalent to the existence of a vector of dependent random probabilty measures, thanks
to the de Finetti representation theorem. More precisely, let us denote by P the space of
all probability measures over (X,X ), and by P d the corresponding d-dimensional product
space. Then, the sequences (Xi,j)i≥1 are partially exchangeable if and only if there exists
a probability measure Qd over P d such that
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P

 d⋂
j=1

Nj⋂
i=1

{Xi,j ∈ Ai,j}

 =

∫
P d

d∏
j=1

Nj∏
i=1

pi(Ai,j)Qd(dp1, ..,dpd),

for any (N1, . . . , Nd) ∈ Nd and for any collection of Borel sets Ai,j ∈ X , as j = 1, . . . , d and
i = 1, . . . , Nj . The measure Qd, called de Finetti measure, works as a prior distribution.
The choice of an appropriate de Finetti measure for the joint modelling of d ≥ 1 groups
of partially exchangeable survival times is addressed in various ways in the literature; our
proposal is to introduce a hierarchical model that represents a natural extension of the NTR
processes introduced in Doksum (1974). In particular, the aim of this section is to introduce
a new family of nonparametric priors called hierarchical Neutral to the Right processes.
Let µ̃0 ∼ CRM(ν) be a CRM having Lévy intensity ν = ρ(s | x)dsα(dx), where α is
a measure on (X,X ) and ρ is a transition kernel on X × B(R+). It is well known from
Kingman (1967) that the CRM µ̃0 can be expressed as functional of the points (h̃0,k, x̃k)k≥1

of a marked Poisson point process on R+ × X as follows:

µ̃0 =
∑
k≥1

h̃0,kδx̃k
. (3.1)

Following Masoero et al. (2018); Camerlenghi et al. (2021), let us now define a hierarchical
extension of completely random measures.

Definition 3.2.1 (hCRM). A vector of random measures (µ̃1, . . . , µ̃d) is said to be a vector
of hierarchical Completely Random Measures (hCRMs) if there exists a CRM µ̃0 as in (3.1)
such that

µ̃j | µ̃0
d
=
∑
k≥1

h̃j,kδx̃k
, (3.2)

where h̃j,k are independent conditionally on µ̃0 with probability density function on R+

given by fj(h | h̃0,k, x̃k, bj), for each j = 1, . . . , d. Here we denoted by bj any additional
parameter that can be defined in order to specify the jth measure of the hCRM vector.
Moreover, µ̃0 is called base measure.

Remark 3.2.1. The measures µ̃j ’s are independent conditional on the base measure µ̃0.
Note that for any j = 1, . . . , d the points x̃k’s are the same atoms of the base measure µ̃0

and h̃j,k represents the kth non-negative jump of the jth random measure µ̃j .

As recalled before in this section, in the exchangeable framework there is a one-to-one
correspondence between a CRM and a NTR process on X = R+; it is therefore natural
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that in a d-dimensional partially exchangeable framework a vector of hierarchical CRMs as
in Definition 3.2.1 can be related one-to-one to a vector of NTR processes. Note that, in
general, a d-dimensional vector of CRMs (µ̃1, . . . , µ̃d) on R+ is related to the corresponding
vector of random distributions (F̃1, . . . , F̃d) such that

F̃j(t) = 1− e−µ̃j(0,t],

for any j = 1, . . . , d and t > 0, and

P
[
lim
t→∞

µ̃j(0, t] = ∞
]
= 1,

for any j = 1, . . . , d. Let us now exploit Definition 3.2.1 to extend the definition of neutral
to the right processes as follows.

Definition 3.2.2 (hNTR). Let us consider a d-dimensional vector of hCRMs (µ̃1, . . . , µ̃d)

with base measure µ̃0 as in Definition 3.2.1. The vector of NTR processes (F̃1, . . . , F̃d) such
that

F̃j(t) = 1− e−(µ̃j |µ̃0)(0,t] and P
[
lim
t→∞

(µ̃j | µ̃0)(0, t] = ∞
]
= 1

for any j = 1, . . . , d, and t > 0, is called a vector of hierarchical Neutral to the Right
(hNTR) processes.

Remark 3.2.2. Note that given a the vector of hCRMs (µ̃1, . . . , µ̃d) with base measure µ̃0,
since the vector (µ̃1 | µ̃0, . . . , µ̃d | µ̃0) is composed by CRMs on R+, each distribution F̃j

as in Definition 3.2.2 is a NTR process. Note also that Definition 3.2.2 introduces a family
of hierarchical processes whose elements are vectors of hNTR processes which, according
to Definition 3.2.1, are completely specified choosing a base measure µ̃0 and the law of the
conditional jumps h̃j,k ∼ fj(h | h̃0,k, x̃k, bj) for each j = 1, . . . , d.

Therefore, this family is a hierarchical extension of the neutral to the right processes,
characterized by a hierarchical extension of the completely random measures. This makes
it theoretically interesting as a family of nonparametric priors for partially exchangeable
survival times.

3.2.3 hNTR priors for Survival Analysis

We now discuss how to use hNTR processes in presence of partially exchangeable survival
times. We also introduce the main objects of interest for our inferential goals (survival
functions). Therefore, let us assume that X = R+ and let us assume to be provided with d
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groups of survival times (T1,1, . . . , TN1,1), . . . , (T1,d, . . . , TNd,d), along with the d groups of
corresponding right censoring variables (∆1,1, . . . ,∆N1,1), . . . , (∆1,d, . . . ,∆Nd,d), where

∆i,j =

{
1 if Ti,j ≤ Ci,j

0 otherwise
,

and let us define as Xi,j = min(Ti,j ,∆i,j) the ith observation of the jth group. In the sequel
let us denote by D the vector containing all the observations Xi,j and the corresponding
variables ∆i,j , namely

D := {(Xi,j ,∆i,j) : j = 1, . . . , d, i = 1, . . . , Nj} ,

where Nj is the number of observations from the jth group. The observations, which areR+-
valued survival times, are assumed to come from an infinite array of partially exchangeable
random variables. In particular, the complete survival model is

(Xi1,1, . . . , Xid,d) | (p̃1, . . . , p̃d)
ind∼ p̃1 × . . .× p̃d (i1, . . . , id) ∈ Nd

(p̃1, . . . , p̃d) ∼ Qd,
(3.3)

where Qd is the joint distribution of the vector of random probability measures. Our aim is
to consider hierarchical processes from the hNTR family described in Section 3.2.2 as prior
distributions in the partially exchangeable model (3.3), thus extending the NTR priors as
nonparametric priors for exchangeable survival times. Let us therefore assume a hNTR
prior in (3.3), that is, the distribution Qd is the law of the hNTR vector (p̃1, . . . , p̃d).
Therefore, thanks to the representation (3.2), the jth random measure in (3.3) under a
hNTR prior is

p̃j(0, t] = 1− e−
∑

k≥1 h̃j,k11(0,t)(x̃k) = 1−
∏
k≥1

e−h̃j,k11(0,t)(x̃k),

for any j = 1, . . . , d and for any t > 0.
Let us recall the definition of survival function. Assuming that the survival times of the jth
group of observations are sampled i.i.d from a random variable Tj with distribution Hj(t),
the survival function for the jth group is

Sj(t) = P [Tj > 1] = 1−Hj(t),
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i.e., Sj(t) is the probability for a subject from group jth of being still alive at time t. As a
consequence the random survival function under a hNTR prior in (3.3) is

S̃j(t) = 1− F̃j(t) =
∏
k≥1

e−h̃j,k11(0,t)(x̃k),

for any j = 1, . . . , d and for any t > 0.
Note that, following this approach, each group of partially exchangeable observations is
modeled by a different element of the hCRM vector (µ̃1, . . . , µ̃d), while the base measure
µ̃0 induces (prior) dependence between the groups; this induces a sharing of information
between the random survival functions of the different groups. Note for example that
the locations x̃k’s of the jumps of the CRMs are shared and that they coincide with the
locations of the jumps of the base measure µ̃0; furthermore, the law of the conditional jumps
h̃j,k ∼ fj(h | h̃0,k, x̃k, bj), for each j = 1, . . . , d, depends both on the locations x̃k’s and the
jumps h̃0,k of the base measure. This sharing of information induced by the base measure
is known in the literature as borrowing of information, or borrowing of strength; therefore,
the estimate of the survival functions depend on both the group-specific parameters and
the estimates of the other groups.

3.3 Posterior Analysis

The previous section introduced the family of hNTR processes and showed how they repre-
sent a natural extension of NTR processes as nonparametric priors for partially exchange-
able survival times. The aim of this section is to study the marginal and posterior dis-
tribution of the survival model (3.3) under a hNTR prior, as introduced in Section 3.2.3.
The results presented in this section provides theoretical tools to study the marginal and
posterior distributions of a generic hNTR prior; these results will be exploited in the next
sections to define sampling algorithms for the marginal and conditional estimation of the
posterior survival functions under a hNTR prior. In the Section 3.4 an example of hNTR
prior will be introduced and these results will be applied to study its marginal and posterior
behaviour.
Before stating the main results of this section, let us introduce some useful notation. Note
that a hNTR process is a discrete prior, hence there may be ties among the observations
sampled from our model; therefore, let us denote by X∗

1 , . . . , X
∗
K the K distinct observa-

tions out of all the samples. Moreover, for any j = 1, . . . , d and for any r = 1, . . . ,K let us
define
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nr,j =

Nj∑
i=1

11(Xi,j=X∗
r ,∆i,j=1) and

nc
r,j =

Nj∑
i=1

11(Xi,j=X∗
r ,∆i,j=0),

i.e., nr,j is the number of exact observations in group j which coincide with the rth distinct
value X∗

r , while nc
r,j is the number of censored observations in group j which coincide with

the rth distinct value X∗
r . Moreover, for any r = 1, . . . ,K, we define the variable

∆∗
r := max

(i,j): Xi,j=X∗
r

∆i,j ,

which is equal to 1 if and only if there exists an exact observation coinciding with X∗
r .

Then, we introduce the at-risk processes referring to population j ∈ {1, . . . , d}:

N̄j(x) :=

Nj∑
i=1

11[x,+∞)(Xi,j)11{1}(∆i,j),

Ñ c
j (x) :=

Nj∑
i=1

11[x,+∞)(Xi,j)11{0}(∆i,j).

In particular, N̄j(x) counts the number of exact observations which are at risk after time
x, while Ñ c

j (x) counts the number of censored observations which are at risk after time x.
Let us further define the general at-risk process as Nj(x) = N̄j(x) + Ñ c

j (x).
The first result we present is a closed form representation of likelihood function assuming a
hNTR prior. The following theorem states this result; the proof is reported in Section 3.A.

Theorem 3.3.1. Consider the model described in (3.3) with a hNTR prior. The joint prob-
ability distribution of the vector of distinct observations (X∗

1 , . . . , X
∗
K) and the data D is ab-

solutely continuous with respect to the measure
∏K

r=1 ∆∗
r=1 α(dX

∗
r ), and its Radon–Nikodym
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derivative is given by

PK(X∗
1 , . . . , X

∗
K ,D) =

K∏
r=1 ∆∗

r=1

∫ ∞

0

d∏
j=1

∫ ∞

0
e−h(n̄r+1,j+ñc

r,j)(1− e−h)nr,jfj(h | s,X∗
r , bj)dhρ(s | X∗

r )ds


× exp

−
∫
X

∫ ∞

0

[
1−

d∏
j=1

∫ ∞

0
e−hNj(x)fj(h | s, x, bj)dh

]
ρ(s | x)dsα(dx)

 ,

(3.4)

where n̄r+1,j is the number of exact observations from the (r + 1)th distinct value in group
j, and ñc

r,j is the number of censored observations from the rth distinct value in group j.
Moreover, fj(h | s,X∗

r , bj) is the law of the conditional jumps of the hierarchical NTR prior,
as introduced in Remark 3.2.2.

Remark 3.3.1. Note that the expression of the joint distribution reported in (3.4) can be
simplified introducing a vector of latent jumps s = {sr : r = 1, . . . ,K s.t. ∆∗

r = 1} to avoid
the first integral. These latent jumps are associated to each distinct and exact observation,
and they lead to the following augmented version of the likelihood:

PK(X∗
1 , . . . , X

∗
K ,D, s) =

K∏
r=1 ∆∗

r=1


d∏

j=1

∫ ∞

0
e−h(n̄r+1,j+ñc

r,j)(1− e−h)nr,jfj(h | sr, X∗
r , bj)dhρ(sr | X∗

r )dsr


× exp

−
∫
X

∫ ∞

0

[
1−

d∏
j=1

∫ ∞

0
e−hNj(x)fj(h | s, x, bj)dh

]
ρ(s | x)dsα(dx)

 .

(3.5)

The expression of the likelihood reported in (3.5) will be assumed for the rest of the chapter
and in the appendix.

The importance of Theorem 3.3.1, together with Remark 3.3.1, in the present work
is twofold. First of all the expression of the likelihood allows characterizing the posterior
distribution of the generic hNTR prior, as will be shown in the next result. On the other
hand, we are able to recover the full conditional distributions of the model parameters from
the expression (3.5).
We now move to the second result of the section. The following theorem provides a closed
form characterization of the posterior distribution assuming a hNTR prior, even in presence
of right-censored survival times; the proof of the theorem is provided in Section 3.A.
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Chapter 3. Hierarchical neutral to the right priors

Theorem 3.3.2. Consider the survival model introduced in (3.3), let (µ̃1, . . . , µ̃d) be a
vector of hierarchical completely random measures as in Definition 3.2.1 and let us assume
that s is the vector of latent jumps introduced in (3.5). The posterior distribution of the
vector of hierarchical completely random measures can be described as follows:

(µ̃1, . . . , µ̃d) | D, s
d
= (µ̃′

1, . . . , µ̃
′
d) +

 K∑
r=1 ∆∗

r=1

J1,rδX∗
r
, . . . ,

K∑
r=1 ∆∗

r=1

Jd,rδX∗
r

 , (3.6)

where all the elements of this representation are defined below.

i. (µ̃′
1, . . . , µ̃

′
d) is a vector of hierarchical completely random measures that are indepen-

dent conditionally on a random measure µ̃′
0, where

µ̃′
0 =

∑
k≥1

h̃′0,kδx̃′
k
, µ̃′

j | µ̃′
0

d
=
∑
k≥1

h̃′j,kδx̃′
k
.

The posterior jumps h̃′j,k are independent conditionally on µ̃′
0 with density

f ′
j(h | h̃′0,k, x̃′k, bj) ∝ e−hNj(x)fj(h | s, x, bj),

where Nj(x) is the general at-risk process for group j already defined in this section.
The base measure µ̃′

0 ∼ CRM(ν ′) has updated Lévy intensity as follows:

ν ′(ds, dx) =

 d∏
j=1

∫ ∞

0
e−hNj(x)fj(h | s, x, bj)dh

 ρ(s | x)dsα(dx).

ii. The random variables Jj,r’s are independent jumps, as well as independent from the
hierarchical completely random measures described in the previous point, and they
have a density function on R+ proportional to

(1− e−h)nr,je−h(n̄r+1,j+ñc
r,j)fj(h | sr, X∗

r , bj).

Theorem 3.3.2 describes the posterior distribution of the vector of hierarchical CRMs,
hence providing a representation of the posterior distribution of a hNTR prior. Note that
the representation in (3.6) shows a "structural conjugacy" of the hNTR prior. In fact,
the posterior distribution is obtained combining a hNTR process (deriving from the vec-
tor of hCRMs (µ̃′

1, . . . , µ̃
′
d) described in (i)) and a finite and discrete part located on the
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3.4. Hierarchical beta-stacy process

atoms X∗
r ’s (whose jumps follows the law described in (ii)). Moreover, note that the sec-

ond component of the posterior vector in (3.6) induces borrowing of information between
the groups: all the locations (the observations X∗

r ’s) are shared among the d groups, so
whenever an observation is detected in one group an not detected in all the others, the
posterior distribution for that group still has a jump located on this observation; obviously,
the size of the jumps will depend on the data and on the group-specific parameters, accord-
ing to (ii). Moreover, the component µ̃′

j conditionally on the CRM µ̃′
0 is a CRM whose

expression is completely defined in Theorem 3.3.2. The posterior base measure carries in-
formation between the groups modelling the posterior dependence of the observations, since
it contributes to defining all the CRMs of the absolutely continuous component in (3.6).
The measure µ̃′

0 is provided in Theorem 3.3.2 via the usual correspondence with its Lévy
intensity ν ′(ds, dx): this representation allows to sample posterior trajectories exploiting
suitable algorithms, such as the one introduced in Wolpert and Ickstadt (1998).
The next section will be focused on an example of a hierarchical NTR process and on the
description of its structure and posterior distribution.

3.4 Hierarchical beta-stacy process

As discussed before, the appealing feature of NTR processes in survival analysis is the
availability of closed-form posterior distribution, provided in Ferguson and Phadia (1979).
However, as we discussed previously, it is useful to consider NTR priors that have a conju-
gate posterior, such as the beta-stacy process introduced in Walker and Muliere (1997) and
whose definition is reported in Section 3.2.1. Let us now consider the hierarchical model
defined in Section 3.2.2: the aim of this section is to introduce an example of hNTR process
which could be seen as an extension of the beta-stacy process, and to study its posterior
behaviour exploiting the results discussed in Section 3.3.

3.4.1 Hierarchical beta-stacy prior

A possible extension of the beta-stacy process to the partially exchangeable framework can
be obtained by choosing a log-Beta CRM as the base measure µ̃0 in (3.1), as defined in
Section 3.2.1, and specifying jumps conditionally distributed as transformations of Beta
variables in (3.2). Therefore, let us introduce the following definition.

Definition 3.4.1. (hierarchical beta-stacy) Consider a vector of hCRMs (µ̃1, . . . , µ̃d) with
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base measure µ̃0 as in Definition 3.2.1, i.e.,

µ̃j | µ̃0 =
∑
k≥1

h̃j,kδx̃k
for any j = 1, . . . , d,

µ̃0 =
∑
k≥1

h̃0,kδx̃k
.

Let α be a probability measure on R+ which is absolutely continuous with respect to
the Lebesgue measure, and let c : R+ → R+ be a piecewise continuous function. The
hierarchical beta-stacy process is a hNTR process whose vector of hCRMs is completely
defined as follows:

µ̃0 ∼ log-Beta(c, α),

1− e−h̃j,k | µ̃0 ∼ Beta(cj(x̃k)Fj(h̃0,k), cj(x̃k)(1− Fj(h̃0,k))),
(3.7)

where cj : R
+ → R+ is a function referring to group j ∈ {1, . . . , d}, while Fj is c.d.f. which

should encapsulate our prior opinion on the hazard function for the jth group.

Note that Definition 3.4.1 is well-posed: from Remark 3.2.2, to completely define a
hNTR process it is sufficient to specify the base measure µ̃0 and the conditional laws of
the jumps fj(·), and (3.7) provides these specifications. Note also that the group-specific
variables, in the example of the hierarchical beta-stacy process, are the functions cj and
the functions Fj introduced in Definition 3.4.1.
Let us now consider the prior expected value E

[
e−µ̃j(0,t]

]
of each survival function Sj , as

j = 1, ..., d and for t > 0. Exploiting what has been recalled in Section 3.2.1 and Definition
3.4.1, these value can be analytically computed, as summarized in the following proposition
which will be proved in Section 3.B.

Proposition 3.4.1. The prior expected value for the jth group in the hierarchical Beta
Stacy model is equal to

E
[
e−µ̃j(0,t]

]
= exp

[
−
∫ t

0

∫
R+

Fj (h)
e−hc(x)α((x,+∞))

1− e−h
c(x)dhα(dx)

]
, (3.8)

for any j = 1, . . . , d and any time t > 0.

The following proposition provides sufficient conditions to ensure that each survival
function S̃j(·) induced by a hNTR prior is proper. Let us recall that a survival function
S(t) is said to be proper if S(t) → 0 as t → ∞. The following results is proved in Section 3.B.
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3.4. Hierarchical beta-stacy process

Proposition 3.4.2. Let S̃j(t) be the prior survival function of group j assuming hierarchical
beta-stacy prior. Let us assume that for each j = 1, ..., d there exists a positive constant
Aj > 0 such that

Fj(s)

1− e−s
≥ Aj . (3.9)

Then, if the measure α is a uniform measure or the standard exponential measure, the
function S̃j(t) is proper, i.e.,

lim
t→∞

S̃j(t) = 0 almost surely, for any j = 1, . . . , d and t > 0.

Remark 3.4.1. Note that the assumption (3.9) in Proposition 3.4.2 is satisfied, for example,
for functions Fj ’s as follows:

Fj(s) = 1− e−ajs, with aj ∈ N.

In fact, since

1− e−ajs

1− e−s
= 1 + e−s + e−2s + ...+ e−(aj−1)s ≥ 1

for each aj ∈ N, it follows that (3.9) is satisfied with Aj = 1.

Ultimately, the hierarchical beta-stacy process can be used as nonparametric prior for
survival functions of partially exchangeable survival times. The results stated in this section
provide a closed form representation for the expected values under a hierarchical beta-stacy
prior, as well as sufficient conditions to ensure that the prior survival functions under this
model are proper. The next section will be focused on the analysis of the posterior and
marginal distributions of the hierarchical beta-stacy process, exploiting the general results
for hNTR processes discussed in Section 3.3.

3.4.2 Posterior representations

Let us consider the partially exchangeable model defined in (3.3), where p̃j = 1 − e−µ̃j

and (µ̃1, . . . , µ̃d) is the vector of hCRMs of a hierarchical beta-stacy process defined in
Definition 3.4.1. Exploiting Theorem 3.3.1 and Theorem 3.3.2 it is possible to obtain the
marginal and posterior distributions under a hierarchical beta-stacy prior. In particular,
the following result provides the marginal distribution assuming the survival model in (3.3)
under a hierarchical beta-stacy prior; the proof is an immediate application of Theorem
3.3.1 and can be found in Section 3.B.
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Corollary 3.4.1. Let us consider the model introduced in (3.3) under a hierarchical beta-
stacy prior. The joint probability distribution of the vector of distinct observations (X∗

1 , . . . , X
∗
K),

the data D and the vector s = {sr : r = 1, . . . ,K s.t. ∆∗
r = 1} of latent jumps introduced

in (3.5) is absolutely continuous with respect to the measure
∏K

r=1 ∆∗
r=1 α(dX

∗
r ), and its

Radon–Nikodym derivative is given by

PK(X∗
1 , . . . , X

∗
K ,D, s) =

K∏
r=1 ∆∗

r=1


d∏

j=1

∫ ∞

0
e−h(n̄r+1,j+ñc

r,j)(1− e−h)nr,jfj(h | sr, X∗
r , cj , Fj)dhρ(sr | X∗

r )dsr


× exp

−
∫
X

∫ ∞

0

[
1−

d∏
j=1

∫ ∞

0
e−hNj(x)fj(h | s, x, cj , Fj)dh

]
ρ(s | x)dsα(dx)

 ,

where n̄r+1,j is the number of exact observations from the (r + 1)th distinct value in group
j, and ñc

r,j is the number of censored observations from the rth distinct value in group j.
In particular,

ρ(s | x) = e−sc(x)α((x,∞))

1− e−s
c(x)

is the kernel density of the Beta-Stacy(c, α) process and

fj(h | s, x, cj , Fj) =

(
1− e−h

)cj(x)Fj(s)−1
e−hcj(x)(1−Fj(s))

Be(cj(x)Fj(s), cj(x)(1− Fj(s)))

is the conditional density of the jumps h̃j,k’s, where Be(·, ·) is the beta function.

Moreover, thanks to Theorem 3.3.2 it is possible to describe the posterior distribution of
the vector of hCRMs (µ̃1, . . . , µ̃d) of a hierarchical beta-stacy prior; as previously discussed,
this is enough to characterize the posterior distribution of the process. This result is
summarized in the following corollary to Theorem 3.3.2, which is proved in Section 3.B.

Corollary 3.4.2. Consider the partially exchangeable model introduced in (3.3) under a
hierarchical beta-stacy prior, let (µ̃1, . . . , µ̃d) be the prior vector of hCRMs as in Definition
3.4.1 and let us assume that s is the vector of latent jumps introduced in (3.5). The posterior
distribution of the vector of hierarchical completely random measures can be described as
follows:
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(µ̃1, . . . , µ̃d) | D, s
d
= (µ̃′

1, . . . , µ̃
′
d) +

 K∑
r=1 ∆∗

r=1

J1,rδX∗
r
, . . . ,

K∑
r=1 ∆∗

r=1

Jd,rδX∗
r

 ,

where all the elements of this representation are defined below.

i. (µ̃′
1, . . . , µ̃

′
d) is a vector of hierarchical completely random measures that are indepen-

dent conditionally on a base measure µ̃′
0, where

µ̃′
0 =

∑
k≥1

h̃′0,kδx̃′
k
, µ̃′

j | µ̃′
0

d
=
∑
k≥1

h̃′j,kδx̃′
k
.

The base measure µ̃′
0 ∼ CRM(ν ′) has Lévy intensity as follows:

ν ′(ds, dx) =
d∏

j=1

[
Be(cj(x)Fj(s), Nj(x) + cj(x)(1− Fj(s)))

Be(cj(x)Fj(s), cj(x)(1− Fj(s)))

]

×

[
e−sc(x)α((x,+∞))

1− e−s
c(x)

]
dsα(dx),

(3.10)

where Be(·, ·) is the beta function. Moreover, the conditional distribution of each jump
h̃′j,k | µ̃′

0 is the transformation of a Beta random variable:

1− e−h̃′
j,k | µ̃′

0 ∼ Beta(cj(x̃
′
k)Fj(h̃

′
0,k), cj(x̃

′
k)(1− Fj(h̃

′
0,k)) +Nj(x̃

′
k)), (3.11)

where Nj(x) is the general at-risk process for group j.

ii. The random variables Jj,r’s are independent jumps, as well as independent from the
hierarchical completely random measures described in the previous point, and each one
of them is the transformation of a Beta random variable:

1− e−Jj,r ∼ Beta(nr,j + cj(X
∗
r )Fj(sr), n̄r+1,j + ñc

r,j + cj(X
∗
r )(1− Fj(sr))). (3.12)

Tracing the parallels with the classical beta-stacy process, note that hierarchical beta-
stacy is not a conjugate prior. However, Corollary 3.4.2 completely characterizes its poste-
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rior distribution, when used as a nonparametric prior in model (3.3). It is possible to derive
the posterior estimator of the survival functions under a quadratic loss analytically for each
group. The following proposition summarizes this result, which is proved in Section 3.B.

Proposition 3.4.3. For any t ≥ 0 the posterior estimator of the jth survival function
under a quadratic loss is

E
[
S̃j(t) | D, s

]
= exp

[
−
∫ t

0

∫
R+

cj (x)Fj (s)

cj (x) +Nj (x)
ν ′ (dx, ds)

]
×

×
∏

r:∆∗
r=1

(
− nr,j + cj (X

∗
r )Fj(sr)

nr,j + nr+1,j + ñr,j + cj (X∗
r )
1(0,t](X

∗
r ) + 1

)
.

(3.13)

Note that while Corollary 3.4.2 allows to find trajectories to generate the posterior
survival function under a hierarchical beta-stacy model, Proposition 3.4.3 integrates the
trajectories out providing the marginal expression (3.13). A conditional algorithm will be
discussed in the next section.

3.5 Sampling Algorithm

The aim of this section is to describe a sampling algorithm that allows to sample from the
posterior distribution of the survival model (3.3) under a hierarchical beta-stacy prior; this
can be used, for instance, to obtain posterior estimates of the survival functions. For this
purpose there are two possible strategies: a marginal algorithm, which obtains dependent
survival functions based on Proposition 3.4.3, hence marginalizing out the CRMs; and a
conditional algorithm, which allows to simulate the trajectories of the posterior survival
functions S̃j(·) | D, s based on Corollary 3.4.2.
To fully define the beta-stacy prior as introduced in Definition 3.4.1, it is necessary to choose
the model parameters. In particular, for computational reasons we choose a log-Beta(c, α)
CRM as base measure, where c is a positive constant and α is a uniform distribution between
0 and a positive value τ , i.e.,

c(·) ≡ c ∈ R+ and

α ∼ Uniform(0, τ), τ ∈ R+.

Regarding the group-specific parameters introduced in Remark 3.2.2, our prior assumptions
are the same for each group; more specifically, we assume that
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cj(·) ≡ c∗ ∈ R+ for any j = 1, . . . , d, and

Fj(s) = F (s) = 1− e−s for any j = 1, . . . , d.

Finally, we assume a Gamma(κ, θ) prior on the parameter c and a Gamma(κ∗, θ∗) prior on
the parameter c∗.

Remark 3.5.1. Note that the measure α is uniformly distributed and the functions Fj(·)
satisfy the sufficient condition introduced in Remark 3.4.1 with aj = 1 for each j. Therefore,
the hypotheses of the Proposition 3.4.2 are satisfied by our parameters specification, so it
follows that the survival functions derived from a hierarchical beta-stacy model with the
previous specifications are proper.

3.5.1 Marginal algorithm

A marginal algorithm can be obtained by specializing the posterior estimator in (3.13) with
the choices on the model parameters described above. Therefore the posterior estimator
for the jth survival function under our assumptions is

E
[
S̃j(t) | D, s

]
=

=exp

− c

τ

∫ t

0

∫
R+

c∗e
−sc(1−x

τ )

c∗ +Nj (x)

d∏
j=1

[
Be(c∗F (s), Nj(x) + c∗(1− F (s)))

Be(c∗F (s), c∗(1− F (s)))

]
dsdx


×

∏
r:∆∗

r=1

(
− nr,j + c∗F (sr)

nr,j + nr+1,j + ñr,j + c∗
1(0,t](X

∗
r ) + 1

)
.

(3.14)

A numerical approximation of each estimator E
[
S̃j(t) | D, s

]
can be obtained via a suit-

able MCMC algorithm; to this end, the full conditional distributions of the latent variables
and of the model parameters must be identified. The calculation of the full-conditional
distributions is reported in Section 3.C. At each step of the marginal algorithm the latent
variable s and the parameters c and c∗ are sampled according to their full-conditional dis-
tribution; then, the corresponding set of dependent estimated survival functions can be
estimated on a time-grid according to (3.14). Finally, each posterior estimator can be ob-
tained via a Monte-Carlo approximation exploiting the samples obtained with the marginal
algorithm.
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3.5.2 Conditional algorithm

The marginal algorithm discussed in the previous section is useful when it comes to es-
timate the survival functions. On the other hand, the aim of this section is to describe
a conditional algorithm that generates trajectories from the posterior distribution of the
vector of hCRMs under a hierarchical beta-stacy prior, with the assumption on the model
parameters described before. This can be achieved by exploiting Corollary 3.4.2 and spe-
cializing this result with our choices on the model parameters. This sampler is useful since
it allows to estimate the actual posterior distribution of the survival functions under our
model, as well as credible intervals for the estimated quantities.
In order to obtain a trajectory of the posterior vector of CRMs under our prior we apply a
MCMC procedure that samples two components at each step. First of all, we must sample
a trajectory of the vector of hCRMs (µ̃′

1, . . . , µ̃
′
d) exploiting its characterization reported

in point (i) of Corollary 3.4.2. To do so, we approximate each CRM µ̃′
j | µ̃′

0 relying on
the algorithm described in Wolpert and Ickstadt (1998), which is a suitable choice for ap-
proximation of completely random measure with non-homogeneous Lévy intensity such as
the one defined in (3.10). In particular, given a tolerance ϵ and a maximum number of
approximation steps M , this algorithm allows to approximate the CRM µ̃′

0 described in
Corollary 3.4.2, i.e.,

µ̃′
0 =

∑
k≥1

h̃′0,kδx̃′
k
,

as the finite sum

µ̃′M
0 :=

M∑
k=1

ĥ′0,kδx̂′
k
,

where the set of locations (x̂′k)
M
k=1 is independently sampled from the base measure α ∼

Uniform(0, τ). Moreover, the approximated jumps (ĥ′0,k)
M
k=1 can be sampled as follows.

Following Wolpert and Ickstadt (1998) let us rewrite the Lévy intensity ν ′(ds, dx) in (3.10)
as

ν ′(ds, dx) = ν ′(s, x)dsα(dx),

where
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ν ′(s, x) =
d∏

j=1

[
Be(cj(x)Fj(s), Nj(x) + cj(x)(1− Fj(s)))

Be(cj(x)Fj(s), cj(x)(1− Fj(s)))

]
·

[
e−sc(x)α((x,+∞))

1− e−s
c(x)

]
.

As k = 1, . . . ,M , the kth approximated jump ĥ′0,k is obtained as the zero of the function

ξ(s) =

∫ ∞

s
ν ′(v, x̂′k)dv − σk,

where σk =
∑k

b=1Eb, Ek ∼ Exponential(1) for any k = 1, . . . ,M . Note that ξ is a decreas-
ing function, so if ξ(ϵ) < 0 then we simply assume ĥ′0,k = 0. The approximation of the
CRM µ̃′

0 allows to sample trajectories from the vector of hCRMs (µ̃′
1, . . . , µ̃

′
d) via (3.11).

On the other hand, we must sample a trajectory from the finite and discrete component of
the posterior vector of CRMs located on the atoms Xr’s. This is straightforward exploiting
(3.12). Note that the sampling of the latent variable s and of the parameters c and c∗ is
performed according to their full-conditional distribution as described in Section 3.5.1; the
calculation of the full-conditional distributions is reported in Section 3.C. The complete
pseudo-code that implements the conditional algorithm just described is reported in Sec-
tion 3.D.

3.6 Illustrations

To concretely study the estimation of survival functions assuming a hierarchical beta-stacy
prior on partially exchangeable survival times, the aim of this section is to discuss a set of
simulation studies and an application to a real dataset, applying the conditional algorithm
described in Section 3.5.2. The goal of this analysis is two-fold: first of all, to compare the
estimated posterior survival functions obtained assuming a hierarchical beta-stacy prior
with the survival functions obtained following independent model over the different groups;
then, to explore the effect of borrowing of information in our model. The natural compar-
isons for the hierarchical beta-stacy model, among the models suitable for exchangeable
survival times, are the Kaplan-Meier estimator and a nonparametric NTR prior. In partic-
ular, we focus on the beta-stacy process as described in Section 3.2.1.
Here we explain the actual law of survival times, used for simulations. Let us consider
d = 2 groups of survival times, sampled from a group of K = 5 distinct observations with
different probabilities. Table 3.1 summarizes this setting: the column T ∗

r shows the distinct
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Table 3.1: Simulated survival times and their probabilities in each group

r pr,1 pr,2 T ∗
r

1 0.1 0.4 2.2685
2 0.4 0.1 2.8614
3 0.0 0.3 5.5131
4 0.2 0.2 6.9647
5 0.3 0.0 7.1947

observed survival times, while the columns pr,1 and pr,2 shows the different probabilities,
for group 1 and 2 respectively, of assuming the value T ∗

r for any r = 1, . . . ,K.
Let us consider two different settings: in the first one, we sample the same number of

uncensored observations for each group according to the probabilities provided in Table 3.1,
while in the second one we censor a portion of observations in each group. In both cases, we
first consider a dataset where both groups have 20 observations and then a second example
where both groups have 100 observations. Following the notation introduced in Section
3.2.3, in the first example we consider N1 = N2 = 20, while in the second one we consider
N1 = N2 = 100.
The assumptions on the parameters of the hierarchical beta-stacy model are the ones de-
scribed in Section 3.5; moreover, we select as the left bound of the Uniform base measure
α ∼ Uniform(0, τ) the value τ is large enough such that the interval (0, τ) includes the
whole sample.
As described in Section 3.5, we set two Gamma priors on the parameters c and c∗; in
particular, we assume the same Gamma(2, 2) distributions:

c ∼ Gamma(2, 2) and c∗ ∼ Gamma(2, 2).

The survival functions from the posterior distribution of our model are sampled running
20.000 steps of the MCMC algorithm discussed in Algorithm 3.5.2, where the number of
iterations is 10.000, after further 10.000 steps of burn-in.
We then compare the results of our model with the Kaplan-Meier estimators for both
groups. Finally, we also compute the posterior estimation of the survival functions under a
beta-stacy prior for each group, i.e.,
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(X1,j , . . . , XNj ,j) | F̃ ∼ F̃

F̃ = 1− e−µ̃

µ̃ ∼ logBeta(c, α),

as j = 1, 2, where Xi,j is the ith observation of group j. For each beta-stacy prior we
assume the same parameters for the base-measure µ̃0 of our model; in particular, they are
both NTR processes whose CRM is a log-Beta(α, c), where α ∼ Uniform(0, τ) and c is a
constant on which we put a Gamma(2, 2) prior. We run a MCMC conditional algorithm
in order to estimate the actual posterior distribution of both survival functions under the
beta-stacy priors just described. Each of the 3 estimators of the survival functions for
each group (the hierarchical beta-stacy, the Kaplan-Meier and the beta-stacy estimators)
is then compared to the real survival functions by calculating the Wasserstein-1 distances
between the real and the estimated curves. Let us recall that the Wasserstein-1 distance,
or Wasserstein distance of order 1, between two probability distributions P1 and P2 over
R+ is defined as

W (P1, P2) = inf
γ∈Γ(P1,P2)

∫
R+×R+

| u− v | dγ(u, v),

where Γ(P1, P2) is the set of all joint distributions that have P1 and P2 as marginals.

3.6.1 Simulation study: results

The results of the simulation study are summarized in Table 3.2, which shows the Wasser-
stein distances between the real survival curve and each estimation for each group, in the
different examples; in particular, the column hBS shows the distance between the real
survival curve and the hierarchical beta-stacy estimations, while the columns KM and BS
show the distances between the real curve and the Kaplan-Meier and beta-stacy estimation
respectively. Note that the posterior estimator under our prior, as well as under the inde-
pendent beta-stacy prior, is approximated as an average of the survival functions sampled
from the posterior distribution and evaluated on a grid; on the other hand, it is also pos-
sible to construct punctual confidence bands by calculating the quantiles of the posterior
distributions.

Let us consider the first two experiments, whose datasets are composed by uncensored
observations. As the number of observations increases the precision of the estimates (in
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Table 3.2: Wasserstein distances between real and estimated survival curves

Observations per group Censorship Group hBS KM BS

20 No 1 0.0173 0.0272 0.0809
20 No 2 0.0233 0.0279 0.0439
100 No 1 0.0108 0.0088 0.0990
100 No 2 0.0173 0.0139 0.0255
20 Yes 1 0.0368 ∞ 0.0785
20 Yes 2 0.0434 ∞ 0.0474
100 Yes 1 0.0290 ∞ 0.1094
100 Yes 2 0.0410 ∞ 0.0373

(a) Group 1 (b) Group 2

Figure 3.1: Kaplan-Meier estimates (dotted blue lines), hierarchical beta-stacy posterior
estimates (green lines) on 20 uncensored observations. The green areas are the 99% confi-
dence intervals of the hBS estimates. The real survival curves are reported as red lines.
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terms of Wasserstein distances) for both groups increases; this is particularly evident for the
Kaplan-Meier estimates, since they exclusively relies on the data without any prior effect.
Let us focus on the first experiment, characterized by 20 uncensored observations per group.
Observing the first two rows of Table 3.2, note that the distances between the real curve and
the hBS estimators are lower, for both groups, then the distances between the real curves
and the other estimators. This means that with a lower number of observations the effect of
the prior and the borrowing of information between groups allows the posterior estimators
from a hierarchical beta-stacy prior to perform better than the posterior estimators of
two independent beta-stacy priors and the Kaplan-Meier estimators. Figure 3.1 shows the
comparison between the real survival curves of the two groups, plotted as red lines, the
Kaplan-Meier estimates, plotted as dotted blue lines, and the posterior estimates from the
hierarchical beta-stacy model, plotted as green lines. The green areas represent the 99%

confidence intervals of the posterior estimates from our model; note that the confidence
bands include the real curves. The jumps of the discrete components of our posterior
estimations for each group are shared, since they are located on the distinct and exact
observations from all the available groups, as described in (3.6). Therefore, even if one of
the survival times is not observed in one of the group, this information is borrowed through
the estimation of both groups. See for example the last jump of the estimated survival
function of the second group in Figure 3.1: as reported in Table 3.1, the simulations were
set so that the last (5th) observation appears in the second group with probability equal to
zero; on the other hand, it is present in the dataset of the first group, so this information
is carried forward in the estimation of both groups.
Moreover, the effect of the borrowing of information can be noted looking at Figure 3.2,
which shows the comparison between the estimated survival functions from our model
(plotted as green lines) and the estimated survival functions from two independent beta-
stacy priors (plotted as red lines). Note how the two survival curves estimated from a hBS
model are closer between each other then the two curves estimated from two independent
beta-stacy priors; this is numerically confirmed by the first row of Table 3.3, that shows the
Wasserstein distances between the survival curves estimated by our model (column hBS)
and by the two independent beta-stacy models (column BS), in the different scenarios.
The dependence of the two estimates, modeled by the base measure of the hierarchical
beta-stacy prior, keeps them closer in every scenario than the two independent estimates.

Let us now consider the last two experiments, where in each group the last survival
times are censored. Again, as the number of observations increases the precision of the
estimates for both groups increases. The effect of the prior distributions allows the es-
timated curves from the posterior distribution in our model to converge to zero as the
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Figure 3.2: Hierarchical beta-stacy posterior estimates (green lines) and beta-stacy poste-
rior estimates (red lines) for the two groups on 20 uncensored observations. The continuous
lines and the dotted lines represent the estimates of the survival functions from the first and
the second group respectively.

Table 3.3: Wasserstein distances between estimated survival functions

Observations per group Censorship hBS BS

20 No 0.0531 0.1479
100 No 0.0768 0.1584
20 Yes 0.0555 0.1421
100 Yes 0.0728 0.1569
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(a) Group 1 (b) Group 2

Figure 3.3: Kaplan-Meier estimates (dotted blue lines), hierarchical beta-stacy posterior
estimates (green lines) on 20 observations with censorship. The green areas are the 99%
confidence intervals of the hBS estimates. The real survival curves are reported as red lines.
Note how the Kaplan-Meier estimates for both groups do not converge to zero.

time increases, as well as the estimated curves from two independent beta-stacy priors.
Note that, on the other hand, the censorship of the last observations induce non-proper
independent Kaplan-Meier estimators, as the Wasserstein distances between the real and
the estimated survival curves diverges in these experiments. For details, see again Table 3.2.

Let us focus on the third experiment, where the simulated dataset is composed by
groups of 20 observations with censorship. Figure 3.3 shows the comparison between the
real survival curves of the two groups, plotted as red lines, the Kaplan-Meier estimates,
plotted as dotted blue lines, and the posterior estimates from the hierarchical beta-stacy
model, plotted as green lines. The green areas represent again the 99% confidence intervals
of the posterior estimates from our model; note that the confidence bands include again the
real curves. As discussed in the previous case, our models exhibits borrowing of information
between the groups by sharing the locations of the jumps of the survival curves and by
reducing the distance between the estimated survival curves of the two groups, compared
to two independent models. Figure 3.4 provides again a graphical comparison between
the estimated survival functions from our model (plotted as green lines) and the estimated
survival functions from two independent beta-stacy priors (plotted as red lines), allowing
to note how the two green curves are closer between each other then the two red curves; for
the numerical comparison, see again Table 3.3 (third row). Note also how the effect of the
prior distributions in the independent beta-stacy priors allows them to properly estimate
the survival curves (i.e., the estimated survival curves converge to zero), but again the
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Figure 3.4: Hierarchical beta-stacy posterior estimates (green lines) and beta-stacy pos-
terior estimates (red lines) for the two groups on 20 observations with censorship. The
continuous lines and the dotted lines represent the estimates of the survival functions from
the first and the second group respectively.

performances in terms of Wasserstein distances between the real curve and the posterior
estimations shows a worse performance with respect to our model.

3.6.2 Application: leukemia dataset

Following Lijoi and Nipoti (2014), let us now consider two well-known datasets composed
by two groups of leukemia remission times (in weeks). The first dataset is taken from Cox
(1972) and compares the effect of a treatment versus a placebo observing two groups of
21 and 20 survival times respectively. In particular, the observations from the the treated
group are

6, 6, 6, 6∗, 7, 9∗, 10, 10∗, 11, 13, 16, 17∗, 19∗, 20∗, 22, 23, 25∗, 32∗, 32∗, 34∗, 35∗,

while the observations from the placebo group are

1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23.
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The second dataset is taken from Lawless (2003) (Example 7.1.1) and compares the effect
of two different treatments (let us call A and B the two treatments), considering two groups
of 20 survival times each. In particular, the observations from group A are

1, 3, 3, 6, 7, 7, 10, 12, 14, 15, 18, 19, 22, 26, 28∗, 29, 34, 40, 48∗, 49∗,

while the observations from group B are

1, 1, 2, 2, 3, 4, 5, 8, 8, 9, 11, 12, 14, 16, 18, 21, 27∗, 31, 38∗, 44.

In both datasets, the asterisk over the survival time indicates the presence of a censorship.
Note how both the examples are discussed also in Damien and Walker (2002).
In each dataset, the estimation of the survival functions for the two groups assuming the
hierarchical beta-stacy prior keep the same specifications of the simulation study. In partic-
ular, the assumptions on the parameters of our model are the same described in Section 3.5;
moreover, we select again as the left bound of the Uniform base measure α ∼ Uniform(0, τ)

the value τ equal to 1.2 times the maximum value observed between the two groups, and we
set two Gamma(2, 2) priors on the parameters c and c∗. Finally, we run 20.000 steps of the
MCMC algorithm described in Section 3.5.2, where the number of iterations is R = 10.000,
after further Rburnin = 10.000 steps of burn-in.
Figure 3.5a shows the estimated survival curves for treatment (red curve) and placebo (blue
curve) from the first dataset, along with the 99% confidence intervals for the estimations.
Figure 3.5b shows the same results referred tor treatment A (red curve) and treatment B
(blue curve) from the second dataset.

As in the simulation study, the locations of the jumps are shared between the two
groups; in the second dataset, for example, the exact survival time t = 44 appears in group
B but not in group A. Nevertheless, Figure 3.5b shows how both the estimated survival
curves have a jump at t = 44, which is the last available observation. After that, as time
increases, the data carry progressively less weight in the estimation of the survival functions,
while the prior gains more influence; it can indeed be observed that the survival functions
decreases toward zero starting from the last available observation onward. Analyzing the
survival curves estimated by the hierarchical beta-stacy model and the respective confidence
bounds, it is possible to note that while in the first example the survival curve of the treated
patients differs, although not significantly, from the survival curve of the placebo patients,
in the second example the survival curves of the patients in the two groups are poorly
distinct; this would confirm the conclusions presented in Damien and Walker (2002) as well
as in Lijoi and Nipoti (2014).
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(a) Dataset 1 (treatment versus placebo) (b) Dataset 2 (treatment A versus treatment B)

Figure 3.5: Estimated survival curves of treatment versus placebo (a) and treatments A
versus treatment B (b). Red curve and blue curve represents the estimated survival survival
curves for treated group and placebo group (a) and for group A and B (b), while the red and
blue areas represent the 99% confidence area for red and blue curve respectively.
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Appendix

This appendix is organized in different sections. In particular, Sections 3.A and 3.B are
dedicated to the proofs of the results reported in Sections 3.3 and 3.4 respectively. Section
3.C is dedicated to the computation of the full conditional distributions useful for the
algorithms described in Section 3.5. Finally, Section 3.D provides further details on the
conditional algorithm discussed in Section 3.5.2.

3.A Proofs of Section 3.3

Proof of Theorem 3.3.1. In order to prove the theorem, we first consider a finite partition
of R+ and a discretized version of the observations on this grid. Then we find an expression
for the corresponding joint distribution of the data, and finally we conclude by taking the
limit as the partition size goes to infinity. So, for any m ≥ 1 we define a partition Pm of
R+ as follows:

Pm := {Am,i : i = 1, . . . , km + 1} ,

where Am,i = (tm,i−1, tm,i] for i = 1, . . . , km and Am,km+1 = (tm,km ,∞) with 0 = tm,0 <

tm,1 < . . . < tm,km , and

lim
m→∞

[
max

1≤i≤km+1
diam(Am,i)

]
= 0, lim

m→∞
tm,km = ∞,

where
diam(Am,i) = sup{| x− y |: x, y ∈ Am,i}.

The discretized version of the observations is defined as follows:

ξm,i,j =

km∑
ℓ=1

tm,ℓ11Am,ℓ
(Xi,j) + tm,km+111Am,km+1

(Xi,j), (3.15)

and tm,km+1 is a whichever point of the interval Am,km+1 ∈ Pm. Let us define the set
Dm := ((ξm,i,j ,∆i,j) : i = 1, . . . , Nj , j = 1, . . . , d), i.e., the vector containing all the
discretized data points. We further suppose that the distinct observations are ordered, i.e.,
X∗

1 < X∗
2 < . . . < X∗

K , and let us denote by Am,ir the set of the partition Pm containing
the rth distinct value. The goal is to evaluate the joint distribution of the data Dm, i.e.,
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p(m)(Dm) := P

 d⋂
j=1

(ξm,1,j , . . . , ξm,Nj ,j) ∈ ×K
r=1A

nr,j+nc
r,j

m,ir

 . (3.16)

Note that (3.16) is the evaluation of the probability that the vector (ξm,1,j , . . . , ξm,Nj ,j)

contains nr,j exact observations and nc
r,j censored observations coinciding with X∗

r , as r =

1, . . . ,K and j = 1, . . . , d. Moreover, thanks to the partial exchangeability, (3.16) can be
written as

p(m)(Dm) = E

 d∏
j=1

K∏
r=1

(
p̃
nr,j

j (Am,ir)(1− p̃j(0, tm,ir ])
nc
r,j

)
= E

 d∏
j=1

K∏
r=1

(F̃j(tm,ir)− F̃j(tm,ir−1))
nr,j (1− F̃j(tm,ir))

nc
r,j


= E

 d∏
j=1

K∏
r=1

(e−µ̃j(0,tm,ir−1] − e−µ̃j(0,tm,ir ])nr,je−nc
r,j µ̃j(0,tm,ir ]


= E

 d∏
j=1

K∏
r=1

(1− e−µ̃j(tm,ir−1,tm,ir ])nr,je−nr,j µ̃j(0,tm,ir−1]e−nc
r,j µ̃j(0,tm,ir ]

 ,

which can also be written as

p(m)(Dm) = E
[ d∏
j=1

exp
{
−

K∑
r=1

nr,jµ̃j(0, tm,ir−1]−
K∑
r=1

nc
r,jµ̃j(0, tm,ir ]

}

×
d∏

j=1

K∏
r=1

(1− e−µ̃j(tm,ir−1,tm,ir ])nr,j

]
.

(3.17)

The first sum over r in (3.17) can be written as

K∑
r=1

nr,jµ̃j(0, tm,ir−1] =
K∑
r=1

nr,j

ir−1∑
i=1

µ̃j(tm,i−1, tm,i]

=

iK−1∑
i=1

µ̃j(tm,i−1, tm,i]
∑

r: ir≥i+1

nr,j ,
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where the last equation is obtained exchanging the two sums. Let us further introduce the
at risk processes for the discretized observations, which will be denoted by N̄m,j and Ñ c

m,j ;
therefore, note that

K∑
r=1

nr,jµ̃j(0, tm,ir−1] =

km∑
i=1

N̄m,j(t
+
m,i)µ̃j(tm,i−1, tm,i], (3.18)

where N̄m,j(t
+
m,i) is the number of exact observations which are at risk after time tm,i,

excluding time tm,i, for population j. Observe that the sum has been extended until km
since N̄m,j(t

+
m,i) = 0 if i ≥ iK .

Analogously the second sum over r in (3.17) can be written as

K∑
r=1

nc
r,jµ̃j(0, tm,ir ] =

km∑
i=1

Ñ c
m,j(tm,i)µ̃j(tm,i−1, tm,i]. (3.19)

Exploiting (3.18) and (3.19), (3.17) can be written as

p(m)(Dm) = E
[ d∏
j=1

K∏
r=1

(1− e−µ̃j(tm,ir−1,tm,ir ])nr,j

×
d∏

j=1

exp
{
−

km∑
i=1

N̄m,j(t
+
m,i)µ̃j(tm,i−1, tm,i]−

km∑
i=1

Ñ c
m,j(tm,i)µ̃j(tm,i−1, tm,i]

}]
.

(3.20)

Note that defining the set

X∗ := X \
K⋃

r=1 ∆∗
r=1

Am,ir ,

(3.20) can be written as

p(m)(Dm) = E
[ d∏
j=1

K∏
r=1 ∆∗

r=1

(1− e−µ̃j(tm,ir−1,tm,ir ])nr,je−µ̃j(tm,ir−1,tm,ir ](N̄m,j(t
+
m,ir

)+Ñc
m,j(tm,ir ))

×
d∏

j=1

exp
{
−
∫
X∗
(N̄m,j(x) + Ñ c

m,j(x))dµ̃j(x)
}]

.

(3.21)
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The expected value in (3.21) can be evaluated conditioning on µ̃0 and using the indepen-
dence to get

p(m)(Dm) = E
[ d∏
j=1

K∏
r=1 ∆∗

r=1

E
(
(1− e−µ̃j(tm,ir−1,tm,ir ])nr,j

× exp
{
−µ̃j(tm,ir−1, tm,ir ](N̄m,j(t

+
m,ir

) + Ñ c
m,j(tm,ir))

}
| µ̃0

)
×

d∏
j=1

E
(
exp

{
−
∫
X∗
(N̄m,j(x) + Ñ c

m,j(x))dµ̃j(x)
}
| µ̃0

)]
.

(3.22)

For notational convenience let us set ηr,j := (N̄m,j(t
+
m,ir

) + Ñ c
m,j(tm,ir)), so that for any r

and j the first conditional expected value in (3.22) may be evaluated as follows:

E
[
(1− e−µ̃j(Am,ir ))nr,je−ηr,j µ̃j(Am,ir ) | µ̃0

]
=

=

nr,j∑
v=0

(
nr,j

v

)
(−1)vE

(
e−(v+ηr,j)µ̃j(Am,ir ) | µ̃0

)

=

nr,j∑
v=0

(
nr,j

v

)
(−1)vE

∏
ℓ≥1

e−(v+ηr,j)h̃j,ℓδx̃ℓ (Am,ir ) | µ̃0


=

nr,j∑
v=0

(
nr,j

v

)
(−1)v

∏
ℓ≥1

E
[
e−(v+ηr,j)h̃j,ℓδx̃ℓ (Am,ir ) | µ̃0

]

=

nr,j∑
v=0

(
nr,j

v

)
(−1)v

∏
ℓ≥1

∫ ∞

0
e−(v+ηr,j)hδx̃ℓ (Am,ir )fj(h | h̃0,ℓ, x̃ℓ, bj)dh.

Note that the first equality is justified by Newton formula, which holds true also when
nr,j = 0, indeed in such a situation the only term of the sum is the one for v = 0.
The second conditional expectation in (3.22), by setting Nm,j(x) := N̄m,j(x) + Ñ c

m,j(x),
can be evaluated as follows:
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E
[
exp

{
−
∫
X∗

Nm,j(x)dµ̃j(x)
}
| µ̃0

]
=

= E

[
exp

{
−
∫
X∗

Nm,j(x)

∞∑
ℓ=1

h̃j,ℓδx̃ℓ
(dx)

}
| µ̃0

]

=
∏
ℓ≥1

∫ ∞

0
e−hNm,j(x̃ℓ)δx̃ℓ (X

∗)fj(h | h̃0,ℓ, x̃ℓ, bj)dh.

Substituting the previous expressions in (3.22) it can be written as

p(m)(Dm) =

E
[ d∏
j=1

K∏
r=1 ∆∗

r=1

nr,j∑
v=0

(
nr,j

v

)
(−1)v

∏
ℓ≥1

∫ ∞

0
e−(v+ηr,j)hδx̃ℓ (Am,ir )fj(h | h̃0,ℓ, x̃ℓ, bj)dh

×
d∏

j=1

∏
ℓ≥1

∫ ∞

0
e−hNm,j(x̃ℓ)δx̃ℓ (X

∗)fj(h | h̃0,ℓ, x̃ℓ, bj)dh
]
,

where the expectation is made with respect to µ̃0. Exploiting the independence properties
of the CRM µ̃0, the previous expression can be written as

p(m)(Dm) =

K∏
r=1 ∆∗

r=1

E

 d∏
j=1

nr,j∑
v=0

(
nr,j

v

)
(−1)v

∏
ℓ≥1

∫ ∞

0
e−(v+ηr,j)hδx̃ℓ (Am,ir )fj(h | h̃0,ℓ, x̃ℓ, bj)dh


× E

∏
ℓ≥1

d∏
j=1

∫ ∞

0
e−hNm,j(x̃ℓ)δx̃ℓ (X

∗)fj(h | h̃0,ℓ, x̃ℓ, bj)dh

 .

(3.23)

The second expected value in (3.23) can be computed as follows:
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E

∏
ℓ≥1

d∏
j=1

∫ ∞

0
e−hNm,j(x̃ℓ)δx̃ℓ (X

∗)fj(h | h̃0,ℓ, x̃ℓ, bj)dh

 =

= E

exp{∑
ℓ≥1

log
( d∏

j=1

∫ ∞

0
e−hNm,j(x̃ℓ)δx̃ℓ (X

∗)fj(h | h̃0,ℓ, x̃ℓ, bj)dh
)}

= exp

−
∫
X∗

∫ ∞

0

(
1−

d∏
j=1

∫ ∞

0
e−hNm,j(x)fj(h | s, x, bj)dh

)
ρ(s | x)dsα(dx)

 .

(3.24)

Note that the last equality exploits the availability of the Laplace functional of the CRM
µ̃0.
As for the first expected value appearing in (3.23), note that

E

 d∏
j=1

nr,j∑
v=0

(
nr,j

v

)
(−1)v

∏
ℓ≥1

∫ ∞

0
e−(v+ηr,j)hδx̃ℓ (Am,ir )fj(h | h̃0,ℓ, x̃ℓ, bj)dh

 =

=
∑

vr,j : j=1,...,d

d∏
j=1

(
nr,j

vr,j

)
(−1)vr,jE

 d∏
j=1

∏
ℓ≥1

∫ ∞

0
e−(vr,j+ηr,j)hδx̃ℓ (Am,ir )fj(h | h̃0,ℓ, x̃ℓ, bj)dh

 .

The expected value appearing in the previous expression may be evaluated as follows:

E

 d∏
j=1

nr,j∑
v=0

(
nr,j

v

)
(−1)v

∏
ℓ≥1

∫ ∞

0
e−(v+ηr,j)hδx̃ℓ (Am,ir )fj(h | h̃0,ℓ, x̃ℓ, bj)dh

 =

=
∑

vr,j : j=1,...,d

d∏
j=1

(
nr,j

vr,j

)
(−1)vr,j

× exp

−
∫
Am,ir

∫ ∞

0

(
1−

d∏
j=1

∫ ∞

0
e−h(vr,j+ηr,j)fj(h | s, x, bj)dh

)
ρ(s | x)dsα(dx)

 .

Since the diameter of Am,ir goes to zero as m → ∞, the argument of the exponential
function goes to zero as m → ∞, hence using an expansion of the exponential the previous
expression is equal to
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E

 d∏
j=1

nr,j∑
v=0

(
nr,j

v

)
(−1)v

∏
ℓ≥1

∫ ∞

0
e−(v+ηr,j)hδx̃ℓ (Am,ir )fj(h | h̃0,ℓ, x̃ℓ, bj)dh

 =

=
∑

vr,j : j=1,...,d

d∏
j=1

(
nr,j

vr,j

)
(−1)vr,j

{
1−

∫
Am,ir

∫ ∞

0(
1−

d∏
j=1

∫ ∞

0
e−h(vr,j+ηr,j)fj(h | s, x, bj)dh

)
ρ(s | x)dsα(dx) + o

(
P0(Am,ir)

)}
.

Observe that if nr,j = 0 there is no sum over vr,j but the expression can be obtain simply
substituting vr,j = 0 in it, while if nr,j > 0 the sum over the corresponding vr,j is proper
and since

n∑
v=0

(
n

v

)
(−1)v = (−1 + 1)n = 0 if n > 0,

therefore

E

 d∏
j=1

nr,j∑
v=0

(
nr,j

v

)
(−1)v

∏
ℓ≥1

∫ ∞

0
e−(v+ηr,j)hδx̃ℓ (Am,ir )fj(h | h̃0,ℓ, x̃ℓ, bj)dh


=

∫
Am,ir

∫ ∞

0

( d∏
j=1

∫ ∞

0
e−hηr,j (1− e−h)nr,jfj(h | s, x, bj)dh

)
ρ(s | x)dsα(dx)

+ o
(
P0(Am,ir)

)
.

Recalling that Am,ir ↓ X∗
r as m → ∞, thanks to the Lebesgue–Besicovitch derivation

theorem the expected value can be written as

E

 d∏
j=1

nr,j∑
v=0

(
nr,j

v

)
(−1)v

∏
ℓ≥1

∫ ∞

0
e−(v+ηr,j)hδx̃ℓ (Am,ir )fj(h | h̃0,ℓ, x̃ℓ, bj)dh


= α(Am,ir)

∫ ∞

0

( d∏
j=1

∫ ∞

0
e−hηr,j (1− e−h)nr,jfj(h | s, x, bj)dh

)
ρ(s | X∗

r )ds

+ o
(
P0(Am,ir)

)
.

(3.25)
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Exploiting (3.24) and (3.25), expression (3.23) reduces to the following:

p(m)(Dm) =

K∏
r=1 ∆∗

r=1

α(Am,ir)

∫ ∞

0

d∏
j=1∫ ∞

0
e−hηr,j (1− e−h)nr,jfj(h | s,X∗

r , bj)dhρ(s | X∗
r )ds


× exp

−
∫
X∗

∫ ∞

0

[
1−

d∏
j=1

∫ ∞

0
e−hNm,j(x)fj(h | s, x, bj)dh

]
ρ(s | x)dsα(dx)


+ o
( K∏

r=1 ∆∗
r=1

P0(Am,ir)
)
.

(3.26)

The thesis follows observing that N̄m,j → N̄j(x) and Ñ c
m,j(x) → Ñ c

j (x) for any x as
m → ∞.

In order to prove Theorem 3.3.2, let us state and prove the following proposition.

Proposition 3.A.1. Let (µ̃1, . . . , µ̃d) be a vector of hierarchical CRMs. Then the joint
Laplace functional a priori is equal to

L(µ̃1,...,µ̃d)(g1, . . . , gd) = E[e−µ̃1(g1)−...−µ̃d(gd)] =

= exp

−
∫
X

∫ ∞

0

1−
d∏

j=1

∫ ∞

0
e−hgj(x)fj(h | r, x, bj)dh

 ρ(r | x)drα(dx)

 ,
(3.27)

for any measurable gj : X → R+ such that µ̃j(gj) :=
∫
X gj(x)µ̃j(dx), for j = 1, . . . , d.

Proof. Note that
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L(µ̃1,...,µ̃d)(g1, . . . , gd) = E

 d∏
j=1

E(e−µ̃j(gj) | µ̃0)

 = E

 d∏
j=1

∏
k≥1

E
(
exp

{
−h̃j,kgj(x̃k)

})
= E

∏
k≥1

d∏
j=1

∫ ∞

0
e−hgj(x̃k)fj(h | h̃0,k, x̃k, bj)dh


= E

exp
∑

k≥1

log

 d∏
j=1

∫ ∞

0
e−hgj(x̃k)fj(h | h̃0,k, x̃k, bj)dh


 .

The last expression may be easily evaluated by means of the expression of the Laplace
functional of µ̃0. Therefore (3.27) follows.

Proof of Theorem 3.3.2. Let us consider d measurable functions gj : X → R+, for each
j = 1, . . . , d, then to prove the theorem it is sufficient to evaluate the posterior Laplace
functional of (µ̃1, . . . , µ̃d), i.e.,

L(µ̃1,...,µ̃d)|D,s(g1, . . . , gd) := E
[
e−µ̃1(g1)−...−µ̃d(gd) | D, s

]
,

where s are the latent jumps introduced in (3.5).
In order to evaluate the Laplace functional, let us recall the partition Pm introduced in
the proof of Theorem 3.3.1. Note that the posterior Laplace functional is given by

L(µ̃1,...,µ̃d)|D(g1, . . . , gd) =

= lim
m→∞

E
[
e−µ̃1(g1)−...−µ̃d(gd)P

[⋂d
j=1(ξm,1,j , . . . , ξm,Nj ,j) ∈ ×K

r=1A
nr,j+nc

r,j

m,ir
| µ̃1, . . . , µ̃d

]]
P
[⋂d

j=1(ξm,1,j , . . . , ξm,Nj ,j) ∈ ×K
r=1A

nr,j+nc
r,j

m,ir

] .

Conditionally on s, one may easily determine the numerator and the denominator in the
previous expression. In particular the denominator, conditionally on s, can be derived from
(3.5), while the numerator conditionally on s amounts to be
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K∏
r=1 ∆∗

r=1

α(dX∗
r )

d∏
j=1

∫ ∞

0
e−h(n̄r+1,j+ñc

r,j)−hgj(X
∗
r )(1− e−h)nr,jfj(h | sr, X∗

r , bj)dhρ(sr | X∗
r )dsr

× exp

−
∫
X

∫ ∞

0

[
1−

d∏
j=1

∫ ∞

0
e−h(Nj(x)+gj(x))fj(h | s, x, bj)dh

]
ρ(s | x)dsα(dx)

 .

Therefore dividing the previous expression by the expression of the likelihood derived from
(3.5) and taking the limit as m → ∞ it is possible to determine the posterior Laplace
functional conditionally on the data and the latent jumps. In particular

L(µ̃1,...,µ̃d)|D,s(g1, . . . , gd) =

= exp

−
∫
X

∫ ∞

0

1− d∏
j=1

∫ ∞

0
e−hgj(x)f ′

j(h | s, x, bj)dh

 ν ′(ds, dx)


×

K∏
r=1 ∆∗

r=1

d∏
j=1

∫ ∞

0
e−hgj(X

∗
r )f ′

j(h | sr, X∗
r , bj)dh.

(3.28)

Observe that the first term in (3.28) is the Laplace functional of the vector of CRMs as
described in point (i) of the statement, while the last term in (3.28) is the Laplace functional
referring to the vector of jumps described in point (ii) of the statement. Therefore the thesis
follows.

3.B Proofs of Section 3.4

Proof of Proposition 3.4.1. Note that

E
[
e−µ̃j(0,t]

]
= E

[
E
[
e−µ̃j(0,t] | µ̃0

]]
= E

∏
k≥1

E
[
e−h̃j,kδx̃k (0,t] | µ̃0

] = E

 ∏
k≥1:x̃k≤t

E
[
e−h̃j,k | µ̃0

] .

Note that by definition

1− e−h̃j,k | µ̃0 ∼ Beta
(
cj (x̃k)Fj

(
h̃0,k

)
, cj (x̃k)

(
1− Fj

(
h̃0,k

)))
,
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so it follows that

e−h̃j,k | µ̃0 ∼ Beta
(
cj (x̃k)

(
1− Fj

(
h̃0,k

))
, cj (x̃k)Fj

(
h̃0,k

))
.

So for each k ≥ 1, the value E
[
e−h̃j,kδx̃k | µ̃0

]
is the expected value of the above Beta

distribution, as a function of the locations x̃k’s and of the jumps h̃0,k’s; let us denote this
expected value as fj

(
x̃k, h̃0,k

)
.

So the we can write the expected value of e−µ̃j(0,t] as

E
[
e−µ̃j(0,t]

]
= E

 ∏
k≥1:x̃k≤t

fj

(
x̃k, h̃0,k

) = E

exp
 ∑

k≥1:x̃k≤t

log
(
fj

(
x̃k, h̃0,k

))
= E

[
exp

(∫ t

0

∫
R+

log
(
fj
(
x, h′

))
Ñ (dx, dh)

)]
,

where Ñ =
∑

k≥1 δ(x̃k,h̃0,k) is the marked Poisson process corresponding to the base mea-
sure. The last quantity can be calculated, and it is equal to

exp

[
−
∫ t

0

∫
R+

(1− fj (x, h)) ν (dx, dh)

]
,

where ν is the Lévy intensity of µ̃0.
Since

fj (x, h) = E
[
e−hδx | µ̃0

]
=

cj (x) (1− Fj (h))

cj (x) (1− Fj (h)) + cj (x)Fj (h)
= 1− Fj (h) ,

the jth expected value can be written as

E
[
e−µ̃j(0,t]

]
= exp

[
−
∫ t

0

∫
R+

(1− (1− Fj (h))) ν (dx, dh)

]
= exp

[
−
∫ t

0

∫
R+

Fj (h) ν (dx, dh)

]
.

Writing explicitly the Lévy intensity ν (dx, dh), the thesis of the proposition follows.

Proof of Proposition 3.4.2. The thesis is true if and only if

0 = lim
t→∞

S̃j(t) = lim
t→∞

e−µ̃j(0,t]

almost surely. Since e−µ̃j(0,t] is a positive function, limt→∞ e−µ̃j(0,t] = 0 if and only if
E
[
limt→∞ e−µ̃j(0,t]

]
= 0, i.e.,

131



Chapter 3. Hierarchical neutral to the right priors

lim
t→∞

E
[
e−µ̃j(0,t]

]
= 0.

Note that

E
[
e−µ̃j(0,t]

]
= E

[
E
[
e−µ̃j(0,t] | µ̃0

]]
,

and since µ̃j | µ̃0 =
∑

k≥1 h̃j,kδx̃k
, then

E
[
e−µ̃j(0,t]

]
= E

∏
k≥1

E
[
e−h̃j,kδx̃k (0,t] | µ̃0

] = E

∏
k≥1

E
[
δx̃k

(t,∞) + e−h̃j,kδx̃k
(0, t] | µ̃0

]
= E

∏
k≥1

(
1− E

[
1− e−h̃j,k | µ̃0

]
δx̃k

(0, t]
)

= E

∏
k≥1

1−
cj (x̃k)F

(
h̃0,k

)
cj (x̃k)Fj

(
h̃0,k

)
+ cj (x̃k)

(
1− Fj

(
h̃0,k

))δx̃k
(0, t]


= E

∏
k≥1

(
1− Fj

(
h̃0,k

)
δx̃k

(0, t]
) = exp

(
−
∫
X×R+

(1− 1 + Fj (s) δx(0, t]) ρ(s | x)dsα(dx)
)

= exp

(
−
∫ t

0

∫
R+

Fj (s) ρ(s | x)dsα(dx)
)
.

Therefore, the survival function is proper if and only if

lim
t→∞

exp

(
−
∫ t

0

∫
R+

Fj (s) ρ(s | x)dsα(dx)
)

= 0.

Note that if µ̃0 is the CRM of a beta-stacy process with parameters (c, α), by definition

ρ(s | x)dsα(dx) = e−sc(x)α((x,∞))

1− e−s
c(x)dsα(dx).

So from (3.9) it follows that

exp

(
−
∫ t

0

∫
R+

Fj (s) ρ(s | x)dsα(dx)
)

≤ exp

(
−Aj

∫ t

0

∫
R+

e−sc(x)α((x,∞))c(x)dsα(dx)

)

= exp

(
−Aj

∫ t

0

1

c(x)α((x,∞))
c(x)α(dx)

)
= exp

(
−Aj

∫ t

0

α(dx)

α((x,∞))

)
.
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Let us conclude the proof showing that the last quantity goes to zero as t → ∞.
If α is the standard exponential measure, i.e., if α((0, x]) = 1− e−x, it follows that

exp

(
−Aj

∫ t

0

α(dx)

α((x,∞))

)
= exp

(
−Aj

∫ t

0

e−xdx

e−x

)
= e−Ajt.

Since the last element goes to zero as t → ∞, the thesis follows.
If α is the uniform measure between 0 and τ , i.e., if α((0, x]) = x

τ 1(0,τ ](x), it follows that

exp

(
−Aj

∫ t

0

α(dx)

α((x,∞))

)
= exp

(
−Aj

∫ t

0

1

τ

1

1− x
τ

1(0,τ ](x)dx

)
= exp

(
−Aj

∫ t

0

1

τ − x
1(0,τ ](x)dx

)
= exp

(
Aj log(τ − x) |min(t,τ)

0

)
= exp(Aj (log(τ −min(t, τ))− log(τ)))

= exp

(
log

((
1− min(t, τ)

τ

)Aj
))

=

(
1− min(t, τ)

τ

)Aj

→ 0 as t → ∞.

Proof of Corollary 3.4.1. From (3.5), the joint distribution is infinitesimally equal to

K∏
r=1 ∆∗

r=1

α(dX∗
r )

d∏
j=1

∫ ∞

0
e−h(n̄r+1,j+ñc

r,j)(1− e−h)nr,jfj(h | sr, X∗
r , cj , Fj)dhρ(sr | X∗

r )dsr


× exp

−
∫
X

∫ ∞

0

[
1−

d∏
j=1

∫ ∞

0
e−hNj(x)fj(h | s, x, cj , Fj)dh

]
ρ(s | x)dsα(dx)

 .

In order to explicitly find the densities fj(· | s, x, cj , Fj) for each j = 1, . . . , d, let us recall
that the laws of the jumps are defined in Section 3.4. Let g : R → R be a the function
g(s) = −log(1− s) and let us now compute the law of g(h̃r,j) | µ̃0 for each j = 1, . . . , d and
r = 1, . . . ,K such that ∆∗

r = 1.
Since if W ∼ Beta(cj(x)Fj(s), cj(x)(1− Fj(s))) then its density function is

fW (w) =
wcj(x)Fj(s)−1(1− w)cj(x)(1−Fj(s))−1

Be(cj(x)Fj(s), cj(x)(1− Fj(s)))
,

where Be(·) is the beta function. It follows that the density function of Y = g(X) is

fY (y) = fW
(
g−1(y)

)
e−y.
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So the density of the jth jump is

fj(h | s, x, cj , Fj) = e−h

(
1− e−h

)cj(x)Fj(s)−1
(1−

(
1− e−h

)
)cj(x)(1−Fj(s))−1

Be(cj(x)Fj(s), cj(x)(1− Fj(s)))
=

=

(
1− e−h

)cj(x)Fj(s)−1
e−hcj(x)(1−Fj(s))

Be(cj(x)Fj(s), cj(x)(1− Fj(s)))
.

Moreover, the kernel density of the base measure is

ρ(s | x) = c · e−scα((x,+∞))

1− e−s

by definition. So finally the thesis follows.

Proof of Corollary 3.4.2. The conditional laws of the jumps h̃j,k’s and the jumps Jj,r’s
follows directly from Theorem 8. From the same theorem it follows that the posterior base
measure µ̃′

0 of the hierarchical beta-stacy is a CRM having Lévy intensity given by

ν ′(ds, dx) =
d∏

j=1

∫ ∞

0
e−hNj(x)fj(h | s, x, cj)dhρ(s | x)dsα(dx), (3.29)

where fj is the prior density of the conditional jumps.
In order to solve the integral in (3.29) with respect to fj , note that it can be written
as an expected value with respect to a Beta distribution with parameters (cj(x)(1 −
Fj(s)), cj(x)Fj(s)); let us call B̃ such a distribution. Then,∫ ∞

0
e−hNj(x)fj(h | s, x, cj)dh = EB̃

[
B̃Nj(x)

]
,

and therefore (3.29) can be written as

ν ′(ds, dx) =
d∏

j=1

[
Be(cj(x)Fj(s), Nj(x) + cj(x)(1− Fj(s)))

Be(cj(x)Fj(s), cj(x)(1− Fj(s)))

]
ρ(s | x)dsα(dx),

where Be(·, ·) is the Beta function. Therefore, the Lévy intensity of the posterior base
measure in (3.29) as in the thesis follows.

Proof of Proposition 3.4.3. Let S̃′
j be the jth posterior survival function from the hierar-

chical beta-stacy prior, whose corresponding posterior CRM is
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µ̃j | D, s
d
= µ̃′

j +

K∑
r=1,∆∗

r=1

Jj,rδX∗
r
.

Since

S̃′
j(t)

d
= e−µ̃j((0,t] | D, s for each t > 0,

its Bayesian estimator is

Ŝ′
j(t) = E

[
S̃′
j(t)
]
= E

[
e−µ̃j(0,t] | D, s

]
= E

[
e−µ̃′

j(0,t]−
∑

r Jj,rδX∗
r
(0,t]
]
.

From the independence properties follows that the above quantity is equal to

E
[
e−µ̃′

j(0,t]
]∏

r

E
[
e−Jj,rδX∗

r
(0,t]
]
= E

[
e−µ̃′

j(0,t]
]∏

r

E
[
e−Jj,r1(0,t](X

∗
r ) + 1− 1(0,t](X

∗
r )
]
.

Since each observation X∗
r is fixed, the above quantity is equal to

E
[
e−µ̃′

j(0,t]
]∏

r

(
E
[
e−Jj,r

]
1(0,t](X

∗
r ) + 1− 1(0,t](X

∗
r )
)
=

= E
[
e−µ̃′

j(0,t]
]
×
∏
r

(
−E

[
1− e−Jj,r

]
1(0,t](X

∗
r ) + 1

)
.

(3.30)

We can separately compute each term of (3.30). The first term can be written as

E
[
e−µ̃′

j(0,t]
]
= E

[
E
[
e−µ̃′

j(0,t] | µ̃′
0

]]
,

and since µ̃′
j | µ̃′

0 =
∑

k≥1 h̃
′
j,kδx̃′

k
, then

E
[
e−µ̃′

j(0,t]
]
= E

∏
k≥1

E
[
e
−h̃′

j,kδx̃′
k
(0,t] | µ̃′

0

] .

The inner expected value in the previous expression can be explicitly computed. From
Corollary 3.4.2,

1− e−h̃′
j,k | µ̃′

0 ∼ Beta
(
cj
(
x̃′k
)
Fj

(
h̃′0,k

)
, cj
(
x̃′k
) (

1− Fj

(
h̃′0,k

))
+Nj

(
x̃′k
))

,
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so

e−h̃′
j,k | µ̃′

0 ∼ Beta
(
cj
(
x̃′k
) (

1− Fj

(
h̃′0,k

))
+Nj

(
x̃′k
)
, cj
(
x̃′k
)
Fj

(
h̃′0,k

))
.

So for each k ≥ 1, the value E
[
e
−h̃′

j,kδx̃′
k | µ̃′

0

]
is the expected value of the above Beta

distribution, as a function of x̃′k and h̃′0,k; let us denote as fj
(
x̃′k, h̃

′
0,k

)
this expected value.

Then the first element of (3.30) can be written as

E
[
e−µ̃′

j(0,t]
]
= E

 ∏
k≥1:x̃k≤t

fj

(
x̃′k, h̃

′
0,k

) = E

exp
 ∑

k≥1:x̃k≤t

log
(
fj

(
x̃′k, h̃

′
0,k

))
= E

[
exp

(∫ t

0

∫
R+

log (fj (x, s)) Ñ (dx, ds)

)]
,

where Ñ =
∑

k≥1 δx̃′
k,h̃

′
0,k

is the corresponding marked Poisson process. Observe that the
last quantity in the previous expression is equal to

exp

[
−
∫ t

0

∫
R+

(1− fj (x, s)) ν
′ (dx, ds)

]
,

where ν ′ is the Lévy intensity of µ̃′
0. Since

fj (x, s) = E
[
e−sδx | µ̃′

0

]
=

cj (x) (1− Fj (s)) +Nj (x)

cj (′) (1− Fj (s)) +Nj (x) + cj (x)Fj (s)

=
cj (x) (1− Fj (s)) +Nj (x)

cj (x) +Nj (x)
,

it follows that the first term of (3.30) can be computed as

E
[
e−µ̃′

j(0,t]
]
= exp

[
−
∫ t

0

∫
R+

(
1− cj (x) (1− Fj (s)) +Nj (x)

cj (x) +Nj (x)

)
ν ′ (dx,ds)

]
=

= exp

[
−
∫ t

0

∫
R+

cj (x)Fj (s)

cj (x) +N (x)
ν ′ (dx,ds)

]
.

(3.31)

We now focus on the second term if (3.30). In particular, the expected value of each
1− e−Jj,r can be computed since, from Corollary 3.4.2, we have that
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1− e−Jj,r ∼ Beta(nr,j + cj (X
∗
r )Fj(sr), nr+1,j + ñc

r,j + cj (X
∗
r ) (1− Fj(sr)) ,

where cj and Fj are the parameters of the jth group. Then the expected value of 1− e−Jj,r

is

E
[
1− e−Jj,r

]
=

nr,j + c (X∗
r )Fj(sr)

nr,j + c (X∗
r )Fj(sr) + nr+1,j + ñr,j + c (X∗

r ) (1− Fj(sr))
=

=
nr,j + c (X∗

r )Fj(sr)

nr,j + nr+1,j + ñr,j + cj (X∗
r )

.

It follows that the second term in (3.30) is

∏
r

(
−E

[
1− e−Jj,r

]
1(0,t](X

∗
r ) + 1

)
=

∏
r:∆∗

r=1

(
− nr + c (X∗

r )F (sr)

nr + nr+1 + ñr + c (X∗
r )
1(0,t](X

∗
r ) + 1

)
.

(3.32)

So finally the thesis follows substituting (3.31) and (3.32) into (3.30).

3.C Full-conditional distributions

The purpose of this section is to calculate the full conditional distributions useful for the
sampling algorithm described in Section 3.5.2. First of all, we rewrite the joint poste-
rior distribution of the model as follows. From Corollary 3.4.1, the joint distribution is
infinitesimally equal to
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K∏
r=1 ∆∗

r=1

α(dX∗
r )

d∏
j=1

∫ ∞

0

(
1− e−h

)nr,j+cj(X
∗
r )Fj(sr)−1

e−h(n̄r+1,j+ñc
r,j+cj(X

∗
r )(1−Fj(sr)))

Be(cj(X∗
r )Fj(sr), cj(X∗

r )(1− Fj(sr)))
dh

×e−src(X∗
r )α((X

∗
r ,∞))

1− e−sr
c(X∗

r )dsr

}

× exp

−
∫
X

∫ ∞

0

1− d∏
j=1

∫ ∞

0

(
1− e−h

)cj(x)Fj(s)−1
e−h(Nj(x)+cj(x)(1−Fj(s)))

Be(cj(x)Fj(s), cj(x)(1− Fj(s)))
dh


×e−sc(x)α((x,∞))

1− e−s
c(x)dsα(dx)

}
.

In order to avoid the first integral, let us introduce a further level of latent variables h =

(hr,j)r,j , as j = 1, . . . , d and r = 1, . . . ,K such that ∆∗
r = 1. With the choices described

in Section 3.5, c(x) = c ∈ R+, cj(x) = c∗ ∈ R+ and Fj(s) = F (s) = 1 − e−s for any
j = 1, . . . , d. So finally the joint distribution as in (3.5) is infinitesimally equal to

K∏
r=1 ∆∗

r=1

α(dX∗
r )

e−srcα((X∗
r ,+∞))

1− e−sr

× c
d∏

j=1

(
1− e−hr,j

)nr,j+c∗F (sr)−1
e−hr,j(c∗(1−F (sr))+n̄r+1,j+ñc

r,j)

Be(c∗F (sr), c∗(1− F (sr)))
dhr,jdsr

× exp

−
∫
X

∫ ∞

0

1− d∏
j=1

∫ ∞

0

(1− e−h)c∗F (s)−1 · e−h(c∗(1−F (s))+Nj(x))

Be(c∗F (s), c∗(1− F (s)))
dh


×e−scα((x,∞))

1− e−s
cdsα(dx)

 .

(3.33)

C.1 Full-conditional distribution of s

Starting from (3.33), we now recover the full conditional distribution of the latent vector
s. In particular, for each r = 1, . . . , d as ∆∗

r = 1, let us consider the rth component sr of
the latent vector s. The aim of this part is to compute the full conditional distribution of
the transformed variable F (sr) = 1− e−sr .
Denoting as yr the variable F (sr) = 1−e−sr , the full conditional of the transformed variable
can be obtained from (3.33) as
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π(yr | h, c, c∗) =
1

1− yr
π(− log(1− yr) | h, c, c∗) =

=
1

1− yr

d∏
j=1

ehr,jc∗yr+log(1−yr)cα((X∗
r ,+∞)) ·

(
1− e−hr,j

)c∗yr
yr ·Be(c∗yr, c∗(1− yr))

=

=
1

1− yr

d∏
j=1

ehr,jc∗yr · (1− yr)
cα((x∗

r ,+∞)) ·
(
1− e−hr,j

)c∗yr
yr ·Be(c∗yr, cj(x∗r)(1− yr))

=

=
eyr

∑d
j=1 hr,jc∗ · (1− yr)

dcα((x∗
r ,+∞))−1

∏d
j=1

(
1− e−hr,j

)c∗yr
ydr ·

∏d
j=1Be(c∗yr, c∗(1− yr))

.

Finally, the full conditional log-distribution of the rth component of the latent vector s is

log π(yr | h, c, c∗) =yr

d∑
j=1

hr,jc∗ + [d · c · α((X∗
r ,+∞))− 1] · log(1− yr)

+ yr

d∑
j=1

c∗ log(1− e−hr,j )

− d · log(yr)−
d∑

j=1

logBe(c∗yr, c∗(1− yr))

(3.34)

C.2 Full-conditional distribution of h

From (3.33) and for each j = 1, . . . d and r = 1, . . . ,K such that ∆∗
r = 1, the full conditional

distribution of each component hj,r of the set of further latent variables h is

e−hr,j(n̄r+1,j+ñc
r,j)(1− e−hj,r)nr,je−hr,j

(
1− e−hr,j

)c∗F (sr)−1
e−hr,j(c∗(1−F (sr))−1)

= e−hr,j(n̄r+1,j+ñc
r,j+cj(x

∗
r)(1−Fj(sr))) · (1− e−hj,r)nr,j+cj(x

∗
r)Fj(sr)−1.

Considering xr,j = e−hr,j it follows that

fXr,j (xr,j) = fXr,j (g
−1(xr,j)

∣∣∣∣ d

dxr,j
g−1(xr,j)

∣∣∣∣ ,
where
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g(h) = e−h and so g−1(xr,j) = −log(xr,j).

So finally

fXr,j (xr,j) ∝ x
n̄r+1,j+ñc

r,j+c∗(1−F (sr))

r,j · (1− xr,j)
nr,j+c∗F (sr)−1 · 1

xr,j

= x
n̄r+1,j+ñc

r,j+c∗(1−F (sr))−1

r,j · (1− xr,j)
nr,j+c∗F (sr)−1.

So for each j, r it follows that the component hr,j can be sampled as

e−hr,j ∼ Beta
(
n̄r+1,j + ñcr,j + c∗ (1− F(sr)) ,nr,j + c∗F(sr)

)
.

It follows that

1− e−hr,j ∼ Beta
(
nr,j + c∗F(sr), n̄r+1,j + ñcr,j + c∗ (1− F(sr))

)
.

Note that the previous equation represents the same law of the discrete jumps Jr,j provided
in (3.12), so that we can sample each Jr,j and set hr,j = Jr,j for each r, j.

C.3 Full-conditional distribution of c

Let us assume a Gamma(k, θ) prior on c. So from (3.33) the full conditional of c becomes

K∏
r=1 ∆∗

r=1

α(dx∗r)
e−srcα((X∗

r ,+∞))

1− e−sr
c

d∏
j=1

(
1− e−hr,j

)nr,j+c∗F (sr)−1
e−hr,j(c∗(1−F (sr))+n̄r+1,j+ñc

r,j)

Be(c∗F (sr), c∗(1− F (sr)))
dhj,rdsr

× exp

−
∫
X

∫ ∞

0

1− d∏
j=1

∫ ∞

0

(1− e−h)c∗F (s)−1 · e−h(c∗(1−F (s))+Nj(x))

Be(c∗F (s), c∗(1− F (s)))
dh

 e−scα((x,∞))

1− e−s
cdsα(dx)


× ck−1e−

c
θ .

Note that

∫ ∞

0

(1− e−h)c∗F (s)−1 · e−h(c∗(1−F (s))+Nj(x))

Be(c∗F (s), c∗(1− F (s)))
dh =

=

∫ 1
0 (1− x)c∗F (s)−1 · xc∗(1−F (s))+Nj(x)−1dx

Be(c∗F (s), c∗(1− F (s)))
=

Be(c∗(1− F (s)) +Nj(x), c∗F (s))

Be(c∗F (s), c∗(1− F (s)))
.
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So the full-conditional for c becomes

K∏
r=1 ∆∗

r=1

α(dx∗r)
e−srcα((X∗

r ,+∞))

1− e−sr
c

d∏
j=1

(
1− e−hr,j

)nr,j+c∗F (sr)−1
e−hr,j(c∗(1−F (sr))+n̄r+1,j+ñc

r,j)

Be(c∗F (sr), c∗(1− F (sr)))
dhj,rdsr

× exp

−
∫
X

∫ ∞

0

1− d∏
j=1

Be(c∗(1− F (s)) +Nj(x), c∗F (s))

Be(c∗F (s), c∗(1− F (s)))

 e−scα((x,∞))

1− e−s
cdsα(dx)


× ck−1e−

c
θ .

Since α is distributed as a uniform distribution between 0 and τ , α((x,∞)) =
(
1− x

τ

)
11(0,τ)(x)

and α(dx) = 1
τ 11(0,τ)(dx). Switching the integrals, the double integral can be rewritten as

follows:

∫
X

∫ ∞

0

1− d∏
j=1

Be(c∗(1− F (s)) +Nj(x), c∗F (s))

Be(c∗F (s), c∗(1− F (s)))

 e−scB0((x,∞))

1− e−s
cdsα(dx)

=

∫ ∞

0

∫ τ

0

1− d∏
j=1

Be(c∗(1− F (s)) +Nj(x), c∗F (s))

Be(c∗F (s), c∗(1− F (s)))

 e−sc(1−x
τ )

1− e−s
· c · 1

τ
dx

ds

=

∫ ∞

0

1

1− e−s

∫ τ

0

1− d∏
j=1

Be(c∗(1− F (s)) +Nj(x), c∗F (s))

Be(c∗F (s), c∗(1− F (s)))

 e−sc(1−x
τ )

τ
· cdx

ds.

Recalling that K is the number of distinct observations from all the d groups,

X∗
1 , . . . , X

∗
K ,

let us define the number of observations from group j equal to X∗
r as n∗

r,j ≥ 0, for each
j = 1, . . . , d and r = 1, . . . ,K. Let us assume that X∗

0 = 0, and note that X∗
K = τ .

Note that for each time x > 0 the general at-risk process for group j can be written as
follows:

Nj(x) =

Nj∑
i=1

11[x,∞)(Xi,j) =

K∑
r=1

(
K∑
g=r

n∗
g,j

)
11(X∗

r−1,X
∗
r ]
(x).
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By definition, it follows that in each interval (X∗
r−1, X

∗
r ] the function Nj(x) is a constant,

and it is equal to

N∗
r,j :=

K∑
g=r

n∗
g,j .

Note that Nj(x) = 0 on (X∗
K ,∞). We can therefore write the inner integral as follows:

∫ τ

0

1− d∏
j=1

Be(c∗(1− F (s)) +N∗(x), c∗F (s))

Be(c∗F (s), c∗(1− F (s)))

 e−sc(1−x
τ )

τ
· cdx

=
K∑
r=1

∫ X∗
r

X∗
r−1

1− d∏
j=1

Be(c∗(1− F (s)) +Nj(x), c∗F (s))

Be(c∗F (s), c∗(1− F (s)))

 e−sc(1−x
τ )

τ
· cdx

=
K∑
r=1

∫ x∗
r

x∗
r−1

1− d∏
j=1

Be(c∗(1− F (s)) +N∗
r,j , c∗F (s))

Be(c∗F (s), c∗(1− F (s)))

 e−sc(1−x
τ )

τ
· cdx

=

K∑
r=1

1− d∏
j=1

Be(c∗(1− F (s)) +N∗
r,j , c∗F (s))

Be(c∗F (s), c∗(1− F (s)))

∫ x∗
r

x∗
r−1

c

τ
· e−sc(1−x

τ )dx

=

K∑
r=1

1− d∏
j=1

Be(c∗(1− F (s)) +N∗
r,j , c∗F (s))

Be(c∗F (s), c∗(1− F (s)))

 · e
−sc

(
1−X∗

r
τ

)
− e

−sc

(
1−

X∗
r−1
τ

)
s

.

Since N∗
r,j can be computed for any r = 1, . . . ,K, the double integral can be rewritten as

follows:

∫
X

∫ ∞

0

1− d∏
j=1

Be(c∗(1− F (s)) +Nj(x), c∗F (s))

Be(c∗F (s), c∗(1− F (s)))

 e−scα((x,∞))

1− e−s
cdsα(dx)

=

∫ ∞

0

1

1− e−s

∫ τ

0

1− d∏
j=1

Be(c∗(1− F (s)) +Nj(x), c∗F (s))

Be(c∗F (s), c∗(1− F (s)))

 e−sc(1−x
τ )

τ
· cdx

ds

=

∫ ∞

0

1

1− e−s

K∑
r=1

1− d∏
j=1

Be(c∗(1− F (s)) +N∗
r,j , c∗F (s))

Be(c∗F (s), c∗(1− F (s)))

 · e
−sc

(
1−X∗

r
τ

)
− e

−sc

(
1−

X∗
r−1
τ

)
s

ds

=
K∑
r=1

∫ ∞

0

1− d∏
j=1

Be(c∗(1− F (s)) +N∗
r,j , c∗F (s))

Be(c∗F (s), c∗(1− F (s)))

 · e
−sc

(
1−X∗

r
τ

)
− e

−sc

(
1−

X∗
r−1
τ

)
s · (1− e−s)

ds.
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It follows that the full conditional for c is proportional to

K∏
r=1

exp

−
∫ ∞

0

1− d∏
j=1

Be(c∗(1− F (s)) +N∗
r,j , c∗F (s))

Be(c∗F (s), c∗(1− F (s)))

 · e
−s·c·α(X∗

r ) − e−s·c·α(X∗
r−1)

s · (1− e−s)
ds


×

 K∏
r=1 ∆∗

r=1

e−srcα((X∗
r ,+∞))

× ck−1e−
c
θ .

Let us now perform the change of variable t := e−s in the last integral left. So finally the
full conditional distribution of c is

π (c | s,h, c∗) =
K∏
r=1

exp

{
−
∫ 1

0

[
1−

∏d
j=1Be(c∗ · t+N∗

r,j , c∗ · (1− t))

(Be(c∗ · (1− t), c∗ · t))d

]
· t

c·α(X∗
r ) − tc·α(X

∗
r−1)

− log(t) · t · (1− t)
dt

}

×

 K∏
r=1 ∆∗

r=1

e−srcα((X∗
r ,+∞))

× ck−1e−
c
θ ,

while the log-full conditional of c is

log π (c | s,h, c∗) =

−
K∑
r=1

∫ 1

0

[
1−

∏d
j=1Be(c∗ · t+N∗

r,j , c∗ · (1− t))

(Be(c∗ · (1− t), c∗ · t))d

]
· t

c·α(X∗
r ) − tc·α(X

∗
r−1)

− log(t) · t · (1− t)
dt

− c
K∑

r=1 ∆∗
r=1

srα((X
∗
r ,+∞)) + (k − 1) log c− c

θ
.

C.4 Full-conditional distribution of c∗

Let us assume a Γ(k∗, θ∗) prior on c∗. So from (3.33) the full conditional of c∗ becomes
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K∏
r=1 ∆∗

r=1

α(dx∗r)
e−srcα((X∗

r ,+∞))

1− e−sr
c

d∏
j=1

(
1− e−hr,j

)nr,j+c∗F∗(sr)−1
e−hr,j(c∗(1−F∗(sr))+n̄r+1,j+ñc

r,j)

Be(c∗F∗(sr), c∗(1− F∗(sr)))
dhj,rdsr×

× exp

−
∫
X

∫ ∞

0

1− d∏
j=1

Be(c∗(1− F∗(s)) +Nj(x), c∗F∗(s))

Be(c∗F∗(s), c∗(1− F∗(s)))

 e−scα((x,∞))

1− e−s
cdsα(dx)

×

× ck∗−1
∗ e−

c∗
θ∗ ∝

∝

 K∏
r=1 ∆∗

r=1

d∏
j=1

(
1− e−hr,j

)c∗F∗(sr) e−hr,jc∗(1−F∗(sr))

Be(c∗F∗(sr), c∗(1− F∗(sr)))

× ck∗−1
∗ e−

c∗
θ∗ ×

×
K∏
r=1

exp

−
∫ ∞

0

1− d∏
j=1

Be(c∗(1− F∗(s)) +N∗
r,j , c∗F∗(s))

Be(c∗F∗(s), c∗(1− F∗(s)))

 · e
−s·c·α(X∗

r ) − e−s·c·α(X∗
r−1)

s · (1− e−s)
ds

 .

Applying again the change of variable t := e−s in the last integral left, the full conditional
distribution of c∗ becomes

π (c∗ | s,h, c) = ck∗−1
∗ e−

c∗
θ∗ ×

 K∏
r=1 ∆∗

r=1

∏d
j=1

(
1− e−hr,j

)c∗F∗(sr) e−hr,jc∗(1−F∗(sr))

(Be(c∗F∗(sr), c∗(1− F∗(sr))))
d

×

×
K∏
r=1

exp

{
−
∫ 1

0

[
1−

∏d
j=1Be(c∗ · t+N∗

r,j , c∗ · (1− t))

(Be(c∗ · (1− t), c∗ · t))d

]
· t

c·α(X∗
r ) − tc·α(X

∗
r−1)

− log(t) · t · (1− t)
dt

}
,

while the log-full conditional of c∗ is

log π (c∗ | s,h, c) = −
K∑
r=1

∫ 1

0

[
1−

∏d
j=1Be(c∗ · t+N∗

r,j , c∗ · (1− t))

(Be(c∗ · (1− t), c∗ · t))d

]
· t

c·α(X∗
r ) − tc·α(X

∗
r−1)

− log(t) · t · (1− t)
dt

+

K∑
r=1 ∆∗

r=1

c∗ d∑
j=1

(
F∗(sr) log

(
1− e−hr,j

)
− hr,j(1− F∗(sr))

)
− d · log (Be(c∗F∗(sr), c∗(1− F∗(sr))))


+ (k∗ − 1) log(c∗)−

c∗
θ∗

.

144



3.D. Conditional algorithm

3.D Conditional algorithm

In this section, we provide a more detailed description of the conditional algorithm discussed
in Section 3.5. Let us call R the number of iterations of the MCMC algorithm, Rburnin

the burn-in parameter and Rthin the thinning parameter. We denote the initial values of
the vector s and the parameters c and c∗ as s0, c0 and c∗,0 respectively. Note that in
the posterior representation provided in Corollary 3.4.2, the latent vector s is only used to
define the law described in (3.12); in this formula, each element sr of s always appears as
F (sr) = 1− esr . We therefore define the transformed latent vector

y = (yr)
K
r=1;∆∗

r=1 = (F (sr))
K
r=1;∆∗

r=1 .

The sampling of the latent variables and the two parameters c and c∗ is done from the
respective full-conditional distributions, which are described in Section 3.C. Each step of
the sampling algorithm is divided into 4 parts: first of all, the sampling of the jumps of the
discrete component of the posterior distribution; then, the sampling of the latent variables
and the parameters c and c∗; finally, the approximation of the absolutely continuous part of
the posterior distribution via the algorithm described in Wolpert and Ickstadt (1998) and
the evaluation of the sampled survival functions on an evaluation grid T eval. The number
of total steps is Rburnin + Rthin × R. For each step of the MCMC algorithm the following
points are implemented.

(1.) Sample the discrete jumps Jj,r’s as in (3.12), for each j = 1, . . . , d and r = 1, . . . ,K

such that ∆∗
r = 1.

(2.) Sample the latent variable y = (yr)
K
r=1;∆∗

r=1 and the parameters c and c∗ according
to their full conditional distributions (see Section 3.C).

(3.) Exploit the algorithm described in Wolpert and Ickstadt (1998) to sample a set of
locations (x̂′k)

M
k=1 and jumps (ĥ′0,k)

M
k=1 for a M -dimensional finite approximation of

the posterior base measure µ̃′
0 as in (3.10), i.e.,

µ̃′M
0 :=

M∑
k=1

ĥ′0,kδx̂′
k
.

(4.) Sample the dependent continuous jump ĥ′j,k | µ̃′M
0 as in (3.11), for each j = 1, . . . , d

and k = 1, . . . ,M .
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(5.) Each survival function is estimated on the grid T eval, after a number of steps equal to
Rburnin, and from that point onward, every Rthin steps. Therefore, for each j = 1, . . . d

and for each evaluation time t ∈ T eval, the posterior measure µ̃j(t) | D, s is computed
as in (3.6), i.e.,

µ̃j(t) | D, s =
M∑
k=1

ĥ′j,kδx̂′
k
(0, t] +

K∑
r=1;∆∗

r=1

Jj,rδX∗
r
(0, t].

Finally, the evaluation of the jth survival function is

Sj(t) | D, s = e−µ̃j(t)|D,s.
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