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Extracting concepts from fuzzy relational context
families

Stefania Boffa

Abstract—Fuzzy relational formal concept analysis (FRCA)
mines collections of fuzzy concept lattices from fuzzy relational
context families, which are special datasets made of fuzzy formal
contexts and fuzzy relations between objects of different types.
Mainly, FRCA consists of the following procedures: firstly, an
initial fuzzy relational context family is transformed into a
collection of fuzzy formal contexts; secondly, a fuzzy concept
lattice is generated from each fuzzy formal context by using one
of the techniques existing in the literature. The principal tools
to transform a fuzzy context family into a set of fuzzy formal
contexts, are the so-called fuzzy scaling quantifiers, which are
particular fuzzy quantifiers based on the concept of evaluative
linguistic expression.

FRCA can be applied whenever information needs to be
extracted from multi-relational datasets including vagueness, and
it can be viewed as an extension of both Relational concept
analysis and Fuzzy formal concept analysis.

This work contributes to the development of fuzzy relational
concept analysis by achieving the following goals. First of all, we
present and study a new class of fuzzy quantifiers, called t-scaling
quantifiers, to extract fuzzy concepts from fuzzy relational context
families. Subsequently, we provide an algorithm to generate,
given a t-scaling quantifier, a collection of fuzzy concept lattices
from a special fuzzy relational context family, which is composed
of a pair of fuzzy formal contexts and a fuzzy relation between
their objects. After that, we introduce an ordered relation on
the set of all t-scaling quantifiers, which allows us to discover
a correspondence among fuzzy concept lattices deriving from
different t-scaling quantifiers. Lastly, we discuss how the results
obtained for t-scaling quantifiers can be extended to the class
of fuzzy scaling quantifies. Therefore, this analysis highlights the
main differences between t-scaling and fuzzy quantifiers.

Index Terms—Fuzzy concepts, Fuzzy concept lattices, Fuzzy
formal contexts, Fuzzy relational context families, Fuzzy quanti-
fiers

I. INTRODUCTION

Formal concept analysis (FCA) is a mathematical theory
created to produce a conceptual hierarchy called concept
lattice, starting from a formal context, which is a triple
composed of a set of objects, a set of attributes, and a relation
between objects and attributes [1], [2], [3]. Mathematically, a
concept lattice is a particular lattice having formal concepts as
elements. Given a formal context (X,Y, I), a formal concept
is a pair (A,B), where the components A and B determine
each other: A is the set of all objects of X having all attributes
of B, and B is the set of all attributes of Y being satisfied
by all objects of A. According to the philosophical tradition,
A and B are respectively called extent and intent of the
concept. Furthermore, formal concepts are ordered with the
subconcept-superconcept relation capturing that a concept can
be more specific, or more general, than another (for example,
the concept “tiger” is more specific than the concept “feline”).

FCA is an appealing research topic from a theoretical
perspective [4], [5], [6] and finds applications in different areas
of computer science such as information retrieval, machine
learning, and knowledge discovery [7], [8], [9], [10], [11].

A large group of scholars, motivated by the need to solve
real-life problems, has extended FCA in several ways (for
some examples, see [12], [13], [14], [15]). In this article, we
are interested in fuzzy formal concept analysis and relational
concept analysis. Both are theories proposed to broaden the
scope of formal concept analysis as follows.

Fuzzy formal concept analysis (FFCA) extends formal con-
cept analysis, using fuzzy logic, to also deal with vague in-
formation. Shortly speaking, FFCA mines concept hierarchies
from datasets called fuzzy formal contexts, where attributes
are satisfied by objects with truth degrees belonging to a
graded scale, which is usually the real interval [0,1]. Among
all existing FFCA approaches, we focus on the one developed
by Bělohlávek in [16] and independently by Pollandt in [17],
where each concept is uniquely determined by a fuzzy set of
objects A and a fuzzy set of attributes B connected to each
other as follows: given an object x and an attribute y, A(x) is
the degree to which x has all attribute of B and B(y) is the
degree to which y is shared by all objects of A. Such concepts
are constructed by considering complete residuated lattices as
algebraic structures of truth degrees [18].

Relational concept analysis (RCA) combines formal concept
analysis with description logic to extract concept hierarchies
from multi-relational datasets. The RCA input is a relational
context family, which is composed of several formal contexts,
and inter-context relations, namely relations between objects
of different formal contexts. Firstly, the RCA process trans-
forms the initial relational context family in a collection of
formal contexts by using the so-called scaling quantifiers.
After that, it generates a set of concept lattices (the RCA
output) by employing the classical FCA techniques [19], [20],
[21].

Scaling quantifiers are binary relations on the power set
2X of a given universe X and measure how large the
intersection of two subsets A and B of X is w.r.t. the
size of A. Their definitions carry an existential import, also
called presupposition, corresponding to the assumption that
the universe of quantification must be non-empty. An example
of scaling quantifier is Q30 : 2X × 2X −→ {0, 1} such that
Q30(A,B) = 1 if and only if at least 30 percent of elements in
A belong to B, and the intersection between A and B contains
at least an element of X (the latter condition represents the
existential import) *). The choice of scaling quantifiers, during

*)In [22], Q30 is called general universal-percent quantifier.
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the RCA process, is up to one or more users according to the
initial dataset and the final classification that they would like
to obtain.

Unfortunately, we cannot employ RCA to extract concept
hierarchies from vague datasets because RCA only deals with
crisp sets and relations. This limit has motivated the authors
of [23] to propose a first RCA generalization based on fuzzy
logic. Thus, FFCA and RCA have recently been unified to
create fuzzy relational concept analysis (FRCA).

FRCA has the purpose of extrapolating information (i.e.
collections of fuzzy concept lattices) from multi-relational
datasets involving vagueness (i.e. fuzzy relational context
families). A fuzzy relational context family extends the notion
of relational context family by taking into account fuzzy
(instead of crisp) relations.

The extraction of fuzzy concept lattices is obtained by
employing the so-called fuzzy scaling quantifiers, which are
generalizations of RCA scaling quantifiers.

Mathematically, fuzzy scaling quantifiers are special fuzzy
quantifiers defined on the standard Łukasiewic MV-algebra,
and based on the concept of evaluative linguistic expressions.
These are expressions of natural language having the form
〈hedge〉〈big〉, where an hedge is an adverbial modification like
very, extremely, and roughly, and their theory is constructed in
a formal system of higher-order fuzzy logic (fuzzy type theory)
[24], [25], [26]. Additionally, fuzzy scaling quantifiers are
interpretations in a model of intermediate quantifiers, which
are special formulas of the formal theory of intermediate
generalized quantifiers presented in [27] and elsewhere.

Let [0, 1]X be the collection of all fuzzy sets on a universe
X , an example of fuzzy scaling quantifier is SVery : [0, 1]X ×
[0, 1]X −→ [0, 1], where SVery(A,B) is the truth degree of the
sentence “a very big part of A is included in B” †).

In the formula of fuzzy scaling quantifiers, each linguistic
expression 〈hedge〉〈big〉 is modeled by a function Biν :
[0, 1] −→ [0, 1], which is normal and increasing.

In this article, we present and study a new class of FRCA
quantifiers called t-scaling quantifiers, which are also exten-
sions of RCA scaling quantifiers. A t-scaling quantifier St is
uniquely determined by a threshold t ∈ [0, 1]. Formally, St
is a function assigning a value of [0, 1] to each pair of fuzzy
sets of a universe X , where St(A,B) is the truth degree of
the sentence “a part of A being at least as big as t (in the
scale [0,1]) is included in B”. As for fuzzy scaling quantifiers
given in [23], the formula of St(A,B) includes the subformula∨
x∈X A(x) representing the existential import and capturing

that the universe of quantification A must not be empty, i.e.∨
x∈X A(x) is the truth degree of the sentence “there exists at

least one element in A”. The existential import is a philosoph-
ical concept discussed in several publications, especially in
those concerning the study of Aristotle square (see [28], [29],
[30], [31], [32] for some examples) Traditionally, it refers to
the consideration that the sentence “All A’s are B” has sense
if “A’s exist”.

†)In the theory of intermediate quantifiers, SVery corresponds to the quanti-
fier “most”, i.e. SVery(A,B) is the truth degree of the sentence “most elements
of A are in B”.

The algebraic structures of truth degrees, chosen to obtain t-
scaling quantifiers and the related fuzzy concepts, are complete
residuated lattices having [0,1] as support [18]. These are the
most used structures in FFCA applications, and include the
standard Łukasiewicz MV-algebra (already considered in [23])
and the standard Gödel algebra.

In this article, t-scaling quantifiers clearly play a funda-
mental role. However, generalized quantifiers have recently
been introduced in FFCA to extend the definition of concept-
forming operators, which are based on the universal quantifier
“all” [33], [34], [35], [36].

The main motivations to introduce t-scaling quantifiers in
FRCA are explained in what follows.

T-scaling quantifiers definition is based on a complete
residuated lattice having [0, 1] as support, which is more
general than the standard Łukasiewicz MV-algebra used to
define fuzzy scaling quantifiers in [23]. Hence, the con-
cepts extraction with t-scaling quantifiers could be realized
in future application not necessarily considering the standard
Łukasiewicz MV-algebra, but selecting the most appropriate
complete residuated lattice 〈[0, 1],∧,∨,⊗,→, 0, 1〉, according
to the situation to analyze.

Additionally, during the FRCA process, one or more experts
in the given domain, who usually do not have mathematical
skills, must select the most suitable quantifiers to produce the
final concepts extraction. Therefore, using t-scaling (instead
of fuzzy scaling) quantifiers is convenient for the following
reasons.
• Each t-scaling quantifier is uniquely determined by a

threshold belonging to [0, 1], while each fuzzy scaling
quantifiers by a function from [0,1] to [0,1], which mod-
els an evaluative linguistic expression. So, for experts, it
is certainly easier to determine thresholds than functions.

• The meaning of t-scaling quantifiers can be better un-
derstood by experts because it can be traced back to
the meaning of percentage. Indeed, Theorem III.4 proves
the existence of a one-to-one correspondence between
t-scaling quantifiers and scaling quantifiers presented in
[22]: for each t ∈ [0, 1], the t-scaling quantifier St(A,B)
is the generalization of the quantifier Qt∗100(A,B) ex-
pressing that at least t ∗ 100 percent of the elements
of A belong to B (the existential import previously
described must be included). On the other hand, infinite
fuzzy scaling quantifiers forming the class S̃t∗100 can be
viewed as generalizations of Qt∗100 (see Paragraph (a)
of Section V). Also, St belongs to the class S̃t∗100, when
t ≥ 0.5 and we confine to the standard Łukasiewicz
MV-algebra (see Remark III.5). Thus, according to the
previous considerations, experts could use St instead of
any quantifier in S̃t.

• Experts select the most suitable quantifiers also evaluating
how their choice affects the final concepts classification.
Theorem IV.5 provides a way to compare concept lattices
deriving from each pair of different t-scaling quantifiers.
Such result helps experts to make the selection according
to the final classification that they would like to obtain.
Unfortunately, as explained by Remark V.3, the same is
not always possible when we consider a pair of fuzzy
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scaling quantifiers, and so, this makes it more difficult for
experts to understand what the best quantifiers to employ
are.

Although in this paper we introduce t-scaling quantifiers,
their main results that consist in proposing FRCA algorithms
and comparing their corresponding fuzzy concepts, are also
provided for fuzzy scaling quantifiers.

Essentially, this work extends the study on fuzzy relational
concept analysis started in [23] and aims to provide new
tools for data analysis and knowledge discovery in the formal
concept analysis framework. Furthermore, it responds to the
need stated in [22] and other papers to broaden the RCA
scope to analyze datasets that involve vagueness. Therefore,
the algorithms and results proposed in this article can be ap-
plied anytime information needs to be extracted from datasets
having the form of fuzzy relational context families. The
following is an example. We can consider the fuzzy relations
I : X × Y −→ [0, 1], J : Z × W −→ [0, 1], and
r : X × Z −→ [0, 1], where X is a set of individuals; Y is
made of personality characteristics like sociable and impulsive;
Z is a set of sports like volleyball, yoga, and football; W
is made of sport attributes like creative, funny, and aerobic;
finally, r expresses how much a given person in X is interested
in a given sport in Z. Then, using FRCA and choosing the
t-quantifiers with the threshold t = 0.5, we can discover for
instance that all individuals that are sociable with a degree of
at least 0.7 and are interested in at least the 50 % of sports
being both funny and aerobic with a degree of at least 0.8.
Furthermore, FRCA can be used to solve all problems already
considered in the RCA applications, but involving datasets
characterized by fuzzy relations; for example, the extraction
of link key candidate from fuzzy RDF graphs [37] instead of
the classical ones considered in [38], or the construction of
fuzzy ontology by extending the results in [39].

The article is organized as follows. The next section reviews
some basic notions and results regarding fuzzy logic and
FRCA. Section III defines and studies t-scaling quantifiers,
and presents FRCA algorithms. Section IV is devoted to
introduce a total order on t-scaling quantifiers and show a
correspondence among fuzzy concepts deriving from different
t-quantifiers. Then, in Section V, we describe how the results
obtained for t-scaling quantifiers in Sections III and IV can be
extended to the class of fuzzy scaling quantifies. So, the main
differences between t-scaling and fuzzy scaling quantifiers
are highlighted. In the last section, we discuss the potential
developments of our results.

II. PRELIMINARIES

This section focuses on preliminary notions and results we
need in this article. Let us underline that all concepts will be
provided by assuming that the initial universe is finite.

A. Mathematical tools for fuzzy logic

Definition II.1. A fuzzy set A of a universe X is a function
A : X −→ [0, 1], and we write A ⊂∼ X in symbols.

Let x ∈ X , A(x) is the truth degree of the statement “x
belongs to A”.

In the sequel, we use the symbol [0, 1]X to denote the
collection of all fuzzy sets of X . Moreover, let A ⊂∼ X , we
write A = ∅ to indicate that A(x) = 0 for each x ∈ X .

We now review the notion of residuated lattice, which is a
general truth structure for fuzzy logic.

Definition II.2. [18] A residuated lattice is an algebra
〈L,∧,∨,⊗,→, 0, 1〉, where

(i) 〈L,∧,∨, 0, 1〉 is a bounded lattice,
(ii) 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is a binary

operation that is commutative, associative, and a⊗1 = a
for each a ∈ L,

(iii) a⊗ b ≤ c if and only if a ≤ b → c, for each a, b, c ∈ L
(adjunction property).

A residuated lattice 〈L,∧,∨,⊗,→, 0, 1〉 is complete if its
reduct 〈L,∧,∨〉 is a complete lattice.

The following proposition lists some properties satisfied by
every complete residuated lattice.

Proposition II.3. Let 〈L,∧,∨,⊗,→, 0, 1〉 be a complete
residuated lattice, then the following properties hold: let
I = {1, . . . , n},
(a) If ai ≤ bi for each i ∈ I , then

∧
i∈I ai ≤

∧
i∈I bi.

(b) If ai ≤ bi for each i ∈ I , then
∨
i∈I ai ≤

∨
i∈I bi.

(c)
∧
i∈I ai = 1 if and only if ai = 1 for each i ∈ I .

(d)
∧
i∈I ai = 0 if and only if there exists i ∈ I such that

ai = 0.
(e)

∨
i∈I ai = 1 if and only if there exists i ∈ I such that

ai = 1.
(f)

∨
i∈I ai = 0 if and only if ai = 0 for each i ∈ I .

(g) If J ⊆ I , then
∨
i∈J ai ≤

∨
i∈I ai.

(h) a→ b = 1 if and only if a ≤ b.
(i) If a ≤ b, then k → a ≤ k → b.
(j) If a ≤ b and c ≤ d, then a⊗ c ≤ b⊗ d.

Example II.4. [40] A special complete residuated lattice is
the standard Łukasiewicz MV-algebra 〈[0, 1],∧,∨,⊗,→, 0, 1〉,
where a∧b = min(a, b), a∨b = max(a, b), a⊗b = max(0, a+
b− 1), a→ b = min(1, 1− a+ b), for each a, b ∈ [0, 1].

In this paper, we choose complete residuated lattices with
support L = [0, 1] as basic structures of truth values.

The inclusion relation between classical sets is generalized
as follows.

Definition II.5. Let A,B ⊂∼ X . Then, B includes A if and
only if A(x) ≤ B(x) for each x ∈ X , and we write A ⊆ B
in symbols.

Then, we deal with particular cases of fuzzy measures on
fuzzy sets.

Definition II.6. [41] A fuzzy meausure on fuzzy sets is a
function µ : [0, 1]X −→ [0, 1] such that µ(X) = 1, µ(∅) =
0, and if A ⊆ B then µ(A) ≤ µ(B), i.e. µ is a monotone
function.

Examples of fuzzy measures are defined below.
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Definition II.7. [42] Let A ⊂∼ X . Then, the cardinality |A| of
A is given by

|A| =
∑
x∈X

A(x). (1)

Definition II.8. [25] Let A ⊂∼ X . Then, the measure µA :

[0, 1]X −→ [0, 1] is defined as follows: let B ⊂∼ X ,

µA(B) =


1, if A = ∅ or B = A,
|B|
|A| , if A 6= ∅ and B ⊆ A,
0, otherwise.

(2)

Moreover, µA(B) expresses “how large the size of B is w.r.t.
the size of A”.

We require a special operation to form a new fuzzy set from
a given one by extracting several elements together with their
membership degrees and putting the other membership degrees
equal to 0.

Definition II.9. [27] Let A,B ⊂∼ X , the cut of A with respect
to B is a fuzzy set A|B ⊂∼ X given by

(A|B)(x) =

{
A(x), if A(x) = B(x),

0, otherwise.
(3)

Example II.10. Let X = {x1, . . . , x5} be a
universe, we consider A,B ⊂∼ X such that
A = {0.25/x1, 0.5/x2, x3, x4, 0.6/x5} and B =
{0.3/x1, 0.5/x2, 0.2/x3, x4, 0.5/x5}. Then, according to
the previous definition, the cut of A w.r.t. B is a new fuzzy
set of X , exactly A|B = {0.5/x2, x4}.

Why do we need the notion of fuzzy set cuts? In order
to provide the formula of the t-scaling quantifier St(A,B)
(see Definition III.1), we should have considered universes
of quantification smaller than A, which correspond to the
fuzzy sets included in A according to Definition II.5. However,
the properties of implication suggest considering only the
fuzzy sets with membership degrees significantly smaller than
those of A. So, a satisfactory solution was to consider the
cuts of A, namely the collection {A|Z | Z ⊂∼ X}. For
example, let A = {0.5/x1, 0.2/x2, 0.8/x3}, then the cuts of
A are the following ones: ∅, {0.5/x1},{0.2/x2}, {0.8/x3},
{0.5/x1, 0.2/x2}, {0.5/x1, 0.8/x3}, {0.2/x2, 0.8/x3}, and
A.

Moreover, we evaluate the size of A|Z w.r.t. A by using the
operator ∆t : [0, 1] −→ [0, 1] that transforms each element of
[0, 1] being greater than or equal to t in 1 and the remaining
ones in 0. Namely, let x ∈ [0, 1],

∆t(x) =

{
x, if x ≥ t,
0, otherwise.

(4)

The concept of inclusion given in Definition II.5 is gener-
alized as follows.

Definition II.11. Let A,B ∈ [0, 1]X , we set

SX(A,B) =
∧
x∈X

(A(x)→ B(x)), (5)

where SX(A,B) represents the degree of inclusion of A in B.

Observe that if SX(A,B) = 1, then A is included in B
according to Definition II.5.

Fuzzy Galois connections and fuzzy closure operators are
fundamental notions in fuzzy logic.

Definition II.12. [43] Let 〈[0, 1],∧,∨,⊗,→, 0, 1〉 be a com-
plete residuated lattice, and let X and Y be universes. A fuzzy
Galois connection between X and Y is a pair 〈f, g〉 of map-
pings f : [0, 1]X −→ [0, 1]Y and g : [0, 1]Y −→ [0, 1]X sat-
isfying the following conditions for each A,Ai, Aj ∈ [0, 1]X

and B,Bi, Bj ∈ [0, 1]Y :
(i) SX(Ai, Aj) ≤ SY (f(Aj), f(Ai)),

(ii) SY (Bi, Bj) ≤ SX(g(Bj), g(Bi)),
(iii) A ⊆ g(f(A)),
(iv) B ⊆ f(g(B)).

Definition II.13. [44] Let 〈[0, 1],∧,∨,⊗,→, 0, 1〉 be a com-
plete residuated lattice and let X be a universe. A fuzzy
closure operator on X is a mapping C : [0, 1]X −→ [0, 1]X

satisfying the following conditions for each A,B ∈ [0, 1]X :
(i) A ⊆ C(A),

(ii) if A ⊆ B then C(A) ⊆ C(B),
(iii) C(A) = C(C(A)).

B. Fuzzy formal concept analysis

Let 〈[0, 1],∧,∨,⊗,→, 0, 1〉 be a complete residuated lattice
‡).

Definition II.14. A fuzzy formal context is a triple (X,Y, I)
where X is a set of objects, Y is a set of attributes, and I is
a fuzzy relation on X × Y , i.e. I : X × Y −→ [0, 1].

Definition II.15. [17], [45] Let (X,Y, I) be a fuzzy formal
context. If A ⊂∼ X and B ⊂∼ Y , then

A↑I (y) =
∧
x∈X(A(x)→ I(x, y)),

B↓I (x) =
∧
y∈Y (B(y)→ I(x, y)),

for all x ∈ X and y ∈ Y .
A↑I (y) and B↓I (x) are the truth degrees of the statements

“y is shared by all objects of A” and “x has all attributes of
B”, respectively.

The following results regarding the operators of Definition
II.15 have been proved in [43], [46], [47].

Theorem II.16. Let (X,Y, I) be a fuzzy formal context. Then,
the pair made of ↑I : [0, 1]X −→ [0, 1]Y and ↓I : [0, 1]Y −→
[0, 1]X is a Galois connection.

Theorem II.17. Let (X,Y, I) and (X,Y, J) be fuzzy formal
contexts. Then, I ⊆ J if and only if A↑I ⊆ A↑J and B↓I ⊆
B↓J for all A ∈ [0, 1]X and B ∈ [0, 1]Y .

As shown below, operators of Definition II.15 are employed
to extract fuzzy concepts from every fuzzy formal context.

Definition II.18. Let (X,Y, I) be a fuzzy formal context, and
let A ⊂∼ X and B ⊂∼ Y . Then, (A,B) is a fuzzy concept of
(X,Y, I) if and only if A↑I = B and B↓I = A.

‡)The notions of this subsection hold for complete residuated lattices having
a generic set as support as well.
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Algorithms for generating all fuzzy concepts from a fuzzy
formal context are provided in [48] and elsewhere.

We denote the set of all fuzzy concepts of (X,Y, I) with
B(X,Y, I).

(B(X,Y, I),R) is a complete fuzzy lattice §), called the
fuzzy concept lattice of (X,Y, I), where the relation R is
defined by R((A1, B1), (A2, B2)) = SX(A1, A2) for all
(A1, B1), (A2, B2) ∈ B(X,Y, I) [49], [2].

Theorem II.19. Let (X,Y, I) be a fuzzy formal context, let
A ⊂∼ X, and let B ⊂∼ Y . Then, A↑I↓I and B↓I↑I are respec-
tively the extent and the intent of concepts of B((X,Y, I),R).

C. Fuzzy relational concept analysis

In FRCA, a significant role is played by the so-called
fuzzy scaling quantifiers, which are generalizations of standard
scaling quantifiers by using fuzzy logic.

Among all RCA scaling quantifiers considered in [22], we
are interested in the following.

Definition II.20. Let X be a universe, we put P(X)2 =
{(A,B) | A,B ⊆ X}. Let n ∈ [0, 100], the universal-percent
scaling quantifier on X is a function Qn : P(X)2 −→ {0, 1}
such that, given A,B ⊆ X ,

Qn(A,B) = 1 iff |A ∩B| ≥ n

100
|A| and |A ∩B| > 0.

Scaling quantifiers given by Definition II.20 have been
extended in the fuzzy logic framework as follows (see [23]
for more details).

Definition II.21. Let 〈[0, 1],∧,∨,⊗,→, 0, 1〉 be the standard
Łukasiewic MV-algebra, let Biν be a function modelling an
evaluative linguistic expression with the form 〈hedge〉 〈big〉
in the context [0,1], and let X be a universe. Then, the fuzzy
ν-universal scaling quantifier on X is a function Sν : [0, 1]X×
[0, 1]X −→ [0, 1] such that, given A,B ⊂∼ X ,

Sν(A,B) =
∨
Z⊂∼X

((
∧
x∈X

((A|Z)(x)→ B(x))⊗
∨
x∈X

(A|Z)(x))

∧Biν(µA(A|Z))). (6)

Remark II.22. Mathematically, Biν is a function from [0,1]
to [0,1], which is normal (i.e. there exists at least an element
x of [0, 1] such that Biν(x) = 1) and increasing (i.e. if x ≤ y
then Biν(x) ≤ Biν(x), for each x ∈ [0, 1]). Biν is obtained
by composing two functions: Bi modeling the expression Big
and ν modeling an adverbial modification called hedge like
Very. The role of Biν in the previous definition is to evaluate
µA(A|Z). Then, if ν models Very, Biν(µA(A|Z)) is the
degree to which the size of A|Z is Very Big w.r.t. the size
of A. More explanations are found in [23], [50].

FRCA analyzes data organized as a fuzzy relational context
family.

Definition II.23. A fuzzy relational context family is a pair
(K,R), where

§)The notion of complete fuzzy lattice is provided in [49].

(i) K is a set of fuzzy formal contexts
{(X1, Y1, I1), . . . , (Xn, Yn, In)}, and

(ii) R is a set of fuzzy binary relations {r1, . . . , rm} with
domain and range in {X1, . . . , Xn}.

A set of fuzzy concept lattices is extracted from a fuzzy
relational context family (K,R) in two fundamental steps:

1) (K,R) is transformed into a set K′ of fuzzy formal
contexts by means of selected fuzzy scaling quantifiers.

2) A new fuzzy concept lattice is extracted from each fuzzy
formal context of K′, by using the existing fuzzy FCA
techniques.

Mainly, step 1 is realized as follows.
1.a) Let SQ be the collection of all fuzzy scaling quantifiers,

we consider the functions s : R −→ SQ, kdom : R −→ K
and kcod : R −→ K such that for each fuzzy relation r :
A× B −→ [0, 1], kdom(r) and kcod(r) are two fuzzy formal
contexts of K having A and B as sets of objects, respectively
¶).

1.b) For each (X,Y, I) ∈ K, we consider the set of relations

{r1, . . . , rn} = {r ∈ R | kdom(r) = (X,Y, I)},

and let i ∈ {1, . . . , n}, we denote the fuzzy concept lattice
extracted by kcod(ri) with Li. Moreover, given ri : X×Z −→
[0, 1] and x ∈ X , we use the symbol ri(x) to indicate a fuzzy
set of Z such that (ri(x))(z) = ri(x, z) for each z ∈ Z, and
the symbols EiC to indicate the extent of the concept C of Li.

Then, we construct a new fuzzy formal context (X,Y ∗, I∗)
such that
• Y ∗ = Y ∪ Y1 ∪ . . . ∪ Yn, where Yi = {yiC | C ∈ Li};
• let (x, y) ∈ X × Y ∗,

I∗(x, y) =

{
I(x, y) if y ∈ Y
S(ri(x), EiC),with S = s(ri) if y = yiC .

(7)
Given i ∈ {1, . . . , n} and C ∈ Li, yiC is called fuzzy relational
attribute.

Therefore, a new family of fuzzy formal context is given
by

K′ = {(X,Y ∗, I∗) | (X,Y, I) ∈ K}.

Of course, (X,Y ∗, I∗) = (X,Y, I) when the set {r ∈
R | kdom(r) = (X,Y, I)} is empty.

Eventually, observe that (X,Y ∗, I∗) contains both infor-
mation of (X,Y, Z) and of the fuzzy relations of {r ∈
R | kdom(r) = (X,Y, I)}.

Then, step 2 can be realized by employing one of the several
algorithms introduced in the literature (for example, see [48],
[51]).

III. FUZZY RELATIONAL CONCEPT ANALYSIS WITH
T-SCALING QUANTIFIERS

In this section, we first present a new family of fuzzy scaling
quantifiers called t-scaling quantifiers (see Subsection III-A).
Subsequently, we show a procedure to mine a collection of

¶)s, kdom and kcod can be determined by experts or users during the RCA
process.
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fuzzy concept lattices from a special fuzzy relational context
family by using a fixed t-scaling quantifier (see Subsection
III-B).

In the sequel, we consider a universe X , and a complete
residuated lattice 〈[0, 1],∧,∨,⊗,→, 0, 1〉.

A. T-scaling quantifiers

Definition III.1. Let t ∈ [0, 1]. Then, the fuzzy t-scaling
quantifier on X is a function St : [0, 1]X × [0, 1]X −→ [0, 1]
such that, given A,B ⊂∼ X ,

St(A,B) =
∨
Z⊂∼X

((
∧
x∈X

((A|Z)(x)→ B(x))⊗
∨
x∈X

(A|Z)(x))

∧∆t(µA(A|Z))). (8)

Moreover, St(A,B) is the truth degree of the statement

There exists a cut A|Z of A such that “all elements
of A|Z belong to B”, “there exists at least one
element in A|Z”, and “the size of A|Z is at least as
large as t (in the scale [0,1]) w.r.t. the size of A”.

A fundamental role in the definition of t-scaling quantifiers
is played by

∨
x∈X(A|Z)(x) interpreting the logical formula

(∃x)(A|Z)(x) in a model of fuzzy predicate logic. The latter
captures that there exists at least one element of X in A|Z and
speaks about the existential import (or presupposition). Let us
underline that in fuzzy logic, the existential import is included
into the formula of quantifiers by the strong conjunction, in
order to guarantee the validity of some syllogisms needing the
adjunction property [27].

T-scaling quantifiers satisfy the properties shown in the next
proposition.

Proposition III.2. Let t ∈ [0, 1], and let A,B ⊂∼ X . If A = B

or A = ∅, then St(A,B) =
∨
x∈X A(x).

Proof. Let A = B. By Definition II.9 together with Propo-
sition II.3(h), if A = B, then A|Z(x) → B(x) = 1
for each x ∈ X . Consequently, let Z ⊂∼ X , we get∧
x∈X A|Z(x) → B(x) = 1 from Proposition II.3(c). Since

a ⊗ 1 = a in every complete residuated lattice, St(A,B) =∨
Z⊂∼X

(
∨
x∈X(A|Z)(x)∧∆t(µA(A|Z))). Moreover, by Def-

inition II.9 and Equation (4), we obtain∨
x∈X

(A|Z)(x) ≤
∨
x∈X

A(x) and ∆t(µA(A|Z)) ≤ ∆t(µA(A)),

for each Z ⊂∼ X . Then,
∨
x∈X(A|Z)(x) ∧ ∆t(µA(A|Z)) ≤∨

x∈X A(x)∧∆t(µA(A)) from Proposition II.3(a). Hence, the
thesis clearly follows.

Let A = ∅. By Definitions II.8 and II.9 together with (4),
∆t(µ∅(∅|Z)) = ∆t(1) = 1 and (∅|Z)(x) → B(x) = 1 for
each Z ⊂∼ X . Thus, the thesis derives from the properties of
complete residuated lattices (see Proposition II.3).

In the following theorem, we show another way to obtain
the t-scaling quantifier corresponding to t = 1.

Theorem III.3. Let A,B ⊂∼ X , then

S1(A,B) =
∧
x∈X

(A(x)→ B(x))⊗
∨
x∈X

A(x). (9)

Proof. By (4), ∆1(µA(A|Z)) = 1 if and only if µA(A|Z) =
1, namely A|Z = A or A = ∅ from Definition II.8.

If A = ∅, then S1(A,B) = 0 and
∧
x∈X(A(x)→ B(x))⊗∨

x∈X A(x) = 0.
Suppose that A 6= ∅. If A|Z = A, then

(S(A|Z,B) ⊗
∨
x∈X(A|Z)(x)) ∧ ∆1(µA(A|Z)) =

(S(A|Z,B) ⊗
∨
x∈X(A|Z)(x)) ∧ 1 ||). The latter equals

S(A,B) ⊗
∨
x∈X A(x) from the property a ∧ 1 = a.

Otherwise, if A|Z 6= A, then (S(A|Z,B)⊗
∨
x∈X(A|Z)(x))∧

∆1(µA(A|Z)) = S(A|Z,B)∧ 0. The latter equals 0 from the
property a ∧ 0 = 0. Moreover, since a ∨ 0 = a is satisfied in
every bounded lattice, we can can conclude that Equation (9)
holds.

By Theorem III.3, Equation (8) can be rewritten as follows:

St(A,B) =
∨
Z⊂∼X

(S1(A|Z,B) ∧∆t(µA(A|Z)) ) . (10)

Then, St(A,B) is constructed by applying S1 to all pairs as
(A|Z,B), where A|Z represents a universe of quantification
smaller than A, and by using ∆t to evaluate the size of A|Z
w.r.t. the size of A.

We can prove that each t-quantifier equals a special RCA
scaling quantifier given by Definition II.20, when both apply
to pairs of classical sets of the initial universe.

Theorem III.4. Let A,B ⊆ X and n ∈ [0, 100], then
Qn(A,B) = Sn/100(A,B).

Proof. Let n ∈ [0, 100]. We consider A,B ⊆ X such that
Qn(A,B) = 1. Then, we intend to prove that St(A,B) = 1,
where t = n/100.

Since both A and B are classical set of X , St(A,B) ∈
{0, 1} and {A|Z with Z ⊂∼ X} coincides with the collection
of all subsets of A.

By Definition II.20, we get A∩B 6= ∅, and so,
∨
x∈X(A∩

B)(x)=1 from Proposition II.3 (e). Moreover, for each x ∈ X ,
(A ∩ B)(x) ≤ B(x), and hence, (A ∩ B)(x) → B(x) = 1
from Proposition II.3 (h). Then, by Proposition II.3 (c), S1(A∩
B,B) = 1. Additionally, Equation (4) implies that ∆t(µA(A∩
B)) = 1. Consequently, we obtain S1(A∩B,B)∧∆t(µA(A∩
B)) = 1.

Finally, S1(A∩B,B)∧∆t(µA(A∩B)) ≤ St(A,B). Thus,
St(A,B) = 1.

Now, let A,B ⊆ X such that Qn(A,B) = 0, we want to
prove that St(A,B) = 0, where t = n/100. So, let Z ⊂∼ X ,
as underlined above, we have A|Z ⊆ A. If A|Z ⊆ A ∩ B
then ∆t(µA(A∩B)) = 0. Otherwise, there exists x ∈ X such
that A|Z(x) = 1 and B(x) = 0. Hence A|Z(x) → B(x) =
0, and by Proposition II.3 (d), S1(A|Z,B) = 0. Therefore,
using Proposition II.3 (f) together with Equation (10), we have
St(A,B) = 0.

||)Recall that S is defined by (5).
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Remark III.5. If 〈[0, 1],∧,∨,⊗,→, 0, 1〉 is the standard
Łukasiewicz MV-algebra and t ∈ [0.5, 1], then St belongs to
the family of fuzzy scaling quantifiers given by Definition II.21
and introduced in [23].

B. Algorithms in fuzzy relational concept analysis

This subsection principally provides two algorithms in
FRCA. The first one, given t ∈ [0, 1] and A,B ⊂∼ X ,
computes St(A,B). The second one generates fuzzy concept
lattices from a fuzzy relational context family composed of
two fuzzy formal contexts (X,Y, I) and (Z,W, J), and a
fuzzy relation between X and Z. These algorithms are based
on the results presented below.

In the following theorem, we rewrite the formula of
St(A,B) by considering not all, but only specific cuts of A,
namely all those whose size w.r.t. A is at least large t.

Theorem III.6. Let A,B ⊂∼ X , and let t ∈ [0, 1], we put

Ht(A) = {Z ⊂∼ X | µA(A|Z) ≥ t}.

Then,
St(A,B) =

∨
Z∈Ht(A)

S1(A|Z,B). (11)

Proof. We can rewrite Equation (10) in the following equiva-
lent form:

St(A,B) =
∨

Z∈Ht(A)

(S1(A|Z,B) ∧∆t(µA(A|Z)) )∨

∨
Z/∈Ht(A)

(S1(A|Z,B) ∧∆t(µA(A|Z)) ). (12)

Let Z ⊂∼ X . By (4), if Z ∈ Ht(A), then ∆t(µA(A|Z)) =

1. Thus, S1(A|Z,B) ∧ ∆t(µA(A|Z)) = S1(A|Z,B) ∧ 1 =
S1(A|Z,B).

Otherwise, if Z /∈ Ht(A), then ∆t(µA(A|Z)) = 0. Hence,
S1(A|Z,B) ∧∆t(µA(A|Z)) = S1(A|Z,B) ∧ 0 = 0.

Therefore, the thesis follows from properties of complete
residuated lattices (see Proposition II.3).

We can find St(A,B) also by considering in (11) only some
of the fuzzy sets in Ht(A). To achieve this goal, we need to
define and study a family of cuts of A.

Definition III.7. Let A,B ⊂∼ X , and let k ∈ K(A,B), where

K(A,B) = {k ∈ [0, 1] | A(x)→ B(x) = k, for some x ∈ X}.
(13)

Then, we put

Ak(x) =

{
A(x) if A(x)→ B(x) ≥ k,
0 otherwise.

(14)

Remark III.8. It is easy to verify that Ak is a cut of A, for
each k ∈ K(A,B). Moreover, Ak = A, when

∧
x∈X A(x) →

B(x) = k.

The following proposition states that given k ∈ K(A,B), Ak
is the maximum on the set of all cuts A|Z of A satisfying a
special condition.

Proposition III.9. Let A,B,Z ⊂∼ X such that∧
x∈X(A|Z)(x) → B(x) = k. Then, (A|Z)(x) ≤ Ak(x) for

each x ∈ X .

Proof. Suppose that
∧
x∈X(A|Z)(x)→ B(x) = k. Then, for

each x ∈ X , (A|Z)(x) → B(x) ≥ k. Hence, let x ∈ X , if
A(x) → B(x) < k, then both (A|Z)(x) and Ak(x) must be
equal to 0. Otherwise, if A(x) → B(x) ≥ k, then Ak(x) is
equal to A(x), and (A|Z)(x) equals 0 or A(x). Consequently,
we get (A|Z)(x) ≤ Ak(x).

The next theorem rewrites the expression of St(A,B)
considering a subset H∗t (A,B) of Ht(A) given by

H∗t (A,B) = {Z ∈ Ht(A) | ∃k ∈ K(A,B) with A|Z = Ak}.

Theorem III.10. Let A,B ⊂∼ X , and let t ∈ [0, 1]. Then,

St(A,B) =
∨

Z∈H∗
t (A,B)

S1(A|Z,B).

Proof. Let Z ∈ Ht(A). We intend to prove that there exists
Z̃ ∈ H∗t (A,B) such that S1(A|Z,B) ≤ S1(A|Z̃, B).

If A|Z = ∅, then S1(A|Z,B) = 0. Consequently,
S(A|Z,B) ≤ S(A|Z̃, B) for each Z̃ ∈ H∗t (A,B).

If A|Z 6= ∅, we consider k ∈ K(A,B) such that∧
x∈X(A|Z)(x)→ B(x) = k. Then, we can consider Z̃ ⊂∼ X

such that Ak = A|Z̃.
By Proposition III.9, (A|Z)(x) ≤ Ak(x) for each x ∈

X . Thus, by Proposition II.3(b), we get
∨
x∈X(A|Z)(x) ≤∨

x∈X Ak(x).
Therefore, by Proposition II.3(j), we have∧
x∈X

(A|Z)(x)→ B(x)⊗
∨
x∈X

(A|Z)(x) ≤∧
x∈X

Ak(x)→ B(x)⊗
∨
x∈X

Ak(x). (15)

Thus, we have shown that S1(A|Z,B) ≤ S1(A|Z̃, B),
where A|Z̃ belongs to H∗t (A,B).

Hence, using Proposition II.3(b) again,∨
Z∈Ht(A)

S1(A|Z,B) ≤
∨

Z∈H∗
t (A,B)

S1(A|Z,B),

namely St(A,B) ≤
∨
Z∈H∗

t (A,B) S1(A|Z,B) from Theorem
III.6.

Of course, by Proposition II.3(g), H∗t (A,B) ⊆ Ht(A)
implies that∨

Z∈H∗
t (A,B)

S1(A|Z,B) ≤
∨

Z∈Ht(A)

S1(A|Z,B).

Then,
∨
Z∈H∗

t (A,B) S1(A|Z,B) ≤ St(A,B), by using Theo-
rem III.6 again.

Now, employing the previous results, we propose the pro-
cedure P1, which takes as input a pair of fuzzy sets A and
B of a universe X , and a threshold t ∈ [0, 1], and finds the
value St(A,B).

In detail, P1 is based on Theorem III.10: it computes the
supremum of the values corresponding to S1(Ak, B), where
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Algorithm 1: The algorithm for finding the values
assumed by a t-scaling quantifier

procedure P1(A,B, t)
K← {k ∈ [0, 1] | A(x)→ B(x) = k, with x ∈ X}
for all k ∈ K do

if µA(Ak) ≥ t then
n←

∧
x∈X Ak(x)→ B(x)

m←
∨
x∈X Ak(x)

S ← S ∪ {n⊗m}
end if

end for
s∗ ←

∨
s∈S s

return s∗

end procedure

Ak is a cut of A given by Definition III.7 such that µA(Ak) ≥
t.

Example III.11. Consider A =
{0.5/x1, 0.3/x2, 0.4/x3, x4, x5, x6} and B =
{x1, x2, 0.5/x3, 0.2/x4, 0.5/x5, x6}, and assume that
the standard Łukasiewicz MV-algebra is our structure
of truth values. Then, K = {0.4, 0.5, 1} because
A(xi)→ B(xi) = 1 if i ∈ {1, 2, 3, 6}, A(x4)→ B(x4) = 0.4
and A(x5) → B(x5) = 0.5. Also, we choose t = 0.6. Then,
µA(A0.4) = 1, µA(A0.5) = 0.76, µA(A1) = 0.42.

Since µA(A0.4), µA(A0.5) ≥ 0.7, P1 returns 0.5, which is
the maximum between 0.4⊗ 1 = 0.4 and 0.5⊗ 1 = 0.5.

We currently have enough tools to present the procedure P2.
Its input consists of a fuzzy relational context family (K,R),
where K = {(X,Y, I), (Z,
W, J)} and R = {(X,Z, r)}, and a threshold t ∈ [0, 1], and its
output is a pair of fuzzy concept lattices {L1,L2} associated
to (K,R) through St.

Let us point out that P2 recalls, in addition to P1, the
procedures P3 and P4. These, given a fuzzy formal context
(X,Y, I), respectively compute the fuzzy concept lattice of
(X,Y, I) and the extent of all fuzzy concepts of (X,Y, I) by
using one of the existing FFCA techniques (for example, see
[48], [52]).

Eventually, the concept lattices related to a general fuzzy
context family (K,R) such that |K| ≥ 2 and |R| ≥ 1, can
be obtained by applying the procedure P2 to (K,K ′, r, t) for
each relation r ∈ R, where t, K, and K ′ are selected as
described in Subsection II-C.

IV. COMPARING CONCEPT LATTICES DERIVING FROM
DIFFERENT T-SCALING QUANTIFIERS

In this section, we first introduce a total order on t-scaling
quantifiers. Then, we compare fuzzy concept lattices deriving
from different t-scaling quantifiers.

An ordered relation on t-scaling quantifiers can be defined
as follows.

Algorithm 2: The algorithm for extracting a collection
of fuzzy concept lattices from a fuzzy relational con-
text family, which is composed of two fuzzy formal
contexts and a fuzzy relation between their objects

procedure P2((X,Y, I), (Z,W, J), (X,Z, r), t)
Y ∗ ← Y
for all x ∈ X do

for all y ∈ Y do
I∗(x, y)← I(x, y)

end for
end for
L1 ← P3(Z,W, J)
E ← P4(L1)
for all E ∈ E do
Y ∗ ← Y ∗ ∪ {yE}
for all x ∈ X do
I∗(x, yE)← P1(r(x), E, t) {As explained in
Subsection II-C, r(x) is a fuzzy set such that
r(x)(z) = r(x, z)}.

end for
L2 ← P4(X,Y ∗, I∗)

end for
return {L1,L2}
end procedure

Definition IV.1. Let S = {St | t ∈ [0, 1]}, and let S,S ′ ∈ S.
Then,

S �S S ′ iff S(A,B) ≤ S ′(A,B) for each A,B ⊂∼ X. (16)

The next theorem shows that �S is a total order on S, i.e.
S �S S ′ or S ′ �S S, for each S,S ′ ∈ S.

Theorem IV.2. Let s, t ∈ [0, 1] such that s ≤ t. Then, St �S

Ss.

Proof. Let A,B ⊂∼ X . By Equation (4), ∆t(µA(A|Z)) ≤
∆s(µA(A|Z)) for each Z ⊂∼ X . Then, by Proposition II.3(a),

S1(A|Z,B) ∧∆t(µA(A|Z)) ≤ S1(A|Z,B) ∧∆s(µA(A|Z))

for each Z ⊂∼ X . Thus, by Proposition II.3(b),∨
Z⊂∼X

S1(A|Z,B) ∧∆t(µA(A|Z)) ≤

∨
Z⊂∼X

S1(A|Z,B) ∧∆s(µA(A|Z)).

Namely, St(A,B) ≤ Ss(A,B) from Equation (10).

In the sequel, we consider a fuzzy relational context family

(K,R) = ( {(X,Y, I), (Z,W, J)}, {(X,Z, r)} ),

and we denote with (X,Y ∗, It) the fuzzy formal context ob-
tained from B(Z,W, J) and (X,Z, r), by using the quantifiers
St **). For convenience, we can write ↑t instead of ↑It (dually,

**)Let us notice that Y ∗ does not depend on the t-scaling quantifier choice.
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↓t instead of ↓It ). Moreover, given C ∈ B(Z,W, J), the
symbol yC indicates the relational attribute associated to C.

Remark IV.3. By Equation (7), Theorem IV.2 implies, given
s, t ∈ [0, 1] such that s ≤ t, It ⊆ Is (i.e. It(x, y) ≤ Is(x, y)
for all x ∈ X and y ∈ Y ∗).

Therefore, using Theorem IV.2, we can compare particular
fuzzy sets deriving from different t-scaling quantifiers. More
precisely, the following proposition holds.

Proposition IV.4. Let C ∈ B(Z,W, J), and let s, t ∈ [0, 1]
such that s ≤ t. Then, {k/yC}↓t ⊆ {k/yC}↓s for each k ∈
[0, 1].

Proof. Let x ∈ X . Since s ≤ t, we have It(x, yC) ≤
Is(x, yC) from Remark IV.3. Consequently, by Proposition
II.3(i), k → It(x, yC) ≤ k → Is(x, yC). Therefore, the thesis
follows from Definition II.15.

The next theorem exhibits a connection among fuzzy con-
cepts that are generated by different t-scaling quantifiers. In
particular, let s and t be thresholds in [0,1] such that s ≤ t,
each fuzzy concept corresponding to t is less than or equal to
at least one corresponding to s.

We use, to compare concepts of different lattices, an ordered
relation � on the set [0, 1]X × [0, 1]Y

∗
= {(A,B) | A ⊂∼

X and B ⊂∼ Y ∗}, where let (Ai, Bi), (Aj , Bj) ∈ [0, 1]X ×
[0, 1]Y

∗
,

(Ai, Bi) � (Aj , Bj) if and only if Ai ⊆ Aj and Bi ⊆ Bj .

Theorem IV.5. Let s, t ∈ [0, 1] such that s ≤ t. Then, for each
(A,B) ∈ B(X,Y ∗, It), there exists (A∗, B∗) ∈ B(X,Y ∗, Is)
such that (A,B) � (A∗, B∗).

Proof. Let (A,B) ∈ B(X,Y ∗, It), and let B∗ = B↓s↑s .
Then, by Theorem II.19, B∗ is the intent of a concept of
B(X,Y ∗, Is). Moreover, by Theorem II.16, ↓s↑s is a closure
operator. Hence, we get B ⊆ B∗ from Definition II.13(i).

We now intend to prove that A ⊆ A∗, where A∗ = (B∗)↓s

and A = B↓t . By Remark IV.3, It ⊆ Is. Then, by Theorem
II.17, B↓t ⊆ B↓s . Since ↑s↓s is a closure operator (see
Definition II.13(i)), we get B↓s ⊆ (B↓s)↑s↓s .

Thus, we can conclude that B↓t ⊆ (B↓s↑s)↓s , namely A ⊆
A∗.

Let us provide an illustrative example, where concepts
arising from different quantifiers are compared through �.

Example IV.6. Consider a fuzzy relational context family

(K,R) = ({(X,Y, I), (Z,W, J)}, {r})

such that X = {x1, x2}, Y = {y1, y2, y3}, Z = {z1, z2},
W = {w1, w2, w3}, and I : X×Y −→ Ł3, J : Z×W −→ Ł3

and r : X × Z −→ Ł3 are provided by Table I ††). We aim
• to find fuzzy concepts hidden in (K,R) using S0.25 and
S0.75,

††)Ł3 is the support of the 3-element Łukasiewicz algebra, namely Ł3 =
{0, 0.5, 1} [16].

TABLE I
FUZZY RELATIONS I , J AND r.

I y1 y2
x1 0 0.5
x2 1 0
x3 0.75 1

J w1 w2

z1 1 0.5
z2 1 1
z3 0 0
z4 0.75 1

r z1 z2 z3 z4
x1 0.5 0.5 1 1
x2 0.75 0 0.25 0
x3 1 0 0.5 0.75

• to compare, employing �, each fuzzy concept deriving
from S0.75 with at least one deriving from S0.25.

To achieve these goals, we consider B(Z,W, J) =
{C1, . . . , C7}, where

C1 = ({z1, z2, z3, z4}, ∅),
C2 = ({z1, z2, 0.75/z3, z4}, {0.25/w1, 0.25/w2}),
C3 = ({z1, z2, 0.5/z3, z4}, {0.5/w1, 0.5/w2}),
C4 = ({z1, z2, 0.75/z4}, {w1, 0.5/w2}),
C5 = ({0.5/z1, z2, z4}, {0.75/w1, w2}),
C6 = ({0.75/z1, z2, 0.75/z4}, {w1, 0.75/w2}),
C7 = ({0.5/z1, z2, 0.75/z4}, {w1, w2}).

Then, we need to find I0.75 and I0.25, which are fuzzy
relations on X × Y ∗, where Y ∗ = Y ∪ {yC1

, . . . , yC7
},

determined by S0.75 and S0.25, respectively. I0.75 and I0.25
are defined by Table II, and are obtained from B(Z,W, J)
and r as follows: given t ∈ {0.25, 0.75} and x ∈ X ,
• It(x, yi) = I(x, yi) for each i ∈ {1, 2}, and
• It(x, yCi) = St(x, yCi) for each i ∈ {1, . . . , 7}.
So, we can compute the fuzzy concepts of B(X,Y ∗, I0.25)

and B(X,Y ∗, I0.75), which are listed in Tables III and IV.
Lastly, according to Theorem IV.2, we can verify that

C1
0.75 � C1

0.25, C2
0.75 � C5

0.25, C3
0.75 � C6

0.25, C4
0.75 �

C2
0.25, C

3
0.25, C5

0.75 � C8
0.25, C

12
0.25, C6

0.75 � C10
0.25, C7

0.75 =
C3

0.25, C8
0.75 = C4

0.25, C9
0.75 � C9

0.25, C10
0.75 � C11

0.25,
C11

0.75 � C14
0.25, C12

0.75 = C12
0.25, C13

0.75 � C16
0.25, C14

0.75 = C16
0.25,

C15
0.75 � C18

0.25, C16
0.75 � C18

0.25.

V. A COMPARISON OF T-SCALING AND FUZZY SCALING
QUANTIFIERS

Let S̃ be the collection of all fuzzy scaling quantifiers
introduced in [23]. We intend to answer the questions: Can
the results obtained for S in the previous sections be extended
to S̃? If so, how?

Let us recall that we need to confine to the standard
Łukasiewicz MV-algebra, in order to consider S̃. Moreover,
fuzzy scaling and t-scaling quantifiers substantially differ in
their formula: µA(A|Z) is evaluated by Biν : [0, 1] −→ [0, 1]
in (6), while µA(A|Z) is evaluated by ∆t : [0, 1] −→ {0, 1}
in (8).

a) Extending results of Section III to fuzzy scaling quan-
tifiers:
• Proposition III.2 also holds for the quantifiers of S̃. The

demonstration can be obtained by substituting ∆t with
Biν in the proof of Proposition III.2. This is possible be-
cause by Remark II.22, Biν(µA(A|Z)) ≤ Biν(µA(A))
(i.e. Biν is increasing) and Biν(µ∅(∅|Z)) = 1 (i.e. Biν
is normal).

• Regarding Theorem III.3, we can notice that S1 ∈ S̃.
In [23], S1 coincides with the quantifier “all”, which is
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TABLE II
FUZZY RELATIONS I0.75 AND I0.25 ARISING FROM (Z,W, J) AND r.

I0.75 y1 y2 yC1 yC2 yC3 yC4 yC5 yC6 yC7 I0.25 y1 y2 yC1 yC2 yC3 yC4 yC5 yC6 yC7

x1 0 0.5 1 0.75 0.5 0 0 0 0 x1 0 0.5 1 1 1 0.75 1 0.5 0.75
x2 1 0 0.75 0.75 0.75 0.75 0.5 0.5 0.5 x2 1 0 0.75 0.75 0.75 0.75 0.5 0.5 0.5
x3 0.75 1 1 1 1 0.75 0.5 0.75 0.5 x3 0.75 1 1 1 1 1 0.75 0.75 0.75

TABLE III
FUZZY CONCEPTS OF B(X,Y0.75, I0.75).

C1
0.75 ({x1, x2, x3}, {0.75/yC1

, 0.75/yC2
, 0.5/yC3

})
C2

0.75 ({x1, 0.75/x2, x3}, {0.25/y2, yC1 , 0.75/yC2 , 0.5/yC3})
C3

0.75 ({x1, 0.5/x2, x3}, {0.5/y2, yC1
, 0.75/yC2

, 0.5/yC3
})

C4
0.75 ({0.75/x1,x2,x3},{0.25/y1,0.75/yC1

,0.75/yC2
,0.75/yC3

,0.25/yC4
,0.25/yC5

,0.25/yC6
,0.25/yC7

})
C5

0.75 ({0.75/x1,0.75/x2,x3},{0.25/y1,0.25/y2,yC1
,yC2

,0.75/yC3
,0.25/yC4

,0.25/yC5
,0.25/yC6

,0.25/yC7
})

C6
0.75 ({0.75/x1,0.5/x2,x3},{0.25/y1,0.5/y2,yC1

,yC2
,0.75/yC3

,0.25/yC4
,0.25/yC5

,0.25/yC6
,0.25/yC7

})
C7

0.75 ({0.5/x1, x2, x3}, {0.5/y1, 0.75/yC1 , 0.75/yC2 , 0.75/yC3 , 0.5/yC4 , 0.5/yC5 , 0.5/yC6 , 0.5/yC7})
C8

0.75 ({x2, 0.75/x3}, {y1, 0.75/yC1
, 0.75/yC2

, 0.75/yC3
, 0.75/yC4

, 0.5/yC5
, 0.5/yC6

, 0.5/yC7
})

C9
0.75 ({0.5/x1, 0.75/x2, x3}, {0.5/y1, 0.25/y2, yC1 , yC2 , yC3 , 0.5/yC4 , 0.5/yC5 , 0.5/yC6 , 0.5/yC7})

C10
0.75 ({0.5/x1, 0.5/x2, x3}, {0.5/y1, 0.5/y2, yC1

, yC2
, yC3

, 0.5/yC4
, 0.5/yC5

, 0.5/yC6
, 0.5/yC7

})
C11

0.75 ({0.5/x1, x3}, {0.5/y1, y2, yC1
, yC2

, yC3
, 0.5/yC4

, 0.5/yC5
, 0.5/yC6

, 0.5/yC7
})

C12
0.75 ({0.75/x2, 0.75/x3}, {y1, 0.25/y2, yC1

, yC2
, yC3

, yC4
, 0.75/yC5

, 0.75/yC6
, 0.75/yC7

})
C13

0.75 ({0.5/x2, 0.75/x3}, {y1, 0.5/y2, yC1
, yC2

, yC3
, yC4

, 0.75/yC5
, yC6

, 0.75/yC7
})

C14
0.75 ({0.5/x2, 0.5/x3}, {y1, 0.5/y2, yC1 , yC2 , yC3 , yC4 , yC5 , yC6 , yC7})

C15
0.75 ({0.75/x3}, {y1, y2, yC1

, yC2
, yC3

, yC4
, 0.75/yC5

, yC6
, 0.75/yC7

})
C16

0.75 ({0.5/x3}, {y1, y2, yC1 , yC2 , yC3 , yC4 , yC5 , yC6 , yC7})

TABLE IV
FUZZY CONCEPTS OF B(X,Y0.25, I0.25).

C1
0.25 ({x1, x2, x3}, {0.75/yC1 , 0.75/yC2 , 0.75/yC3 , 0.75/yC4 , 0.5/yC5 , 0.5/yC6 , 0.5/yC7})

C2
0.25 ({0.75/x1, x2, x3}, {0.25/y1, 0.75/yC1

, 0.75/yC2
, 0.75/yC3

, 0.75/yC4
, 0.5/yC5

, 0.5/yC6
, 0.5/yC7

})
C3

0.25 ({0.5/x1, x2, x3}, {0.5/y1, 0.75/yC1
, 0.75/yC2

, 0.75/yC3
, 0.75/yC4

, 0.5/yC5
, 0.5/yC6

, 0.5/yC7
})

C4
0.25 ({x2, 0.75/x3}, {y1, 0.75/yC1

, 0.75/yC2
, 0.75/yC3

, 0.75/yC4
, 0.5/yC5

, 0.5/yC6
, 0.5/yC7

})
C5

0.25 ({x1, 0.75/x2, x3}, {0.25/y2, yC1
, yC2

, yC3
, 0.75/yC4

, 0.75/yC5
, 0.5/yC6

, 0.75/yC7
})

C6
0.25 ({x1, 0.5/x2, x3}, {0.5/y2, yC1 , yC2 , yC3 , 0.75/yC4 , 0.75/yC5 , 0.5/yC6 , 0.75/yC7})

C7
0.25 ({x1, 0.5/x2, 0.75/x3}, {0.5/y2, yC1

, yC2
, yC3

, 0.75/yC4
, yC5

, 0.5/yC6
0.75/yC7

})
C8

0.25 ({0.75/x1, 0.75/x2, x3}, {0.25/y1, 0.25/y2, yC1 , yC2 , yC3 , yC4 , 0.75/yC5 , 0.75/yC6 , 0.75/yC7})
C9

0.25 ({0.5/x1, 0.75/x2, x3}, {0.5/y1, 0.25/y2, yC1
, yC2

, yC3
, yC4

, 0.75/yC5
, 0.75/yC6

, 0.75/yC7
})

C10
0.25 ({0.75/x1, 0.5/x2, x3}, {0.25/y1, 0.5/y2, yC1

, yC2
, yC3

, yC4
, 0.75/yC5

, 0.75/yC6
, 0.75/yC7

})
C11

0.25 ({0.5/x1, 0.5/x2, x3}, {0.5/y1, 0.5/y2, yC1
, yC2

, yC3
, yC4

, 0.75/yC5
, 0.75/yC6

, 0.75/yC7
})

C12
0.25 ({0.75/x2, 0.75/x3}, {y1, 0.25/y2, yC1

, yC2
, yC3

, yC4
, 0.75/yC5

, 0.75/yC6
, 0.75/yC7

})
C13

0.25 ({0.75/x1, 0.5/x2, 0.75/x3}, {0.25/y1, 0.5/y2, yC1 , yC2 , yC3 , yC4 , yC5 , 0.75/yC6 , yC7})
C14

0.25 ({0.5/x1, x3}, {0.5/y1, y2, yC1
, yC2

, yC3
, yC4

, 0.75/yC5
, 0.75/yC6

, 0.75/yC7
})

C15
0.25 ({0.5/x1, 0.5/x2, 0.75/x3}, {0.5/y1, 0.5/y2, yC1 , yC2 , yC3 , yC4 , yC5 , yC6 , yC7})

C16
0.25 ({0.5/x2, 0.75/x3}, {y1, 0.5/y2, yC1

, yC2
, yC3

, yC4
, yC5

, yC6
, yC7

})
C17

0.25 ({0.5/x1, 0.75/x3}, {0.5/y1, y2, yC1
, yC2

, yC3
, yC4

, yC5
, yC6

, yC7
})

C18
0.25 ({0.75/x3}, {y1, y2, yC1

, yC2
, yC3

, yC4
, yC5

, yC6
, yC7

})

based on the evaluative linguistic expression “utmost”
(indicated with ∆1), and it is defined by either (9), or
(8).

• Theorem III.4 leads to a one-to-one correspondence be-
tween Boolean scaling quantifiers given by Definition
II.20 and t-scaling quantifies. In particular, we can con-
sider a bijective function such that Qn 7→ S n

100
for

each n ∈ [0, 100] or equivalently its inverse such that
St 7→ Qt∗100 for each t ∈ [0, 1], where by Theorem III.4,
Qn(A,B) = S n

100
(A,B) and St(A,B) = Qt∗100(A,B)

for each A,B ⊆ X .
Such correspondence can be not replied for the quantifiers

of S̃ by considering that in general, Theorem III.3 does
not hold for fuzzy scaling quantifiers. Namely, there
exists S ∈ S̃ \ S that applied on classical sets, does
not equal any Qn with n ∈ [0, 100]. However, we have
proved in [23] that given n ∈ [0, 100], we can find a
class of quantifiers S̃n ⊂ S̃, which is connected with Qn
by the following relations: let S ∈ S̃n, Qn ≤ S and if
S(A,B) = 1 then Qn(A,B) = 1. Hence, also quantifiers
of S̃n can be considered generalizations of Qn.
Therefore, the previous considerations suggest us to par-
titionate the set of all fuzzy scaling quantifiers as follows:
S̃ =

⋃
n∈[0,100] S̃n.
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Furthermore, since both St and quantifiers of S̃t∗100 are
generalizations of the Boolean scaling quantifier Qt∗100,
we can identify St with S̃t∗100.

• Theorem III.6 can be rewritten for fuzzy scaling quanti-
fiers as follows.
Theorem V.1. Let Sν ∈ S̃ and let A,B ⊂∼ X , we put

Hν(A) = {Z ⊂∼ X | Biν(µA(A|Z)) 6= 0}.

Then,

Sν(A,B) =
∨

Z∈Hν(A)

S1(A|Z,B) ∧Biν(µA(A|Z)).

(17)

Proof. The proof is analogous to that of Theo-
rem III.6. Indeed, we can rewrite (12) by substitut-
ing Ht(A) with Hν(A), and ∆t with Biν . Then,
since

∨
Z/∈Hν(A)(S1(A|Z,B) ∧ Biν(µA(A|Z))) =∨

Z/∈Hν(A)(S1(A|Z,B) ∧ 0) = 0 ∨ . . . ∨ 0 = 0, we have
Sν(A,B) = (

∨
Z∈Hν(A)(S1(A|Z,B)∧Biν(µA(A|Z)))∨

0 =
∨
Z∈Hν(A)(S1(A|Z,B) ∧Biν(µA(A|Z))).

• Theorem III.10 can be rewritten for fuzzy scaling quan-
tifiers as follows.
Theorem V.2. Let Sν ∈ S̃ and let A,B ⊂∼ X , we put

H∗ν(A,B)={Z ∈ Hν(A)|∃k ∈ K(A,B) with A|Z = Ak}.

Then,

Sν(A,B) =
∨

Z∈H∗
ν(A,B)

(S1(A|Z,B) ∧Biν(µA(A|Z))).

Proof. The proof can be obtained from that of Theo-
rem III.10 by using the properties of complete resid-
uated lattices. Firstly, we need to substitute every-
where Ht(A) and H∗t (A,B) with Hν(A) and H∗ν(A,B),
respectively. Secondly, in order to prove the in-
equality

∨
Z∈Hν(A) S1(A|Z,B) ⊗ Biν(µA(A|Z)) ≤∨

Z∈H∗
ν(A,B) S1(A|Z,B) ⊗ Biν(µA(A|Z)), the follow-

ing further sentences must be added after (15). Since
(A|Z)(x) ≤ (A|Z̃)(x) for each x ∈ X and µA is an
increasing function, we get µA(A|Z) ≤ µA(A|Z̃). More-
over, it is true that Biν(µA(A|Z)) ≤ Biν(µA(A|Z̃))
because Biν is an increasing function too. Thus,
the inequalities Biν(µA(A|Z)) ≤ Biν(µA(A|Z̃)) and
S1(A|Z,B) ≤ S1(A|Z̃, B) imply that S1(A|Z,B) ⊗
Biν(µA(A|Z)) ≤ S1(A|Z̃, B) ⊗ Biν(µA(A|Z̃)). Fi-
nally, considering that A|Z̃ ∈ H∗ν(A,B), we can con-
clude that

∨
Z∈Hν(A) S1(A|Z,B) ⊗ Biν(µA(A|Z)) ≤∨

Z∈H∗
ν(A,B) S1(A|Z,B)⊗Biν(µA(A|Z)).

• The Algorithm 1 can be modified to work with fuzzy
scaling quantifiers. Indeed, the procedure P1 must have
the function Biν instead of the threshold t as input. More-
over, concerning the if / then statement, we need to substi-
tute the condition µA(Ak) ≥ t with Biν(µA(Ak)) 6= 0,
add l −→ Biν(µA(Ak)) as statement to execute, and
write S −→ S ∪ {(n × m) ⊗ l} instead of S −→
S ∪ {n×m}.

• The Algorithm 2 can be used for fuzzy scaling quantifiers
only by changing the input t of P2 with Biν and the
procedure P1 as explained in the previous point.

b) Extending results of Section IV to fuzzy scaling quan-
tifiers: The relation given by Definition IV.1 can be extended
to the class of fuzzy scaling quantifiers: let S,S ′ ∈ S̃,

S �S̃ S
′ iff S(A,B) ≤ S ′(A,B) for each A,B ⊂∼ X.

The results proved in Section IV can be extended for fuzzy
scaling quantifiers by take into account �S̃ and a specific pair
of evaluative linguistic expressions:

let Sν1 ,Sν2 ∈ S̃ such that Biν1 ⊆ Biν2 , then

• Sν1 �S̃ Sν2 (Theorem IV.2);
• Iν1 ⊆ Iν2 , where Iν1 and Iν2 are respectively related to
Sν1 and Sν2 by means of (7) (Remark IV.3);

• {k/yC}Iν1 ⊆ {k/yC}Iν2 for each k ∈ [0, 1] (Proposition
IV.4);

• for each (A,B) ∈ B(X,Y ∗, Iν1), there exists (A∗, B∗) ∈
B(X,Y ∗, Iν2) such that (A,B) � (A∗, B∗) (Theorem
IV.5).

Remark V.3. By Theorem IV.2, we can easily consider a
total order �S on S, namely (S,�S) is a chain. Then, we
can compare the concepts deriving from any pairs of t-scaling
quantifiers by using Theorem IV.5. Unfortunately, the same
is not possible for the class fuzzy scaling quantifiers by
considering that �S̃ is not a total order on S̃. Indeed, let
Sν1 ,Sν2 ∈ S̃, it can happen that Sν1 6�S̃ Sν2 and Sν2 6�S̃ Sν1 .
Consequently, we can not always compare concepts deriving
from two different fuzzy scaling quantifiers.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we have focused on deriving information (i.e.
collections of fuzzy concept lattices) from particular datasets
(i.e. fuzzy relational context families) by employing t-scaling
and fuzzy scaling quantifiers.

As a future project, we intend to introduce and study new
quantifiers in fuzzy relation concept analysis. For example,
quantifiers extracting negative information from data, i.e.
information based on the absence of a certain amount of
properties in objects.

We would also like to consider and study t-scaling quanti-
fiers as generalized fuzzy subsethood measures by extending
the definitions given in [53].

Additionally, we will organize special FRCA quantifiers in
structures of opposition, similarly to those constructed in [34],
[33], [36]. Moreover, by understanding relationships between
FRCA quantifiers of different types, we could discover con-
nections between their derived fuzzy concept lattices.

Finally, we plan to implement the algorithms presented in
this paper using real datasets and apply our theoretical results
to solve concrete problems in other research domains. After
that, it would be very interesting to compare, given t ∈ [0, 1],
the concept lattices obtained by using the quantifiers of S̃t∗100
and the t-scaling quantifiers St.
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[18] P. Hájek, Metamathematics of fuzzy logic. Springer Science & Business
Media, 2013, vol. 4.

[19] M. Huchard, C. Roume, and P. Valtchev, “When concepts point at other
concepts: the case of uml diagram reconstruction,” in Proceedings of the
2nd Workshop on Advances in Formal Concept Analysis for Knowledge
Discovery in Databases (FCAKDD), 2002, pp. 32–43.

[20] M. Rouane-Hacene, M. Huchard, A. Napoli, and P. Valtchev, “A pro-
posal for combining formal concept analysis and description logics for
mining relational data,” in International Conference on Formal Concept
Analysis. Springer, 2007, pp. 51–65.

[21] U. Priss, “Relational concept analysis: Semantic structures in dictio-
naries and lexical databases,” Ph.D. dissertation, Technische Universität
Darmstadt, 1996.

[22] A. Braud, X. Dolques, M. Huchard, and F. Le Ber, “Generalization effect
of quantifiers in a classification based on relational concept analysis,”
Knowledge-based systems, vol. 160, pp. 119–135, 2018.
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[36] S. Boffa, P. Murinová, V. Novák, and P. Ferbas, “Graded cubes of
opposition in fuzzy formal concept analysis,” International Journal of
Approximate Reasoning, vol. 145, pp. 187–209, 2022.

[37] M. Mazzieri and A. F. Dragoni, “A fuzzy semantics for the resource
description framework,” in Uncertainty reasoning for the semantic Web
I. Springer, 2006, pp. 244–261.

[38] M. Atencia, J. David, J. Euzenat, A. Napoli, and J. Vizzini, “Link key
candidate extraction with relational concept analysis,” Discrete applied
mathematics, vol. 273, pp. 2–20, 2020.

[39] R. Bendaoud, A. M. R. Hacene, Y. Toussaint, B. Delecroix, and
A. Napoli, “Text-based ontology construction using relational concept
analysis,” in International Workshop on Ontology Dynamics-IWOD
2007, 2007.

[40] C. C. Chang, “Algebraic analysis of many valued logics,” Transactions
of the American Mathematical society, vol. 88, no. 2, pp. 467–490, 1958.
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[46] R. Bělohlávek, “Fuzzy closure operators,” Journal of mathematical
analysis and applications, vol. 262, no. 2, pp. 473–489, 2001.
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