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act

es observed in laboratory experiments on contests are often not consistent with the results expect
retical models, with phenomena that frequently occur like overbidding and, less frequently, underbi
nd persisting oscillations in strategic choices. Several explanations have been suggested to understa
enomena, dealing primarily with equilibrium analysis. We propose a dynamical model based on t
tion of strategic choices and agent preferences. Each agent can have non self-interested preferenc
influence strategic choices and in turn evolve according to them. We show that multiple coexisti
states characterized by non self-interested preferences can exist, and they lose stability as the pri
es, leading to endogenous oscillating dynamics. Finally, with an emphasis on two specific kinds
we explain how overbidding can emerge. The numerical results show a good qualitative agreeme
e experimental data. The model and the analysis of this paper are interesting not only to expla
phenomena observed in experimental settings, but also as a methodological contribution to analy

erplay between preferences and choices in conflict situations.

roduction

variety of economic, social and political situations that can be described by contest models h
xtensively analyzed by theoretical and applied social scientists. The first, seminal model of contes
oposed by Tullock [1]. Predictions of this model have been extensively tested in controlled laborato
ents1. In particular, in contest experiments (see [3] and references therein) it is observed that playe

ly select strategies that differ from those at Tullock Nash equilibrium x∗. In many experiments it
d that players exert an actual average effort that even corresponds or goes beyond the double of x
henomenon is known as “overdissipation” or “overbidding”. Even if in a smaller set of experiment
idding has also been observed, in particular when pro-social behavior among contestants is promote
rmore, strategic choices exhibit persistent erratic oscillations.
eral explanations have been proposed3 for this inconsistency between theoretical predictions a
ental results. A first family of these grounds on behavioral theories. For example, Sheremeta
ed overbidding in terms of noise in rational decision making. Baharad and Nitzan [9] propos
lanation based on probability distortions, modelled according to the prospect theory of Kahnem
ersky [10]. Results in [9] were improved by Sheremeta and Zhang [11] and Chowdhury et al. [1
cing an autocorrelation bias in winning probability evaluations, a sort of “hot-hand” phenomen
well-known in the literature about gambling. Another research strand investigated the possibili
sted utilities for the agents, who did not make their decisions solely on the basis of the mater
In particular, Balafoutas et al. [13] and Bartling et al. [14] tried to elicit other regarding preferenc

il addresses: fausto.cavalli@unimib.it (Fausto Cavalli), mario.gilli@unimib.it (Mario Gilli),
aimzada@unimib.it (Ahmad Naimzada), fausto.cavalli@unimib.it (Ahmad Naimzada), mario.gilli@unimib.it
Naimzada), ahmad.naimzada@unimib.it (Ahmad Naimzada)
a comprehensive survey, see Dechenaux et al. [2].
sider [4, 5, 6].
a deeper insight of the following contributions, we refer to Section 2 in [7].

t submitted to Elsevier
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eir experiments and found confirmation of correlation between spitefulness/inequality-aversion a
g significantly higher efforts, as well as evidence of altruistic and egalitarian behaviors, correlated
ed willingness to enter competitive environment. Sheremeta [15] suggested that agents can take in
t an additional value induced by the utility of winning, which leads them to overestimate the priz
a [16] introduced a concern for other player payoff in the utility of each player, reconsidering the id
rad [17] and allowing for altruistic/spiteful players. In [16] players have other regarding preferenc
inequality averse, so their utility reduces as payoffs become different. In addition to [15, 16] we re
ion 4.2 of the review by Sheremeta [3] for the literature in which overbidding outcomes observed
ents are related to agents with spiteful preferences. Even if other-regarding preferences are most
explain overdissipation, we can mention the contribution by Mago et al. [6], in which the autho
promote pro-social behavior by providing a photo of the participants to each contestant. They fi
is significantly affects the observed dynamics, by reducing the average and individual bidding.
lar, they show that the behavior of about one third of the participants are identified as pro-soc
hibit altruistic preferences4. However, none of the previous approaches introduce a link between t
ical evolution of preferences and strategies. The experimental studies also highlighted the occurren
tic fluctuations in agent choices, which, in the aforementioned literature, are explained in terms
ous noise. However, Wärneryd in [20] argued that the intrinsic nonlinearity encompassed in conte
may prevent the agents from learning to converge. By analogy with the well-known dynamic

or characterizing nonlinear Cournot games, he noted that if the agents adopt simple rules to choo
trategies (e.g., best response mechanisms in which they are not able to know their opponent futu
), complex dynamics may arise and may be used to explain erratic trajectories of strategies.
approaches adopted in the aforementioned literature have some limitations and unsatisfactory face
ve open several questions that deserve investigation. Among them, the following are particularly im
t and represent the research motivations behind the present contribution. Is it possible that strateg
ors that are not consistent with the Tullock Nash equilibrium do endogenously emerge from the d
l evolution, and not from exogenous, ex-ante assumptions on the characterization of the player
lements do foster robust and persistent underbidding and, in particular, overbidding phenomena?
general, preferences are exogenously assigned to the agents, and do not evolve depending on wh
nts experiment during the play of the contest, and hence their effect on the strategic behavior do
nge. Besides, it is interesting to understand if it’s possible to explain fluctuations in the choices
nts in terms of endogenous oscillations and the role of out-of-equilibrium dynamics in the selection
ic behavior. In the modelling carried on in the mentioned contributions, out-of-equilibrium dynam
even taken into account, and it is consequently not possible to study non convergent trajector

e emergence of the oscillations observed in laboratory experiments.
theoretical approach we pursue to tackle the previous questions is based on a dynamical coevoluti
egic choices and preferences, considering agents who, in addition to the classic self-interested prefe
can have both positive or negative regard for their opponents. From the methodological perspectiv
the main innovation of the present contribution with respect to the aforementioned literature. Th
tion is crucial also from an interpretative point of view, because contest situations commonly invol
ter dynamical processes with possibly interplays between preferences and choices, with agent pr
that are influenced by the competitor behavior, which in turn affects the strategic choices. Age

nces are influenced by the competitor behavior, which in turn affects strategic choices.
introduce a general model that allows us to formulate a four-dimensional discrete dynamical model, f
we study possible steady states and their dynamical properties. Concerning static analysis, the ma
s that possibly multiple coexisting steady states characterized by non self-interested preferences a
overbidding or underbidding can endogenously emerge. Regarding dynamics, we show that the pri

cerning other experiments on Tullock contests in which underbidding emerges, we mention the contributions by Shu
and Godoy et al. [19] In [18], the authors observed an aggregated effort lower than 30% with respect to the Tullock-Na
ium. In [19], the authors set up an experiment in which, with the concurrence of simultaneous bids, fixed matching a
prize allocation without bids, and develop tacit coordination (compatible with a pro-social behavior) on underbiddi
s.
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as an unambiguous destabilizing effect on steady states, leading to persistent oscillations in strateg
. Finally, we introduce tit-for-tat and inequality averse kinds of agents. A tit-for-tat agent evaluat
sitive (respectively, negative) way any situation in which he expects a larger (respectively, smalle
than that of his competitor. An inequality averse player dislikes any situation in which a differen
n expected payoffs occurs. For these two kinds of players we study, also with the aid of numeric
tions, the possible out-of-equilibrium dynamics, the path dependency of dynamical outcomes a
lection depending on initial configurations. In particular, for the class of inequality averse agents, w
hat dynamics characterized by overbidding strategies endogenously emerge from the coevolution
nces and strategic behavior even if no steady states characterized by overbidding are possible. Th
curs even if we consider agents that initially have both a positive regard for their competitors a
ery low efforts. Numerical results show a good agreement with experimental evidence. We rema
r focus is limited to contests of the Tullock type. Moreover, we do not aim to reproduce quantitati
teristics of outcomes of contest experiments. The purpose is to provide a theoretical explanation a
tanding of some key phenomena and to reproduce them qualitatively.
remainder of the paper is organized as follows. In Section 2, we present the coevolutive model wi

nous interdependent preferences in a general setting. The static analysis is carried on in Section
ion 4, we study the stability of possible steady states for the general model, then we introduce tw
lar kinds of agents, for which we specialize analytical results and which we numerically investiga
, we conclude and suggest directions for future research. Proofs are collected in Appendix.

ynamical model with endogenously evolving interdependent preferences

consider an infinitely repeated contest in which two players (indexed by i = 1 and 2) compete
me stage (indexed by discrete time sequence t ≥ 0) for a prize v > 0, exerting efforts xi,t ≥ 0 at tim
acing homogeneous and constant marginal costs c > 0. Without loss of generality, we can normali
al cost parameter5, setting c = 1. We recall that in the classic static framework proposed by Tulloc
ed payoff of player i is expressed by

E(πi(xi, x−i)) =





v
xi

xi + x−i
− xi (xi, x−i) 6= (0, 0),

v

2
xi = x−i = 0,

(

x−i can be interpreted as the actual effort of player −i or as player −i effort as expected by player
present dynamical setting, we adopt the latter meaning, and hence the expected payoff that, at t
stage t, each player expects for next game stage at t+ 1 can be described by

E(πi(xi,t+1, x
e
−i,t+1)|Ii,t+1) =





v
xi,t+1

xi,t+1 + xe
−i,t+1

− xi,t+1 (xi,t+1, x
e
−i,t+1) 6= (0, 0),

v

2
xi,t+1 = xe

−i,t+1 = 0,
(

xe
−i,t+1 is the effort that agent i expects his competitor will exert at time t + 1, xi,t+1 is the effo

er i at time t+ 1, and Ii,t+1 is the information of player i at the end of stage t, before playing sta

terdependent preferences

ume that players have other regarding (interdependent) preferences, i.e. their expected utility f
t+ 1 is a linear combination between his own and his competitor material payoff function

Ui(xi,t+1, x
e
−i,t+1)|Ii,t+1

)
= E

(
πi

(
xi,t+1, x

e
−i,t+1

)
|Ii,t+1

)
+ ωi,tE

(
π−i

(
xi,t+1, x

e
−i,t+1

)
|Ii,t+1

)
, (

ing c = 1 actually corresponds to consider prize v as a relative prize with respect to costs.

3
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ωi,t ∈ (−1, 1) is the weight given at time t by agent i to the expected payoff of the competitor. T
ion in 3 is similar to that commonly used in the existing literature on interdependent preference. T
d, we can mention seminal contribution in which it has been introduced and studied, as, for examp
Levine in [21] (in which it is used to develop a theory of altruism and spitefulness in experiment
nrad in [17] (where a contest setting different from Tullock is considered). A framework based
egarding preferences is also at the basis of overbidding explanation by Fonseca6 in [16] and by Ma
n [6]. We stress that in [21, 17, 16, 6] the weight given to the competitor material payoff is exogeno
es not evolve with respect to past preferences and expected payoffs, i.e. the utility function does n
ly depend on t, as opposed to (3). In [21, 17, 16, 6] the model either reduces to a static optimizati
utility function or to a static population game. In this latter case, the aim is to study evolutiona
y of given distributions of agents having utility functions like (3) with preference weight chosen fro
set of exogenously assigned possible values.
ording to the terminology used by Levine [21], Ui(xi,t+1, x

e
−i,t+1) is the adjusted utility of player

reflects player’s own utility and his regard for the opponent, while ωi,t is the coefficient of altruis
icular,

ωi,t > 0, the player is referred to as altruistic, as such a player has a positive regard for the opponen

ωi,t = 0, the player is referred to as selfish, corresponding to the usual case;

ωi,t < 0, the player is referred to as spiteful, as such a player has a negative regard for the opponen

stress that the assumption that ωi,t ∈ (−1, 1) means that no player has a higher (positive or negativ
for the opponent than for himself8. In the aforementioned literature about other regarding prefe

the case of a negative preference weight is economically motivated as the willingness for the agen
erform all rivals and survive the competition, while the case positive preference weight is consiste
ro-social behaviors (see [3, Section 4.2]). In this latter case, the economic explanation consists in t
nce of a tacit, implicit cooperation among the agents, who realize that maximizing the social utili
e convenient than maximizing own utility. Most experiment outcomes are consistent with spitef
nces (see Section 4.3 of the review by Sheremeta [3]). We stress that in (3) we just allow for ωi,t >
not assume it. We just left open the possibility for the agents to initially or transiently have altr
eferences. The aim we pursue is mainly on studying under what conditions the commonly observ
l behavior arises, and why and how possible altruistic preferences are ruled out. Nevertheless, t
nce of either transient or enduring pro-social altruistic preferences is observed in some experimen
ose in [18, 19, 6, 23]. For these reasons, we will also discuss the economic rationale of the cases
n which we find transient or long-run dynamics characterized in terms of altruism.
previously summed up, standard theory applied to contests assumes that players are selfish in t
hat they only care about their own expected prize. The framework under investigation encompass
that are not actually selfish, as they can also consider the other player payoff. In alternative conte
it is frequently discussed that some notion of fairness plays a role in individual decision making. F
le, Rabin [24] has proposed a formal model of what this might mean. However, the model we propo
similar in spirit to Rabin’s model, more radically departs from the ordinary assumptions of gam
because we suppose that player altruistic or spiteful preferences endogenously evolve through tim
e of the past play of the contest. This notwithstanding, the spirit is similar to the psychological gam

hat case, in addition to interdependent preferences, inequality aversion is directly encompassed in the expression of t
unction, which then results different from that in [16]. We note that in Section 4.2 we consider inequality aversion
t it will affect the way preference weight evolves, and not the way utility function is written.
milar approach in oligopoly modelling can be found in [22].
eover, the coefficient of altruism encompasses both altruistic and spiteful inclinations. An increase in the coefficie
ism could then involve either more altruistic or less spiteful preferences, as well as its decrease can mean either l
c or more spiteful preferences. As a consequence of this, saying that a player more (respectively, less) altruistica
encompasses both the case in which the positive regard for his opponent increases (respectively, decreases) and that
e negative regard for his opponent decreases (respectively, increases), and this accordingly affects his strategic behavi

4
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ch in [25, 24], even if the formal model we propose is completely different. In psychological games, t
g point is that player attitudes toward other players depend on how they feel they are being treate
is aspect is modelled assuming that the utility of players depends not only on strategies, but also
eliefs. The resulting game is then analyzed using equilibrium theory. In the present contribution, w
e that players do not care if their opponents play “fairly”, but rather if they are seen as nice peop
s usually requires defining an “exogenous” reference value (e.g., average payoff) related to which t
establish if the competitor behavior was fair or not. Conversely, the approach we pursue is bas
echanism of endogenous coevolution of strategic behavior and preferences, which depends on how
evaluates his opponent choices. The point we wish to make with this approach is that the phenome
d during experiments do not seem to simply reflect social preferences, as already clearly shown in
rand of the existing literature on contests and experiments, but their endogenous adjustment throu
the basis of observed behavior. This aspect is important to understand the evolution of contesti
ns, a crucial aspect of many real life situations, such as economic, social or military conflicts.

ndogenous dynamics

assume that, at the end of each game stage, the efforts played by each agent are disclosed,9 and hen
rmation for game stage t+1 is Ii,t+1 = {xi,t, x−i,t} . Differently from the static models proposed in t
utions discussed in the Introduction, we consider dynamically evolving strategies xi,t and preferenc
oreover, instead of considering exogenously given preference weights, we consider the possibility th
dogenously evolve on the basis of the strategic behavior of the competitors, on the past experien
the intrinsic characteristic of each player. The coevolutive mechanism of strategies and coefficien
n by the following assumptions:

agent strategic behaviors, which are influenced by their interdependent preferences, dynamica
lves on the basis of a best response mechanism with respect to each agent expectations, i.e. ea
nt, at the end of stage t, chooses for stage t+ 1 the strategy that maximizes his adjusted utility:

xi,t+1 ∈ argmaxE
(
Ui(xi,t+1, x

e
−i,t+1)|Ii,t+1

)
; (

player i has static expectations, i.e. each agent, at the end of stage t, assumes xe
−i,t+1 = x−i,t;

agent preferences are in turn influenced by the behavior of their competitors.

t follows, in describing the dynamical coevolutive mechanism, we assume xi,0 > 0 and we focus
rajectories for which x1,t and x2,t do not simultaneously vanish.

Dynamics for the agent’s strategic behavior

ed on assumption a), each player chooses his next period strategy adopting a myopic best response
ayer’s conjecture on opponent’s choice, in the sense that each player at each stage maximizes his sta
d expected utility E

(
Ui(xi,t+1, x

e
−i,t+1)|Ii,t+1

)
.. If we assumed perfect forecast (xe

−i,t+1 = x−i,t+

e constant interdependent preferences (ωi,t = ωi), the dynamical model would become static, as t
ould be able to reach the steady state in just one shot. In this case, the model would be describ
s of a game Γω = ({1, 2}, [0,+∞)2, E(πi(xi, x−i))), for which it can be shown that the unique Na
rium x∗ = (x∗

1, x
∗
2), with

x∗
1 =

v(1 − ω1)
2(1 − ω2)

(2− ω2 − ω1)2
, x∗

2 =
v(1 − ω2)

2(1− ω1)

(2− ω2 − ω1)2
,

mmon setting in contest experiments is that, at the end of each game stage, each player is informed about the aggrega
effort. Since we consider a two player game, this indeed implies that a player knows the last period strategy of
tor.

5
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exists. As a particular situation, if we consider selfish preferences (setting ωi = 0), we retrieve t
Tullock game Γ0 = ({1, 2}, [0,+∞)2, E(πi(xi, x−i))).
assume that players have static expectations, i.e. for any i ∈ {1, 2} , and for any t ∈ N we ha
= x−i,t. This assumption follows the proposal by Wäneryd in [20], which suggested that myopic be
ynamics can help to explain the fail in the convergence of strategies observed in contest experimen
er, it can be justified as a result of impatience, so to explain why players don’t maximize their inte
al utility function, thus considering the possibility of influencing the future play of the opponent.
ording to assumption b), we have that adjusted utility (4) can be written as

E(Ui(xi,t+1, x−i,t)|Ii,t+1) =
xi,t+1

xi,t+1 + x−i,t,
v − xi,t + ωi,t

(
x−i,t

xi,t+1 + x−i,t
v − xi,t

)
. (

the optimization problem (assumption a)), we get xi,t+1 ∈ argmaxE(Ui(xi,t+1, x−i,t)|Ii,t+1),
r x−i,t > 0, we obtain the standard best response mechanism with static expectations10

xi,t+1 = max{
√
vx−i,t(1− ω1,t)− x−i,t, 0}.

ess that if x−i,t = 0, from (5) we have that a whatever small effort would guarantee to player i
ed payoff equal to v, when for a null best response it would reduce to v/2. Since we are mainly interest
ctories for which both players exert a positive effort, we simply assume an exogenous minimum effo
is played as the reaction to a null expected strategy. This is in line with lab experiments, in whi
usually have a discrete set of strategic choices, and hence there is a minimum non null effort lev
n be exerted.
Figure 1 (a-b) we report the graphs of some best response functions on varying the prize and t
ents of altruism. As the prize increases, the best response to a given effort x−i,t increases as we
flects the increasingly high player involvement in the game, as the prize for which they compete
nd more relevant. Moreover, altruistic preferences (i.e. when ωi,t > 0) induce milder responses
ponent behavior, while the opposite occurs with spiteful preferences. In particular, with altruis
nces, best response strategy is always smaller than the classic Tullock Nash equilibrium strate
ed by asterisks in Figure 1 (a-b)), while larger replies are possible for spiteful preferences.

Dynamics for the agent’s preferences

re have been a great many experimental studies of infinitely repeated games (see e.g., [27]) and o
akeaway is that in contrast to predictions based on equilibrium analysis, players tend to reciproca
st behaviors of their opponents. We formalize this by assuming that the coefficients of altruism
ent evolve according to how they assess whether their competitor has nicely played or not.
eed, the agents do not know altruistic, selfish or spiteful preferences of their competitors, but th
ic choices at stage t depends on such preferences, which consequently affect the probability of winni
ze. So agents can compare their own and their competitor expected payoffs11 and evaluate how mu
ed/disliked their competitor behavior, and, based on that, their preferences consequently adapt.
results we present in the remainder of the paper are discussed in terms of expected payoff compariso

allows providing a simpler and clearer economic interpretation, but they can be rephrased in term
ted effort comparison and basically remain identical.
process of preference evolution can then be outlined in three steps.

nts are informed of the exerted efforts and compare the expected payoffs

best response dynamics is the oldest, most familiar and simple instance of adaptive dynamics, widely studied
c theory (see e.g., [26] for a general analysis of this kind of models). This simple dynamical mechanism conforms w
tation of preferences, with coevolution driving the observed player behaviors and allows mimicking the lab results a
deeper understanding of the interaction between the player maximizing behavior, their expectation formation and t
ous evolution of the coefficient of altruism.
now on, for the sake of notation, we drop E(·) and we simply denote the expected payoffs by πi and expected pay

e by ∆πi.

6
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: Best response function for different values of prize (panel (a)) and coefficients of altruism (panel (b)). Asteri
he classic Tullock Nash equilibrium strategies. Panel (c): graph of function f̃ on varying its former component x,
fixed values of its latter component. Horizontal dotted lines represent ωi,t+1 = ωi,t.

articular, we assume that agents compare the last period expected payoff difference ∆πi,t = πi,t

or which we have

πi,t = v
xi,t

xi,t + x−i,t
− xi,t ⇒ ∆πi,t = v

xi,t − x−i,t

xi,t + x−i,t
+ x−i,t − xi,t = −∆π−i,t i = 1, 2.12 (

nts evaluate how much they like/dislike the expected payoff difference
agents evaluate the expected payoff difference ∆πi,t. Such evaluation can be made in terms of ow

ience, fairness/unfairness, status-seeking behavior and so on. Since a given scenario can be different
ed by distinct agents, the way the expected payoff difference is evaluated defines the agent kind, whi
elled by introducing a function m : R → R,∆πi 7→ m(∆πi,t) which quantifies the evaluation giv
nt i to the behavior of agent −i, inferred from the expected payoff difference. We investigate som
e relevant kinds of players in Section 4 and the corresponding functional shapes m, but they ha
mon that the more m(∆πi,t) positively increases, the more agent i liked what he experienced aft
and, symmetrically, the more m(∆πi,t) negatively decreases, the more agent i disliked it. We assum
(∆πi,t) is a strictly monotone function on (−∞, 0] and on [0,+∞), respectively. This means th
ing on the kind of player, a positive expected payoff difference can be either evaluated in a positi
r negative (dislike) way, but given one of these alternatives, as ∆πi,t increases, the liking/disliki
increases as well. Finally, we assume that m is a Lipschitz continuous function.
nt preferences adapt accordingly to the evaluation of the expected payoff difference and on their pa
nce
way in which preferences change depends not only on the evaluation of the last game outcome, b
o affected by the player same preferences, i.e. by his identity at stage t, which is a consequence of h
and past experiences. For example, let us assume that at stage t player 1 negatively evaluates t

or of his opponent. If player 1 evaluated in a positive way the behavior of player 2 for many period
he currently has a positive regard for his opponent, a negative evaluation for one period could weak
gard, but his preferences will remain characterized in terms of altruism. We could face an oppos
n if player 1′s preferences evolved toward a negative regard for player 2, as in this case he cou
less altruistic. In addition to this, the intensity of the effect of, for instance, a negative evaluati

expected payoff difference can change depending on how much each player current preferences a
ed in terms of positive or negative regard for his competitor. From the mathematical point of vie
n be described by the process

ωi,t+1 = f̃(m(∆πi,t), ωi,t),

payoff comparison is modelled in additive terms instead of a ratio, a possible viable alternative, following the m
use in the literature, as in [24, 28, 21].
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f̃ : R × (−1, 1) → (−1, 1), (m,ω) 7→ f̃(m,ω) is such that, for any given ω ∈ (−1, 1), x 7→ f̃(x, ω)
th, strictly increasing function, whose range is (σ1(ω), σ2(ω)) = (ω − k1(ω), ω + k2(ω)) and whi
metric with respect to point (0, f̃(0, ω)). We stress that monotonicity with respect to the form
nent obviously guarantees that, for each given preference, the higher the evaluation of payoff differen
larger the coefficient of altruism is. Moreover, since we want to avoid exogenous biases toward altruis
efulness, we introduced suitable symmetry assumptions on the involved modelling functions. Bas
, we can recast function f̃ into the form

f̃(m,ω) =
σ2(ω)− σ1(ω)

2
f(m) +

σ1(ω) + σ2(ω)

2
= ω +

k1(ω) + k2(ω)

2
f(m) +

k2(ω)− k1(ω)

2
, (

f(m) is an odd function13 (so f(0) = 0), for which limm→±∞ f(m) = ±1.
ction σ1(ωi,t) = ωi,t − k1(ωi,t) (respectively, σ2(ωi,t) = ωi,t + k2(ωi,t)) represents, given the curre
nces, the lower bound (respectively, the upper bound) to the coefficient of altruism that can chara
layer i at time t+1. In Figure 1 (c) we report three possible graphs of function f̃(·, ωi,t), for differe
of ωi,t. Let us refer to the upper graph in yellow, corresponding to the case of player i with altruis
nces at time t. The yellow dotted line represents the value at time t of the coefficient of altruism.
ending on the positive or negative evaluation of the stage outcome (abscissa m) at time t, h
ent of altruism could increase (part of the curve above the yellow dotted line) or decrease (part of t
elow the yellow dotted line). In such latter case, altruistic preferences could also turn into spitef
We note that in general f̃(0, ω) 6= ω, i.e. a neutral evaluation of opponent behavior can lead to
in the preferences. For example, preferences at time t are represented by the yellow dotted line, b
t period coefficient of altruism ωi,t+1 = f̃(0, ω), which graphically corresponds to the intersecti
n the yellow graph and the vertical dashed line, lies below the yellow dotted line. The opposite occu
red graph related to ωi,t = 0.1, while for the blue graph related to ωi,t = −0.5 we have f̃(0, ω) =
e values of coefficients of altruism at time t + 1 can range between the two dashed yellow lin
ively representing values σ1(ωi,t) (lower yellow dashed line) and σ2(ωi,t) (upper yellow dashed lin
comments can be adapted to discuss red and blue graphs as well.
hat follows, we refer to term f(m(∆πi,t)) in (7) as drift toward altruism, and it encompasses t
f the evaluation of the stage t outcome on the next period preferences. In line with the discussion
aning of coefficient of altruism, a negative value of the drift toward altruism must be intended as
ward spitefulness.
versely, in (7), the difference k2(ωi,t) = σ2(ωi,t) − ωi,t between the maximum next period value
fficient of altruism and the current one represents how much the regard for player −i can increa
eriod t to period t+1. Similarly, difference k1(ωi,t) = ωi,t − σ1(ωi,t) between the current value of t
ent of altruism and the maximum possible at t+1 describes how much the regard for player −i c
e from period t to period t + 1. In Figures 2 (a-b) and 3 (a-b) we report some possible shapes f
ns σi and corresponding functions ki.
ore presenting the model, we make some assumptions on functions σi, to take into account on
ically relevant functional shapes and to rule out the occurrence of some trivial or uninteresti
os.
stly, we assume that σi(ω), i = 1, 2, are smooth, strictly increasing functions. This guarantees tha
mple, the greater is the positive regard of an agent for his competitor, the more such regard c
ially increase and the less it can decrease. Moreover, we implicitly assume that functions σi (an
uently, ki as well) are sufficiently regular to compute the required derivatives for the theorem proo
ce we want to disregard those functional shapes for σi for which dynamical evolution of variables
ending on a coevolution of preferences and of player strategic behavior, we assume that

σ2(ω) > ω > σ1(ω), for any ω ∈ (−1, 1) and lim
ω→±1∓

σ2(ω)− σ1(ω) 6= 0. (

the sake of completeness, in the most general case, function f̃ should be rewritten as in (7) but in terms of a functi
xplicitly depends on ω. Since taking such dependence into account would not introduce new additional, economica
phenomena to those reported in the present contribution, we do not consider dependence of f on ω. This also allo
re direct and clear economic explanation of the results.
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: Functions σ1 and σ2 (panel (a)) for which k1 and k2 are not monotonic (panel (b)) and disposition k2/k1 is unimo
(panel (c)).
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: Functions σ1 and σ2 (panel (a)) for which k1 and k2 are monotonic (panel (b)) and disposition k2/k1 is stric
ng [0, 1) (panel (c)).

ption (8) means that, independently of the current agent preferences, in principle he can alwa
more altruistic and less altruistic. If we allowed for σ2(ω) = σ1(ω) for some ω0 ∈ (−1, 1) or f
σ1(ω) → 0 as ω approaches some ω0 ∈ {−1, 1}, the evolution of preferences would be “exogenousl

at ω0 or could converge toward±1, independently of the evaluation of how much an agent likes/dislik
tcome of the previous stage outcome. In this case, it is easy to see that (ω0, ω0) would be a stea
r the equations governing the evolution of ω for every strategic behavior.
ddition to this, we impose a symmetric behavior for functions ki when the coefficients of altruis
posite signs, i.e.

ki(ω) = k−i(−ω), i = 1, 2, ω ∈ (−1, 1). (

uarantees that if the current coefficient of altruism is positive, the regard for the competitor c
e as much as it could increase under an opposite value for the coefficient of altruism. We stre
consequence of (9) is that k1(0) = k2(0), i.e. when an agent has selfish preferences, he has neith
tion toward altruism nor toward spitefulness.
ally, as it will become evident from the analysis in Section 3, the model allows for a multiplicity
ria. To simplify the discussion, we will focus on situations in which up to three symmetric equilibr
s the explanation of more general situations fall within this prototypical one. To guarantee this, w
ume that either

k2(ω)

k1(ω)
on ω ∈ [0, 1) is monotonic, (10

k2(ω)

k1(ω)
on ω ∈ [0, 1) is unimodal. (10

9
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ion k2(ω)/k1(ω) endogenously determines if an agent is more prone to becoming more altruistic/le
l or to becoming more spiteful/less altruistic. When k2(ω)/k1(ω) is above (respectively below) 1, w
that the player has an endogenous disposition toward altruism (respectively toward spitefulness

e is potentially more disposed to become more altruistic/less spiteful than to become more spiteful/le
ic (respectively he is more disposed to become more spiteful/less altruistic than to become mo
ic/less spiteful).
emphasize that disposition is endogenous, since it can change depending on the current coefficient
, which evolves over time. Moreover, the disposition toward altruism or spitefulness determines t

e or negative sign of k2(ω)− k1(ω), so in what follows we can discuss the role of the disposition o
also inspecting the sign of k2(ω)−k1(ω). For example, Figure 2 (c) depicts a situation in which play
its disposition toward altruism for 0 < ωi,t < 0.5 and ωi,t < −0.5 and disposition toward spitefulne
5 < ωi,t < 0 and ωi,t > 0.5, while Figure 3 (c) depicts a situation in which player i exhibits a unifor
tion toward altruism when he is currently spiteful and a uniform disposition toward spitefulness wh
urrently altruistic. Assumptions (10) then restrict the maximum possible number of changes in t
tion of a player as his preferences range from spitefulness to altruism. The graphs of functions σi a
rted in Figure 2 (a-b) and 3 (a-b) are consistent with all the previous assumptions. In particular,
2 (b) functions ki fulfill assumption (10b), whereas in Figure 3 (b) they fulfill assumption (10a).
ally, we limit the possible heterogeneity between the agents to the initial strategy and/or coefficie
ism. All the remaining elements will be the same for both players (i.e. functions f, σi and m).
resulting model consists of the following four dimensional dynamical system





x1,t+1 = max{
√
vx2,t(1− ω1,t)− x2,t, 0},

x2,t+1 = max{
√
vx1,t(1− ω2,t)− x1,t, 0},

ω1,t+1 = ω1,t +
k2(ω1,t) + k1(ω1,t)

2
f(m(∆π1,t)) +

k2(ω1,t)− k1(ω1,t)

2
,

ω2,t+1 = ω2,t +
k2(ω2,t) + k1(ω2,t)

2
f(m(∆π2,t)) +

k2(ω2,t)− k1(ω2,t)

2
,

(1

∆πi,t are defined by (6) and depend on xi,t and x−i,t. Model (11) can be written in a compact w
= F (st) by introducing function F : (0,+∞)2 × (−1, 1)2 → R4, s = (x1, x2, ω1, ω2) 7→ F (s)

2, ω1, ω2), defined by the right hand side in (11).

tic analysis

ore analyzing the static properties of model (11), we discuss how variables evolve.
preferences evolve according to an anchoring-and-adjusting mechanism. The anchor corresponds
rent preferences, encompassed in ωi,t, and it is adjusted according to the evaluation given by playe
outcome of the previous stage (encompassed in f(m(∆πi,t))), tuned by the potential changes in t
for the opponent, (respectively encompassed in k1(ωi,t) and k2(ωi,t)).
us start considering the case in which no anchoring is present, i.e. the preference evolution

ndent of the current preferences. This occurs for σ(ω1,t) = −1 and σ(ω2,t) = 1. In this situation, t
eriod coefficient of altruism would be a direct consequence of the evaluation of the expected pay
ce alone, resulting ωi,t+1 = f(m(∆πi,t)).
ever, in general, the anchor to past experience acts as a dampening factor for the drift. Assume f
at, given the current preferences, a player is neither disposed toward altruism nor toward spitefulne
(ωi,t) = k2(ωi,t)). For example, let us consider current spiteful preferences. We can make reference
e graph in Figure 1, for which k1(ωi,t) = k2(ωi,t) holds true. In this situation, a negative (respective
e) evaluation of the opponent behavior drives the agent preferences toward an increase (respective
e) of spitefulness. Due to a conservatism bias, the previous preferences are under-revised with respe
signal represented by the expected payoff difference, so that the result is just a reduced adapti
altruism. This mechanism is encompassed in coefficient 0 < (k2(ωi,t) + k1(ωi,t))/2 ≤ 1 that resca
πi,t)) in the latter couple of equations in (11).

10
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ddition to the drift toward altruism, we can highlight another mechanism that can lead to a chan
erences, i.e. an endogenous disposition toward altruism or spitefulness. This latter mechanism
assed in additive term (k2(ωi,t) − k1(ωi,t))/2, whose sign is determined by the disposition towa
/spitefulness k2(ωi,t)/k1(ωi,t).
us focus for simplicity on the case of a player with spiteful preferences at stage t who neutra
es (neither he likes/nor he dislikes) the stage outcome, so that no endogenous drift toward eith
or spitefulness is present as a consequence of strategic choices. For the following discussion, we c
Figure 2.
ending on both the current, negative, coefficient of altruism and his disposition toward either altruis
efulness, the player could both become less altruistic, less spiteful (or even become altruistic) or
ot change his preferences. If a player exhibits a disposition toward spitefulness, he could become le
ic, even in the presence of a neutral evaluation of the stage outcome. However, as already mentione
n change depending on the current degree of spitefulness/altruism, i.e. on the past experiences. F
le, when the actual degree of spitefulness is mild and there is room for a more pronounced spitef
or, the player could decide to act less altruistically if he has a disposition toward spitefulness. Th
in the situation reported in Figure 2 (c) for small, negative coefficients of altruism ωi,t ∈ (−0.5, 0
sely, if the current level of spitefulness of a player is very high, it could depict a scenario in which pa
drifts toward spitefulness (due to particular strategic behaviors) induced an excess of spitefulness,
hen such drift is no more present, the disposition of the player tends to counterbalance the spitefulne
and the negative regard toward the opponent decreases. For example, this occurs in the situati
d in Figure 2 (c) for large, negative coefficients of altruism ωi,t ∈ (−1,−0.5).
summarize, preference evolution can be described in terms of an anchoring toward past experienc
toward altruism induced by the evaluation of the stage outcome and a path dependent dispositi
becoming more altruistic/spiteful.
already discussed the role of prize and preferences on the strategies in Section 2.2.1.
we study possible steady states s∗(x∗

1, x
∗
2, ω

∗
1 , ω

∗
2) of model (11). The first result concerns symmet

states, i.e. those for which x∗
1 = x∗

2 = x∗ and ω∗
1 = ω∗

2 = ω∗. In what follows, we refer to a steady sta
h ωi 6= 0 for at least one i = 1, 2 as non self-interested steady state, while in the opposite case we re
self-interested steady state. In the former case, we refer to a steady state in which ω∗

i > 0, i = 1
istic steady state, meaning that the steady state is characterized by altruistic preferences. Similar
y state in which ω∗

i < 0, i = 1, 2 is called spiteful steady state.

sition 1. Vector (x∗, x∗, ω∗, ω∗) is a symmetric steady state for dynamical system (11) if and only

x∗ =
v(1− ω∗)

4
,

k2(ω
∗)

k1(ω∗)
=

1− f(δ)

1 + f(δ)
, (1

we set δ = m(0).
least a symmetric steady state always exists for any δ, and it is the unique one for all δ if and only
k1(ω) is strictly monotonic. In this case, ω∗ increases as δ increases.
elf-interested steady state is possible if and only if δ = m(0) = 0.

components of the steady state related to the strategies correspond to the Nash equilibrium of gam
en ω∗

1 = ω∗
2 = ω∗, i.e. are the strategic choices of players whose utility function is the modified utili

h exogenous coefficients of altruism ω∗. We remark that x∗ is larger (respectively smaller) than t
quilibrium strategy of a Tullock contest if and only if it corresponds to the steady state strategies
ful (respectively altruistic) steady state. This means that overbidding (respectively underbidding)
tric steady states is a direct consequence of spiteful (respectively altruistic) preferences.
s is in line with the literature about other regarding preferences in lab experiments (see [13]). T
t facet is that non self-interested preferences can endogenously emerge from the coevolution of play
ors and preferences, and are determined by latter condition in (12), in which both identities (i
tion toward altruism/spitefulness) and player evaluation of the stage outcome (i.e. δ) are involve
er, the extent of overbidding and underbidding is magnified by the prize, as evident from the form
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ion in (12), which is again in agreement with experimental findings (see [3]), in which players mo
re overbid as the prize increases.
us note that, in such a symmetric scenario, the steady expected payoff differential is null, so δ = m(
nts the evaluation that the agents make for a scenario in which ∆π∗

i = 0. A consequence of this
e steady state coefficient of altruism does not depend on v.
left-hand side in the latter condition in (12) encompasses the player disposition toward eith
of spitefulness. Conversely, its right hand side is a decreasing function of δ, for which we ha

δ))/(1 + f(δ)) = 1 if and only if δ = 0. Moreover, f(m(∆πi)) represents the coefficient of altruis
player would adopt just relying on the expected payoff difference, independently of his curre
nces. Since in this case case we would have σ1(ω) = −1 and σ2(ω) = 1 and hence k1(ω) = ω + 1 a
1− ω and noting that the latter condition in (12) can be rewritten as

f(δ) =
k1(ω

∗)− k2(ω
∗)

k2(ω∗) + k1(ω∗)
, (1

ady state would be ω∗ = f(δ), as immediately predictable also from equation (7). This means th
presents the steady state coefficient of altruism corresponding to the symmetric scenario in which t
preferences evolve just under the drift induced by the evaluation of the strategic behavior.
versely, let us now take into account non constant functions σi(ω) and start assuming δ = 0, i.e. w
n the case for which the evaluation of a symmetric scenario is neutral, neither positive nor negativ
case, player disposition toward altruism would result in an increase of altruism, since, even if t
tion of stage t outcome would not induce any change in the preferences, player disposition wou
references toward an increased level of altruism (or reduced spitefulness). The reverse would occ
opposite situation. So if a symmetric scenario is neutrally evaluated, a steady state could only reali
is disposition toward neither altruism nor spitefulness.
eneral, a symmetric configuration of coefficients of altruism is a steady state if and only if the tw
escribed mechanisms act in opposite14 ways and balance out. So a positive evaluation of a symmet
o must be counter-balanced by a disposition toward spitefulness (otherwise the two forces would a
r, resulting in increasingly altruistic preferences).
nique symmetric steady state is possible for all δ if and only if players have disposition toward altruis
hey have spiteful preferences and disposition toward spitefulness when they have altruistic preferenc
e scenario reported in Figure 3. In this case, we can say that players globally have disposition towa
erest, as if they are currently altruistic (Figure 3 (c) for ωi,t > 0), their disposition toward spitefulne
induce a decrease of coefficient of altruism (the graph in Figure 3 (c) lies below the horizontal axi
e opposite occurring when they are currently spiteful. If symmetric behaviors are neutrally evaluat
= 0), this would lead to a decrease of the coefficient of altruism when it is positive and an increase wh
gative, so only self-interested preferences can emerge at the steady state. Conversely, if symmet
ors are positively or negatively evaluated, this can respectively counterbalance disposition towa
lness or for altruism, allowing for the existence of spiteful or altruistic steady states, respective
players do not globally have disposition toward self-interest, multiple equilibria can occur. Th
r and distribution strongly rely on how endogenous disposition toward altruism/spitefulness chang
icular, the simplest scenario occurs under assumption (10b).

ary 1. If k2(ω)/k1(ω) is unimodal for ω ∈ [0, 1), then there exists δ̄ > 0 such that for δ ∈ (−δ̄,
(11) has three symmetric steady states, with at least an altruistic and a spiteful steady state.
δ < −δ̄ or δ > δ̄ model (11) has a unique symmetric steady state, which is characterized in terms
if δ > 0 and of spitefulness δ < 0.

scenario of Corollary 1 is that reported in Figure 2. In particular, steady state coefficients of altruis
ntified by the intersection between a horizontal line, representing f(δ), and a cubic-like function li

s is the reason for which the right hand side in the latter condition in (12) is a decreasing function of f(δ).
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Figure 2 (c). In such case, at least a non-self interested steady state always exists, at which eith
idding or underbidding strategies are chosen.
summarize, all the previous results show that non self-interested steady states can endogenous
from the coevolution of player strategic behaviors and preferences. Concerning the possible existen
symmetric steady states, i.e. at which x∗

1 6= x∗
2 and ω∗

1 6= ω∗
2 , we have the following proposition.

sition 2. Vector (x∗
1, x

∗
2, ω

∗
1 , w

∗
2) is an asymmetric steady state for (11) if and only if

x2 =
v(1 − ω∗

1)(1− ω∗
2)

2

(2− ω∗
2 − ω∗

1)
2

, x∗
1 =

v(1 − ω∗
1)

2(1 − ω∗
2)

(2− ω∗
2 − ω∗

1)
2

, (1





f(m(∆π∗
1(ω

∗
1 , ω

∗
2))) =

k1(ω
∗
1)− k2(ω

∗
1)

k1(ω∗
1) + k2(ω∗

1)
,

f(m(−∆π∗
1(ω

∗
1 , ω

∗
2))) =

k1(ω
∗
2)− k2(ω

∗
2)

k1(ω∗
2) + k2(ω∗

2)
,

(1

reover, as v → +∞ we have that asymmetric steady states either vanish or they converge toward
tric steady state.

start noting that (x∗
1, x

∗
2) corresponds to the Nash equilibrium of game Γω. The crucial outcome

ition 2 is that even if several asymmetric equilibria could arise, they are relevant only for suitab
alues of the prize. In fact, as v increases, they either vanish or they are close to a symmetric stea
As a consequence of the marginal relevance of asymmetric equilibria, from now on we do not stu

ny more. We refer the interested reader to [7] for more details and for the proof of Proposition 2.
refore, from now on, we limit the study of stability to symmetric steady states.

namical analysis

analysis carried on in Section 3 showed that non self-interested steady states can emerge from t
tion of preferences and strategies. However, to understand how dynamics select a particular stea
nd the possible emergence of endogenous oscillating dynamics, we must investigate out-of-steady sta
ical behaviors.
begin to analyze the local asymptotic stability of symmetric steady states, in particular by focusi
role of the v.

sition 3. Let s∗ = (x∗, x∗, ω∗, ω∗) be a symmetric steady state of (11) and let us define

θ∗(ω∗) = f(δ)

(
k′∗1 )

2
+

k′∗2 )

2

)
+

k′∗2 )

2
− k′∗1 )

2
.

neral initial conditions, we have that if −2 < θ∗(ω∗) < 0 there exists v̄(ω∗, θ∗(ω∗)) such that s∗

asymptotically stable for v < v̄(ω∗, θ∗(ω∗)) and unstable for v > v̄(ω∗, θ∗(ω∗)).
∗) < −2 or θ∗(ω∗) > 0, s∗ is never locally asymptotically stable.
particular case of ω1,0 = ω2,0 and x1,0 = x2,0, model (11) is equivalent to a two-dimensional syste
ch steady state s∗ is either unconditionally stable or unstable.

previous proposition shows that, as the prize increases, non-convergent dynamics can arise, givi
endogenous oscillations in line with what is observed in lab experiments, in which erratic behavior a
ding more frequently occur when the prize is large [3, 20]. The economic rationale of such phenome
ascribed to overreactive behaviors of the agents in the presence of large prizes, self sustained by t

stress that the asymptotic behavior of asymmetric equilibria is not due to assumptions (9), which is not used in t
Proposition 2.

13
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tion of preferences. If at any time players have either different strategies or preferences, since t
sponse to the competitor strategic behavior is larger the more the prize increases, we have that
er a small discrepancy between the behavior of players is magnified. Moreover, if, for example,
exerted a small effort, the competitor can be induced to play a large effort. This leads to releva
ed payoff differences, which, depending on the kind of player and his disposition, significantly alt
nces. This in turn affects the strategic behavior of the players, leading to a strong response to t
itor strategy due to the large prize.
the remained of this section, we introduce two analytic expressions for function m, which descri
rticularly economically relevant kinds of players, namely tit-for-tat and inequality averse agents, f
we specify the previous analytical results and which we numerically investigate.
it-for-tat agent positively evaluates a situation in which his expected payoff is larger than that of h
itor, as he recognizes this as a situation in which the competitor nicely behaved in his regards, wh
tively evaluates a situation in which his expected payoff is smaller than that of his competitor, as
izes this as a situation in which the competitor badly behaved in his regards. We use “tit-for-tat” f
d of players by analogy with the homonymous game strategy, in which players replicate competiti
operative opponent behaviors. Indeed, in the present contribution, tit-for-tat is related to the w
evaluate their opponent behaviors, and not to a strategic behavior. Moreover, tit-for-tat assum
player is initially cooperative, conversely, we do not restrict initial preferences. To model a tit-for-t
player, a possible simple functional shape is

m(∆πi,t) = γ∆πi,t, (1

γ > 0 encompasses the strength of the reaction of the player.
inequality averse agent evaluates in an increasingly negative way any situation in which the expect
of the two agents are different, since this points out a bad behavior by either himself or his opponen
ing to Fehr and Schmidt [29], agents exhibit a dislike toward unfair material outcomes, both if th
nce unfairness against them and if they are favored by it. Nevertheless, agents more dislike inequit
ially causing disadvantage to themselves than those causing advantage to them. Mimicking what
[29], we consider function

m(∆πi,t) = δ − αmax{−∆πi,t, 0} − βmax{∆πi,t, 0} =

{
δ + α∆πi,t if ∆πi,t ≤ 0,

δ − β∆πi,t if ∆πi,t > 0,
(1

ribe how inequality averse player i evaluates expected payoff differences. In (17) α > β > 0 respe
eight the negative evaluation of player i of the expected material disadvantage −∆πi,t = ∆π−i,t a
cted material advantage ∆πi,t, while δ > 0 represents the evaluation of a completely inequalit
enario. In the next two subsections we specialize the results of Proposition 1 and Corollary
or-tat and inequality averse players, and we perform numerical investigations of the possible d
l behaviors. To better focus on the main aspects and explanation of results, in what follows w
assume that monotonicity assumptions (10) on endogenous disposition hold true. Moreover, wit
s of generality, we assume that f ′(0) = 1, as scenarios arising for different values of f ′(0) occ
table rescaling of parameters defining function m. For the numerical simulations, we use functio
tanh(z) and σ2(ω) = max(min(aω+b, 1),−1). Expressions for function k1, k2 and σ1 can be obtain

2(ω) = σ2(ω)− ω, k1(ω) = ω − σ1(ω) and, thanks to assumption (9), from k1(ω) = k2(−ω).

it-for-Tat players

stly, in the next proposition, we specialize general static and dynamical results for the model wi
-for-tat players.

sition 4. Vector (x∗, x∗, ω∗, ω∗) is a symmetric steady state for (11) if and only if

x∗ =
v(1 − ω∗)

4
, k1(ω

∗) = k2(ω
∗). (1

14
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assumption (10a), the self-interested steady state is the unique symmetric one, and if k′2(0)− k′1(0)
it is locally asymptotically stable provided that

v <
4

γ(k1(0) + k2(0))
, (1

ise it is unconditionally unstable. Under assumption (10b), model (11) has three symmetric stea
s∗+ = (x∗

a, x
∗
a, ω

∗, ω∗), s∗0 = (v/4, v/4, 0, 0) and s∗− = (x∗
s , x

∗
s ,−ω∗,−ω∗), where s∗0 is locally uncond

unstable and s∗± are locally asymptotically unstable if k′2(ω
∗)− k′∗1 ) < −4, while otherwise they a

asymptotically stable provided that

v <
4(1∓ ω∗)

γ(k1(ω∗) + k2(ω∗)(1± ω∗)
. (2

= −ω2,0, model (11) reduces to a three-dimensional dynamical system for which s∗0 is locally asym
y stable provided that

max

{
−2− k′2(0)

2
+

k′1(0)
2

,
k′2(0)
2

− k′1(0)
2

, 0

}
< v <

4

γ(k1(0) + k2(0))
.

st, we start noting that since a tit-for-tat player neutrally evaluates a stage outcome in which playe
entical efforts (and hence no drift toward more/less altruism is present), at symmetric steady states
must have disposition neither toward altruism nor spitefulness, as encompassed in the latter conditi
.
cerning stability, we highlight the predictable destabilizing effect of the strength of reaction of playe
expected payoff differences. Moreover, the more the coefficient of altruism can potentially increa
re s∗ becomes unstable for smaller values of the prize. Greater kj(ω

∗
i ) potentially allows for larg

nce variations, which in turn causes larger changes in strategic behaviors. Effort differences c
vant on payoffs even in the presence of a small prize, leading to self sustained oscillations in t
tion of strategies and coefficients of altruism.
en three steady states exist, noting that factor (1−ω∗)/(1+ω∗) is decreasing with respect to ω∗, t
y interval for the altruistic steady state is always smaller than for that spiteful. The explanation f
n be found in the larger payoffs expected when players underbid with respect to when they overb
e that both players have slightly different altruistic preferences, close to those at the altruistic stea
Due to the difference in the coefficients of altruism, there are inequalities in exerted efforts th
inequality in expected payoffs. Since altruistic players underbid, their expected payoffs are lar
the presence of a small prize, so reduced effort inequalities can lead to significant payoff differenc
in turn induce relevant changes in the preferences. Since agents have opposite evaluations of t
ed payoff differences, one agent becomes more altruistic, the other less altruistic and this goes
e disposition toward spitefulness of the former player and that for altruism of the latter one becom
ting and start counterbalancing the drifts toward altruism induced by stage outcome evaluatio
ng the phenomenon.
versely, when the prize is suitably small and agents are spiteful, expected payoffs are small, whi
s small payoff differences and this does not significantly affect preferences.
reover, the self-interested steady state is locally asymptotically unstable. However, if the init
nces are characterized in terms of coefficients of altruism with opposite signs, i.e. the degree
of a player exactly balances that of spitefulness of the competitor, s∗0 can attract trajectories f

ediate values of the prize. The reason for which for small values of v convergence to s∗0 is not possible
such prize range asymmetric steady states exist, and attract trajectories starting with ω1,0 = −ω2

e simulative evidences and more details on this, we refer the interested reader to [7].
we study the possible dynamics arising for prizes larger than marginal costs (i.e. v > 1), aga

σ2(ω) = max(min(1.1ω + 0.3), 1),−1) and γ = 4. We stress that for such functions σi(ω) we ha
teady states s∗+ = (v/18, v/18, 7/9, 7/9), s∗0 = (v/4, v/4, 0, 0) and s∗− = (4v/9, 4v/9,−7/9,−7/
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s∗+ is locally asymptotically stable for v < 18, s∗− is unstable (it would be stable for v < 0.2812
for ω1,0 = −ω2,0, the self-interested steady state s∗0 is stable for v < 1.6667.
igure 4 (a-b) we report bifurcation diagrams of variables xi and ωi for different initial settings, wi
ashed line representing Tullock-Nash equilibrium. In all the diagrams the initial strategies are s
o x1,0 = 3 and x2,0 = 4. The black and blue bifurcation diagrams are obtained setting ω1,0 = −0

,0 = 0.3, i.e. the average coefficient of altruism is negative, and hence the initial preferences are,
e, characterized by spitefulness. For v < 18, trajectories converge toward the spiteful steady sta
t v = 18 it loses stability and we have numerical evidence of the occurrence of a Neimark-Sack
tion. We note that quasi-periodic trajectories are always characterized by overbidding and spitef
nces, as the black/blue bifurcation diagrams in Figure 4 (b) always lie below horizontal line ω =
onding to self-interested preferences.
ilarly, setting ω1,0 = −0.3 = ω2,0, s

∗
0 loses stability through a Neimark-Sacker bifurcation at v

(green and gray bifurcation diagram). In this case, trajectories of strategies have large oscillatio
the Nash equilibrium of the classic Tullock game, with alternating altruistic and spiteful preferenc
ally, if initial preferences are, on average, characterized by altruism, as for example setting ω1,0 = 0

,0 = −0.3, we have periodic dynamics around the altruistic steady state, which, as already noted,
le when v > 1.
vergence toward the altruistic or spiteful steady state basically depends on the characterization of t
preferences, on average, in terms of altruism or spitefulness, as evident from the basins of attracti
d in Figure 4 (c). If ω1,0 + ω2,0 < 0, trajectories converge toward an attractor characterized
lness, while if ω1,0 + ω2,0 > 0 trajectories converge toward an attractor characterized by altruis
s analytically proved, only for ω1,0 + ω2,0 = 0, convergence is toward an attractor characterize
t on average, by self-interest). We stress that these phenomena are mainly driven by the init
nces alone, while they are essentially independent of the initial strategic choices, at least when x
too extreme to give rise at first to overreaction phenomena in the best response mechanism.
ording to the previous propositions and simulations, outcomes characterized both in terms of ove
and underbidding are theoretically possible. Since contest experiments are characterized by a stro
of competitiveness, if the initial attitude of players can be encompassed in spiteful preferences, t
o with tit-for-tat kind of players coevolves giving rise to dynamics driven by spiteful preferences, wi
ding phenomena. However, this case of study is useful to explain the reduced number of experimen
h altruistic behavior and underbidding are also observed. In [6], this is commented in terms of
preferences, which, according to the discussed theoretical and simulative results, can be explain
s of stimulating initial altruistic preferences, which then bolster dynamics characterized in terms
e coefficients of altruism and underbidding.
recall that underbidding has been observed in other Tullock experiments, or in experiments
s with a setting close to that of Tullock, in which the prize is not divisible. In the experiment report
an aggregated effort lower than 30% with respect to the Tullock-Nash equilibrium. In this case,

d initial endowment was given to the players, just exceeding 10% of the Tullock-Nash equilibriu
tit-for-tat players are considered, capping the maximum possible bids significantly reduces the bas
ction for strategies and preferences characterized by spiteful behavior (basically, the azure region
in of attraction in Figure 5c is capped as well). The economic rationale of this is that reducing t
lity for players to initially overbid increases the possibility for them to enforce reciprocal pro-soc
or, and the occurrence of underbidding becomes more substantial. Similarly, in the Tullock conte
d in [19], the authors set up an experiment in which, with the concurrence of simultaneous bids, fix
ng and random prize allocation without bids, the contestants develop tacit coordination (compatib
pro-social behavior) on underbidding outcomes. This is consistent with tit-for-tat kinds of playe
ess that Konrad [17], using a static evolutionary setting, showed that altruism can outperform
tion of selfish players.

equality averse players

next proposition presents specialized static and dynamical results for the model with two inequali
players. Since the conditions defining steady states do not become simpler than those in (15), w
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(c)

: Tit-for-tat players: symmetric steady states and related dynamics. First row: bifurcation diagrams for variables
panel (a)) and ω1 and ω2 (panel (b)), when initial preferences are characterized on average by spitefulness (black a
ors), by altruism (red and magenta) and by self-interest (gray and green). Basins of attraction (panel (c)) when v =

epeating them. Moreover, since the discussion on asymmetric steady states with tit-for-tat players
plicable for inequality averse players, we just focus on symmetric steady states.

sition 5. Under assumption (10a), or under assumption (10b) and if δ is suitably large, model (1
nique symmetric steady state s∗+ = (x∗

a, x
∗
a, ω

∗, ω∗) with ω∗ > 0.
er assumption (10b) and if δ is suitably small, model (11) has three steady states s∗+ = (x∗

a, x
∗
a, ω

∗
a, ω

(x∗
s,1, x

∗
s,1, ω

∗
s,1, ω

∗
s,1), s

∗
−,2 = (x∗

s,2, x
∗
s,2, ω

∗
s,2, ω

∗
s,2) with ω∗

s,1 < ω∗
s,2 < 0 < ω∗

a.
h of the previous steady states is locally asymptotically stable provided that k′∗2 )− k′∗1 ) ∈ (−4, 0) an

v <
8(1− ω∗)

(α− β)f ′(δ)(k1(ω∗) + k2(ω∗))(1 + ω∗)
, (2

h ω∗ is replaced by the corresponding steady state coefficient of altruism.
′∗
2 ) − k′∗1 ) < −4 or k′2(ω

∗)− k′∗1 ) > 0, the steady state is unconditionally unstable, in particular s∗−
ys unconditionally unstable.

ce an inequality averse player positively evaluates a stage outcome at which no inequality is prese
n player behaviors, it is understandable that a steady state characterized in terms of altruism alwa
n a symmetric scenario. However, if the disposition toward altruism/spitefulness non-monotonica
s on the coefficient of altruism, also spiteful steady states can exist, at least for small values of δ,
and discussed in Corollary 1.
cerning stability, we have that the greater is the difference between aversion toward his own mater
ntage with respect to that toward the competitor material disadvantage, the smaller is the thresho
alue after which a steady state becomes unstable. This can be explained as follows. The more α
t from β, the more the effect on the preferences of the evaluation of the stage outcome is differen
hat, differently from tit-for-tat players, inequality averse players can in principle provide the sam
ion of payoff differences (when α = β), since they both dislike inequalities. However, even if, as ∆
from zero, their dislike increases, the more α− β is large, the more ∆πi differently increases for ea
This can amplify the difference between preferences, which can self-sustain due to the conseque

lities in player strategies that cause differences in expected payoffs.
discuss dynamics with the help of numerical simulations. We thoroughly checked, by changing t
d parameters and the shapes of functions σi, that the reported simulative results are robust and t
uent comments hold true in general.
consider σ2(ω) = max(min(1.1ω + 0.3), 1),−1) and we set α = 4 and β = 0.6 (such values a
those proposed in [29]). If we set δ = 0.1, we have three symmetric steady states, as shown
5 (a), corresponding to s∗−,1 = (0.43v, 0.43v,−0.72,−0.72), s∗−,2 = (0.32v, 0.32v,−0.30,−0.30), s∗+
0.04v, 0.82, 0.82).
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: Inequality averse players, δ = 0.1. First row: three symmetric steady states characterized in terms of eith
ess or altruism (panel (a)). Panels (b-c): bifurcation diagrams for variables x1 and x2 and ω1 and ω2, when init
ces are characterized by altruism (black and blue colors are respectively used for player 1 and 2). Second row: s∗−
terisk, turquoise basin of attraction) coexisting with another attractor (yellow basin of attraction) arisen from the l
ity of s∗+ (red asterisk). Third row: s∗−,1 (blue asterisk) attracts almost any trajectory (panel (g)) and, as v furth

s, it loses stability and a closed invariant curve emerges (panel (h)).

reover, from condition (21), s∗+ is locally asymptotically stable for v < 0.58, while s∗−,1 for v < 29.0
prize values for which s∗+ is stable are very small, in particular less than marginal costs. In Figure
e report the bifurcation diagrams for strategies and coefficients of altruism considering initial valu
s∗+. Notwithstanding, for v > 3.3 trajectories converges toward the spiteful steady state and, wh
comes unstable, toward an attractor at which preferences are always characterized by spitefulness a
ies by overbidding. As evident from Figure 5 (d-h), the spiteful steady state s∗−,1 attracts trajector
so start from initial altruistic preferences. We stress that the basins reported in Figure 5 (d-h) a
d by setting initial strategies close to 0.04v, i.e. to the steady state strategies related to s∗+. T
or arising from the loss of stability of s∗+ very quickly grows and as v →∼ 3.2 it tends to collide wi
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undary of the basin of attraction of s∗−,1, and hence to disappear. So, even for quite small values
ze, s∗+ does not play any economically significant role in the dynamics (we recall that, in agreeme
roposition (25), some trajectories starting with ω1,0 = ω2,0 can still converge toward s∗+) and starti
lmost any initial condition we have convergence toward the spiteful steady state or the attract
when it becomes unstable. The scenario reported in Figure 5 shows that, at least when multip
states are present, the spiteful steady state is that dynamically relevant, giving rise to overbiddi
ena even if the players initially have altruistic preferences, especially when the prize increases.
at is most surprising is that dynamics characterized by spiteful preferences can emerge even in t
e of spiteful steady states. To this end, we consider the same setting we used for the simulatio
d in Figure 5, but we increase δ, setting it equal to 0.4. In this case, as shown in Figure 6 (a), w
unique altruistic symmetric steady state s∗+ = (0.02v, 0.02v, 0.91, 0.91), which is locally asymptotica
just for v < 0.45. As v increases, a closed invariant curve emerges around s∗+ giving rise to qua
c dynamics. However, such attractor moves away from s∗+, and it quickly reaches regions of t
pace in which coefficients of altruism are negative and hence strategic choices are larger than tho
onding to the classic Tullock Nash equilibrium. The bifurcation diagrams reported in Figure 6 (b-
ained setting ω1,0 = 0.9, ω2,0 = 0.905 and x1,0 = x2,0 = 0.31, i.e. coefficients of altruism are very clo
e at s∗+. They show that, even if for small values of the prize, dynamics are characterized in terms
, strategies (respectively coefficients of altruism) shift upward (respectively downward), highlighti
ding phenomena. As evident from Figure 6 (d-g), the attractor arising when s∗+ becomes unstab
s” along the diagonal of phase plane (ω1, ω2), shifting toward the region in which both coefficien
ism are negative. To better explain such dynamical behavior, we make reference to the initial par
time series of xi and ωi reported in Figure 6 (h-i). The initial conditions are close to s∗+, and bo
have initial altruistic preferences and underbid. However, the small difference between their init
nces causes slightly different strategic behaviors, which lead to inequalities in the expected payoff
s significant due to the underbidding of the agents. Inequality aversion then brings about a change
ferences. Since they both dislike the stage outcome, this creates a drift toward spitefulness that star
ing the coefficient of altruism. However, the effects of aversion toward his own material disadvanta
spect to that toward the competitor material disadvantage are different, and hence the extent of t
e of the coefficients of altruism is different for each player, and this amplifies inequality between play
ors and hence between payoffs. The decrease of coefficients of altruism then goes on, and altruis
nces turn into spiteful ones, due to the persistence of a behavior of the competitor that is evaluat
. As the players become more spiteful, they increase the exerted effort and they start overbiddi
). This progressively reduces expected payoffs, and hence the difference between them. Howev
ifferences persist, as they are sustained by inequality aversion toward own material disadvantag
due to the erratic evolution of both preferences and strategies, alternately affect different playe
lness and overbidding increases until they reach a point (t = 15), at which, due to the large, negati
ent of altruism, each player disposition toward altruism is dominating, leading to a slow increase
fficient of altruism, also because of reduced expected payoffs and consequently reduced inequali
n increase goes on until inequalities are bearable. As the overbidding reduces and payoff inequali
o increase, an abrupt inversion of preference trajectories occurs, with a fast return of spitefulne
ed by inequality aversion.
e considered functions σi for which k2(ω)/k1(ω) is strictly increasing and just one symmetric altruis
state exists, we would observe dynamical behaviors that are similar in all and for all to those report
re 6.
we mentioned in the Introduction, in the literature it was already shown that inequality aversion cou
xplanation of overbidding, but assuming exogenous spitefulness for players. The previous results sho
erbidding due to inequality aversion is robust with respect to endogenous preference evolution a
erge even if the players are (initially) altruistic. Moreover, we already discussed in Section 4.1 t
ent in [18] with underbidding outcome. We tested the theoretical model with inequality aver
by capping the maximum possible effort to 1.1v. In this case we again found dynamics characteriz
rbidding, with the emergence of spitefulness. This is very interesting, since it shows that, at lea
e theoretical point of view, such an effort cap is not enough to explain by itself the emergence
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: Inequality averse players, δ = 0.4. First row: the unique symmetric steady state is characterized in terms of altrui
a)). Panels (b-c): bifurcation diagrams of variables x1, x2 and ω1, ω2, when initial preferences are characterized
(black and blue colors are respectively used for player 1 and 2). Second and third rows: attractor evolution

ses (panels (d-g)) and related position with respect to locally asymptotically unstable altruistic steady state (r
). Third row, panels (h-i): time series of variables x1, x2 and ω1, ω2 when v = 14.

idding, as the inequality aversion pushes preferences toward spitefulness.
summarize, when inequality averse players are involved, the static analysis would suggest that
and underbidding should be dominant, but the dynamical analysis highlights that spitefulness a
ding can endogenously emerge, giving rise to non convergent dynamics, once more self-sustained
volution of strategies and preferences.

nclusions

volution of other regarding preferences and agent behaviors proved to be an effective tool to u
d the emergence of non self-interested preferences, and consequently of strategic choices that c
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overbidding or underbidding phenomena, as well as erratic behavior. The carried on analysis sho
portance played by agent preferences in determining both possible steady and dynamical outcom
er, it highlights how a static investigation of contest models can be misleading, as preference ev
can drive trajectories very far from steady states. The way player preferences evolve depending
ervation and evaluation of the contest outcomes leads to the selection of particular steady config
, when multiple of them coexist. In addition, for example in the case of inequality averse players,
n sustain the endogenous occurrence of overbidding when no steady states characterized in terms
ding do exist. Moreover, the coevolutive approach that we pursued allows a clear explanation of t
le behind each static or dynamical result.
aim at developing future research in several directions. First, we have so far considered a symmet
, with homogeneous players. Introducing heterogeneity also allows for testing the robustness of t
in an evolutionary perspective. Moreover, different preference evolution mechanisms can be tak
count, considering, for instance, an exogenous reference value on which basis the agents evaluate t
or of their opponents. Finally, the model we proposed is related to a classic Tullock contest framewor
s approach can be extended to different situations, as for example in public good games. In additi
, it could be applied to conflict models, to understand the ebb and flow often observed in the level
ies, with waves of extreme contrasts followed by an ostensible quiet, and again by extreme violenc

dix

[Proposition 1 and Corollary 1] For a symmetric equilibrium we set ω1 = ω2 = ω. From the form
of equations we immediately obtain the former expression in (12). Since ∆πi(x1(ω, ω), x2(ω, ω)) =
e {

0 = k1(ω)+k2(ω)
2 f(m(0)) + k2(ω)−k1(ω)

2 ,

0 = k1(ω)+k2(ω)
2 f(m(0)) + k2(ω)−k1(ω)

2 ,

provides the latter condition in (12). Note that such condition can be rewritten as

f(δ) =
k1(ω

∗)− k2(ω
∗)

k2(ω∗) + k1(ω∗)
. (2

: (−1, 1) → R defined by g(ω) = (k1(ω) − k2(ω))/(k2(ω) + k1(ω)). From k1(0) = k2(0) we ha
0, and since k1(ω) = k2(−ω), function g(ω) is odd. Moreover, since k2(ω) → 0+ as ω → 1− a
0+ as ω → −1+, from assumption (8), since |σ2(ω)− σ1(ω)| > µ we have k2(ω) + k1(ω) > µ, a

imω→−1− k2(ω) ≥ µ and limω→1− k1(ω) ≥ µ, from which g(ω) → ±1 as ω → ±1. Since f(δ) ∈ (−1, 1
to the Intermediate Values Theorem, we have that equation (22) always has at least a solution. T
ion on the self-interested steady state is straightforward from (12).
ting ρ(ω) = k2(ω)/k1(ω), we have that the right hand side in (22) can be rewritten as g(ω)
ω))/(ρ(ω) + 1), for which g′(ω) = (−2ρ′2), i.e. the monotonicity of g is opposite to that of ρ(ω
eans that if ρ(ω) is strictly monotonic, we then have that (22) has a unique solution. Note tha
to assumption (9), we have g(0) = 0 and, thanks to assumption (8), we have g(±1∓) = ±1, so
strictly monotonic, function g must be strictly increasing (which means that k2(ω)/k1(ω) must
decreasing). So a straightforward geometric consideration shows that if δ increases, also the soluti
increases as well. The strict monotonicity of ρ(ω) is also necessary for uniqueness. It is clear that
monotonic but not strictly monotonic, then (22) has infinitely many solutions for some δ. If ρ(ω)
notonic, then for some ω̄ we must have ρ′(ω̄) = 0 and ω̄ is an extremum point. If it is for examp
mum point, for δ belonging to a suitably small left neighborhood of f−1(ρ(ω̄)) we have at least
of solutions to (22). Moreover, since k1(ω) = k2(−ω), function g is odd and unimodal on [0, 1), it
-like function, so we immediately have the result about the maximum number and characterizati
metric steady states of Corollary 1.

[Proposition 3] We start considering general initial conditions. We note that function F defini
(11) is Lipschitz continuous but not differentiable at x1 = x2. However, the classic argument on t
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lues of the Jacobian matrix of F at the steady state can be adapted and still holds at a symmet
state s∗ of (11). For the reader’s sake, we detail the proof.
us consider a symmetric steady state s∗ of (11). Note that x∗

1 = x∗
2 6= 0, so it is possible to find

e neighborhood Ω ⊂ (0,+∞)2 × (−1, 1)2 of s∗ such that if (x1, x2, ω1, ω2) ∈ Ω, we have xi ≥ µ >
e µ > 0. This guarantees that on each subset

Ω+ = Ω ∩ {(x1, x2, ω1, ω2) ∈ R4 : x2 ≥ x1}, Ω− = Ω ∩ {(x1, x2, ω1, ω2) ∈ R4 : x2 ≤ x1},

n F ha continuous partial derivatives, and hence it is Frechet differentiable. Let J± be the Jacobi
es of F on Ω±, for any norm, we then have that there are two balls B(s∗, δ+) and B(s∗, δ−) su
espectively, for any h ∈ R4 : s∗ + h ∈ Ω±

lim
‖h‖→0

‖F (s∗ + h)− F (s∗)− J±(s∗)h‖
‖h‖ = 0,

assume that ρ(J±(s∗)) < 1, and let us consider a norm ‖‖ for which J±(s∗)‖ < ρ(J±(s∗))+ε < 1−
e suitable ε > 0. Thanks to Frechet differentiability and recalling that s∗ is a steady state, there
(s∗, δ+) such that for any h ∈ R4 : s∗ +h ∈ B(s∗, δ+) we have ‖F (s∗ +h)− s∗ −J+(s∗)h‖ ≤ ε‖h

ere is a ball B(s∗, δ−) such that for any h ∈ R4 : s∗ + h ∈ B(s∗, δ−) we have ‖F (s∗ + h)− F (s∗)
h‖ ≤ ε‖h‖. We then have, respectively on B(s∗, δ±) that

‖F (s∗ + h)− s∗‖ ≤ ‖F (s+ h)− s∗ − J±(s∗)h‖+ ‖J±(s∗)h‖ ≤ ε‖h‖+ (ρ(J±) + ε)‖h‖,

on B = B(s∗, δ+) ∪ B(s∗, δ−) we have ‖F (s∗ + h) − s∗‖ ≤ k‖h‖ with k < 1, and this guarante
gence toward s∗ of iterations that start in B.
Jacobian matrix of System (11) is defined for any x1 6= x2 and results

J =




0 j12 j13 0
j21 0 0 j24
j31 j32 j33 0
j41 j42 0 j44


 ,

j12 =
1

2

√
v(1− ω1)

x2
− 1, j13 = −1

2

√
vx2

1− ω1
, j21 =

1

2

√
v(1− ω2)

x1
− 1, j24 = −1

2

√
vx1

1− ω1
,

j31 = −m′(∆π)f ′(m(∆π))
(

k1(ω1)
2 +

k2(ω1)
2

)
(x2

1+2x1x2+x2
2−2vx2)

(x1+x2)2
= −j32,

j33 = f(m(∆π))
(

k′
1(ω1)
2 +

k′
2(ω1)
2

)
+

k′
2(ω1)
2 − k′

1(ω1)
2 + 1,

j41 =
f ′(m(−∆π))m′(−∆π)

(
k1(ω2)

2 +
k2(ω2)

2

)
(x2

1+2x1x2+x2
2−2vx2)

(x1+x2)2
= −j42,

j44 = f(m(−∆π))
(

k′
1(ω2)
2 +

k′
2(ω2)
2

)
+

k′
2(ω2)
2 − k′

1(ω2)
2 + 1,

h we set ∆π = ((x2 − x1)(x1 − v + x2))/(x1 + x2).
have that J+(s∗) (i.e. the Jacobian matrix of the restriction of F to Ω+ evaluated at s∗) is

J+(s∗) =




0 0 − v
4 0

0 0 0 − v
4

m′+)z −m′+)z 1 + θ 0
−m′−)z m′−)z 0 1 + θ


 ,

we set

z = f ′(δ)

(
k1(ω

∗)
2

+
k2(ω

∗)
2

)
1 + ω∗

1− ω∗ , θ = f(δ)

(
k′∗1 )

2
+

k′∗2 )

2

)
+

k′∗2 )

2
− k′∗1 )

2
.
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ghtforward computation shows that the characteristic polynomial of J+(s∗) is

p(λ) = λ

(
λ3 − 2(θ + 1)λ2 +

(
θ2 + 2θ +

φ

4
+ 1

)
λ+

(
−φ

4
− φθ

4

))
, (2

we set φ = vz(m′−) +m′+)).
ilarly, we have that J−(s∗) (i.e. the Jacobian matrix of the restriction of F to Ω− evaluated at s

J−(s∗) =




0 0 − v
4 0

0 0 0 − v
4

m′−)z −m′−)z 1 + θ 0
−m′+)z m′+)z 0 1 + θ


 .

ightforward computation shows that the characteristic polynomial of J−(s∗) is again (23), so t
ons under which the eigenvalues of J+(s∗) and J−(s∗) lie inside the unit circle are the same. Th
eans that conditions under which their eigenvalues lie outside the unit circle are the same, a
everting the following inequalities we will obtain conditions under which a symmetric steady state
le.
ynomial (23) has indeed a null eigenvalue, so conditions under which its eigenvalues lie inside the un
re those for the roots of a third degree polynomial. We recall that, as reported, for example, in [3
nditions are




T +D − 1 +M < 0
−(T +D + 1 +M) < 0
M − T ·D − 1 +D2 < 0
−(M − T ·D + 1 +D2) < 0

where T = 2θ + 2,M = θ2 + 2θ +
φ

4
+ 1, D =

φ(θ + 1)

4
, (2

itions (24) become





θ(φ−4θ)
4 < 0,

− (θ+2)(φ+4θ+8)
4 < 0,(

θ+1
4

)2
φ2 −

(
θ2

2 + θ + 1
4

)
φ+ θ2 + 2θ < 0,

(θ+1)2

16 φ2 +
(

2(θ+1)2−1
4

)
φ− (θ + 1)2 − 1 < 0.

(2

e aim at studying stability on varying v, we solve each condition with respect to φ. Let

φ1(θ) = 4θ, φ2(θ) = −4θ − 8, φ3(θ) =
4θ(θ + 2)

(θ + 1)2

φ−(θ) =
2
(
−2θ2 − 4θ − 1−

√
8(θ + 1)2 + 1

)

(θ + 1)2
, φ4(θ) =

2
(
−2θ2 − 4θ − 1 +

√
8(θ + 1)2 + 1

)

(θ + 1)2
,

(25) for φ, depending on θ, we find

θ < −2 −2 < θ < 0 0 < θ < 2
Condition1 φ > φ1(θ) φ > φ1(θ) φ < φ1(θ)
Condition2 φ < φ2(θ) φ > φ2(θ) φ > φ2(θ)

Condition3 φ3(θ) < φ < 4
φ3(θ) < φ < 4
( if θ = −1, φ < 4)

φ3(θ) < φ < 4

Condition4 φ−(θ) < φ < φ4(θ)
φ−(θ) < φ < φ4(θ)
( if θ = −1, φ > −4)

φ−(θ) < φ < φ4(θ)
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rt focusing on θ < −2, whose study we subdivide into two cases.

− 3+
√
5

2 ≤ θ < −2. We have

φ2(θ) ≤ φ3(θ) ⇔ −4θ − 8 ≤ 4θ(θ + 2)

(θ + 1)2
⇔ 4(θ + 2)(θ2 + 3θ + 1)

(θ + 1)2
≥ 0, (2

h the last expression is true for θ2 + 3θ + 1 ≥ 0, i.e. when − 3+
√
5

2 ≤ θ < −2, so conditions 2 and
compatible in such interval.

θ < − 3+
√
5

2 . We have

) < φ3(θ) ⇔ 2
(
−2θ2−4θ−1+

√
8(θ+1)2+1

)

(θ+1)2 < 4θ(θ+2)
(θ+1)2 ⇔ 16θ−2

√
8θ4+32θ3+48θ2+32θ+9+8θ2+2

(θ+1)2 > 0

⇔ 32(θ2 + 3θ + 1)(θ2 + θ − 1) > 0,
(2

is true since θ2 + 3θ + 1 is positive for θ < − 3+
√
5

2 as well as θ2 + θ − 1, since it is positive f
+
√
5

2 . So condition 3 and 4 are not compatible for θ < − 3+
√
5

2 and (25) has empty solution.
conclude that s∗ is unconditionally unstable for θ < −2.
we focus on θ < −2, whose study we again subdivide into two cases.

0 < θ ≤
√
5−1
2 . We have

φ1(θ) ≤ φ3(θ) ⇔ 4θ ≤ 4θ(θ + 2)

(θ + 1)2
⇔ 4θ(θ2 + θ − 1)

(θ + 1)2
≤ 0, (2

h the last expression is true for θ2 + θ − 1 ≤ 0, i.e. for 0 < θ ≤
√
5−1
2 , so condition 1 and 3 are n

tible in such interval.

θ >
√
5−1
2 . Recalling (27), we have that φ4(θ) < φ3(θ) since θ2 + 3θ + 1 is positive for θ >

√
5−3
2

θ2 + θ − 1, since it is positive for θ >
√
5−1
2 . So condition 3 and 4 are not compatible for θ >

√
5−
2

nce (25) has empty solution.
we conclude that s∗ is unconditionally unstable also for θ > 0.
us now consider the case of θ ∈ (−2, 0). We note that if m′−)+m′+) > 0, we have that as v increas
∞), φ increases in (0,+∞), while if m′−) + m′+) < 0, we have that as v increases in (0,+∞),
es in (−∞, 0).
we start considering the solution to (25) in the case of m′−) +m′+) > 0, so we are interested on
tions φ ∈ (0,+∞). Since θ ∈ (−2, 0), both conditions 1 and 2 are always fulfilled, while condition
s to φ ∈ (0, 4), and we set

v̄(ω, θ) =
4

(m′−) +m′+))f ′(δ)
(

k1(ω)
2 + k2(ω)

2

)
1+ω
1−ω

. (2

e

2
(
−2θ2 − 4θ − 1 +

√
8(θ + 1)2 + 1

)

(θ + 1)2
< 4,

n be equivalently rewritten into

2θ2 − 4θ − 1 +
√
8(θ + 1)2 + 1

)

(θ + 1)2
< 4 ⇔

2
(
4θ2 + 3 + 8θ −

√
8θ4 + 32θ3 + 48θ2 + 32θ + 9

)

(θ + 1)2
> 0 ⇔ 8θ(θ + 1)2(θ + 2) > 0,

is indeed true recalling that θ ∈ (−2, 0).
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we focus on the solution to (25) in the case of m′−)+m′+) < 0, so we are interested only in solutio
∞, 0). Conditions 1 and 2 can be summarized as

φ >

{
4θ −1 ≤ θ < 0
−4θ − 8 −2 < θ < −1

(3

set

v̄(ω, θ) =





4θ

(m′−)+m′+))f ′(δ)
(

k1(ω)

2 +
k2(ω)

2

)
1+ω
1−ω

−1 ≤ θ < 0,

−4θ−8

(m′−)+m′+))f ′(δ)
(

k1(ω)
2 +

k2(ω)
2

)
1+ω
1−ω

−2 < θ < −1.

er, recalling (28), we have φ3(θ) < φ1(θ) on −1 ≤ θ < 0 and, recalling (26), we have φ3(θ) < φ2(
< θ < −1, so condition (30) guarantees condition 3.
ally, also condition 4 is guaranteed by condition (30). In fact, we can note that the right-hand si
is greater or equal than −4 on (−2, 0), φ4 > 0 and

2
(
−2θ2 − 4θ − 1−

√
8(θ + 1)2 + 1

)

(θ + 1)2
< −4 ⇔

2
(√

8(θ + 1)2 + 1− 1
)

(θ + 1)2
> 0,

is true since
√
8(θ + 1)2 + 1 ≥ 1.

let us discuss what happens if x1,0 = x2,0 and ω1,0 = ω2,0. In this case, both equations describi
namics of strategic behavior are the identical, as well as those describing preference adjustme
ism. This means that four dimensional model (11) reduces to the two dimensional model





xt+1 =
√
vxt(1 − ωt)− xt,

ωt+1 = ωt +
k2(ωt) + k1(ωt)

2
f(m(0)) +

k2(ωt)− k1(ωt)

2
,

(3

xt and ωt represent the time invariant strategies of both players. The Jacobian matrix of the m
g the right-hand side of (31) is

J =



√

v(1−ω)
x − 1 −

√
xv

2
√
1−ω

0
k′
2(ω)
2 − k′

1(ω)
2 + f(δ)

(
k′
1(ω)
2 +

k′
2(ω)
2

)
+ 1


 ,

evaluated at a symmetric equilibrium becomes

J∗ =

(
0 − v

4

0
k′∗
2 )
2 − k′∗

1 )
2 + f(δ)

(
k′∗
1 )
2 +

k′∗
2 )
2

)
+ 1

)
,

hich it is evident that stability does not depend on v.

[Proposition 4] Characterization of the steady state coefficient of altruism in (18) immediately follo
e latter condition in (12) and f(δ) = 0. Concerning stability, we start noting that at a symmet
state, since k1(ω

∗) = k2(ω
∗), we have

(
k2(ω

∗)
k1(ω∗)

)′
=

k′∗2 )k1(ω
∗)− k2(ω

∗)k′∗1 )

k21(ω
∗)

=
k′∗2 )− k′∗1 )

k1(ω∗)
,

ign of k′∗2 )−k′∗1 ) is determined by the monotonicity of k2(ω
∗)/k1(ω∗). We already showed in the pro

osition 1 that if k2(ω
∗)/k1(ω∗) is strictly monotonic, it must be strictly decreasing, so k′∗2 )−k′∗1 ) <

m Proposition 3 s∗0 is unconditionally unstable if θ(0) = (k′2(0) − k′1(0))/2 < −2. Conversely,
k′1(0) > −4, from the proof of Proposition 3 we have that stability is guaranteed provided that (2
rue, that in the present case reduces to (19).
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er assumption (10b), recalling that the right-hand side in (22) vanishes for ω∗ = 0 and approach
→ 1−, we have that k2(ω)/k1(ω) is strictly increasing at s∗0, while it is strictly decreasing at s∗±,

nconditionally unstable since k′2(0)− k′1(0) > 0, while for s∗± conditional stability is again guarante
) holds true, that in the present case reduces to (20).
ing that for a tit-for-tat player m is an odd function, we have that the equations of model (1
ing dynamics of ω can be written as

ω1,t+1 = ω1,t +
k2(ω1,t) + k1(ω1,t)

2
f(m(∆π1,t)) +

k2(ω1,t)− k1(ω1,t)

2
,

ω2,t+1 = ω2,t −
k2(ω2,t) + k1(ω2,t)

2
f(m(∆π1,t)) +

k2(ω2,t)− k1(ω2,t)

2
,

1,0 = −ω2,0, model (11) becomes a three dimensional system with a unique variable ωt = ω1,t = −ω
fficients of altruism, i.e.





x1,t+1 =
√
vx2,t(1− ωt)− x2,t,

x2,t+1 =
√
vx1,t(1 + ωt)− x1,t,

ωt+1 = ωt +
k2(ωt) + k1(ωt)

2
f(m(∆π1,t)) +

k2(ωt)− k1(ωt)

2
.

ting at (x1, x2, ω) = (v/4, v/4, 0) the Jacobian matrix corresponding to the function defining t
and side of the last system we find

J∗ =




0 0 − v
4

0 0 v
4

γ
(

k1(0)
2 + k2(0)

2

)
−γ
(

k1(0)
2 + k2(0)

2

)
k′
2(0)
2 − k′

1(0)
2 + 1


 ,

characteristic polynomial is

p(λ) = −λ

(
λ2 −

(
k′2(0)
2

− k′1(0)
2

+ 1

)
λ+

γv

4
(k1(0) + k2(0))

)
.

T =
k′2(0)

2
− k′1(0)

2
+ 1, D =

γv

4
(k1(0) + k2(0)),

envalues of p(λ) lie inside the unit circle provided that





1 + T +D > 0
1− T +D > 0
1−D > 0

⇔





2 +
k′
2(0)
2 − k′

1(0)
2 + γv

4 (k1(0) + k2(0)) > 0

−k′
2(0)
2 +

k′
1(0)
2 + γv

4 (k1(0) + k2(0)) > 0
1− γv

4 (k1(0) + k2(0)) > 0

concludes the proof.

[Proposition 5] Under assumption (10a), characterization of the steady state coefficient of altruis
iately follows from (12) and f(δ) > 0. Similarly, under assumption (10b), recalling Corollary (1), f
y large values of δ, we have a unique symmetric steady state with ω∗ > 0. For its stability, we sta
that for (17) we have m′−) = α and m′−) = −β, with α− β > 0. From Proposition 3 any symmet
state is unconditionally unstable if θ(ω∗) = (k′∗2 ) − k′∗1 ))/2 < −2 or if k′∗2 ) − k′∗1 ) > 0, which hol
r s∗−,2 at which k2(ω

∗
s,2)/k1(ω

∗
s,2) is strictly increasing, and hence k2(ω

∗) − k1(ω
∗) as well, recalli

t part of the proof of Proposition 4. Conversely, if k′∗2 )− k′∗1 ) ∈ (−4, 0), since have m′−) +m′−) >
ady state is stable under condition (29), which in the present case becomes (21).
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