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Abstract
We discuss the theory of equivariant localization focussing on applications relevant
for holography. We consider geometries comprising compact and non-compact toric
orbifolds, as well as more general non-compact toric Calabi–Yau singularities. A key
object in our constructions is the equivariant volume, for which we describe two
methods of evaluation: the Berline–Vergne fixed point formula and the Molien–Weyl
formula, supplemented by the Jeffrey–Kirwan prescription. We present two applica-
tions in supersymmetric field theories. Firstly, we describe a method for integrating
the anomaly polynomial of SCFTs on compact toric orbifolds. Secondly, we discuss
equivariant orbifold indices that are expected to play a key role in the computation
of supersymmetric partition functions. In the context of supergravity, we propose that
the equivariant volume can be used to characterize universally the geometry of a large
class of supersymmetric solutions. As an illustration, we employ equivariant local-
ization to prove the factorization in gravitational blocks of various supergravity free
energies, recovering previous results as well as obtaining generalizations.
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1 Introduction

The theory of equivariant co-homology is a rich mathematical subject, with numer-
ous applications in diverse areas of geometry andmathematical physics. A remarkable
consequence of this theory is that quite generally, onmanifolds endowedwith aHamil-
tonian action of a Lie group, there exist localization formulas that express certain
integrals in terms of contributions arising from the fixed point sets of the group action,
thus simplifying enormously their evaluation. A prime example of this feature is the
classic result of Duistermaat–Heckmann [1]. More generally, such integrals involve
equivariant characteristic classes andmay arise in the evaluation of equivariant indices
of transversally elliptic operators [2, 3]. See, for instance, the review articles [4, 5],
or [6] for a discussion perhaps more accessible to physicists. In this paper, we will
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need an extension of these results to the setup of orbifolds [7], including spindles and
other orbifolds with singularities in co-dimension less than two, that are not so often
considered in the physics literature but have recently received attention in the context
of holography.

A very general framework in which the ideas of equivariant localization are realized
is that of symplectic toric geometry. In this case, one starts with a symplectic manifold
(M2m, ω) in dimension 2m, equipped with an effective Hamiltonian action of the real
torus T

m . The image of the associated moment maps is a convex rational polytope
P ⊂ Q

m [8]. Together with the angular coordinates on the torus, φi ∼ φi + 2π , the
moment maps yi can be used as “symplectic coordinates”, endowing the manifold
with a natural coordinate system (yi , φi ) in which any metric can then be written
in a canonical form in terms of combinatorial data of the polytope [9]. In the toric
setting, the fixed points sets of the T

m action are always isolated singularities, so that
the localization formulas take the form of sums over fixed points. The applications
of the localization theorems in this context range from the quantization of symplectic
manifolds to algorithms for computing the volumes of polytopes and counting integral
points. See, e.g., [10, 11]. The extensions to symplectic toric orbifolds was discussed
in [12] and that to non-compact toric cones in [13].

In theoretical physics, equivariant localization came to the fore in the work of
Nekrasov as a technique for calculating partition functions counting instantons in
supersymmetric field theories [14]. See, e.g., [15] for a review. Applications of toric
geometry motivated by the AdS/CFT correspondence were first discussed in [16] and
further developed in [17], where the volume functional of toric Sasakian manifolds
was shown to be extremized by Sasaki–Einstein metrics. The extension to the more
general equivariant setting and the relation to fixed point theorems and the index-
character of the associated Calabi–Yau cone singularities was explored in [18]. From
the viewpoint of holography, these results can be used to compute the volume and other
properties of Sasaki–Einstein manifolds, without explicit knowledge of the metric,
from which in turn one can infer properties of the dual field theories. Subsequent
developments in geometry include results about: toricSasaki–Einsteinmetrics [19, 20],
Kähler–Einstein metrics [21], extremal Sasaki metrics [22, 23], conformally Kähler
Einstein–Maxwell metrics [24].

Following on the steps of [17, 18], we take holography as a motivation for uncov-
ering precise mathematical relationships between geometry and supersymmetric field
theories. In particular, we provide new evidence that toric geometry and equivariant
localization are well-suited mathematical frameworks for this purpose. In the context
of supergravity, our aim is to develop a universal approach to study the geometry
underlying supersymmetric solutions based on extremization problems analogous to
those formulated in [17, 25]. We will argue that the functionals to be extremized can
be calculated in each case using the technique of equivariant localization, general-
izing the results appeared in [18, 26–28].1 We will consider, in particular, the novel
supergravity constructions featuring compact spaces with conical singularities, like
spindles and other orbifolds [33–53]. These solutions imply that we should work in

1 For applications of localization to the calculation of the supergravity path integral, see, for example,
[29–32].
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the orbifold setting from the outset, and indeed, from our results we will obtain a direct
localization proof of the factorization in gravitational blocks [54] recently discussed
in the literature [35, 40, 51, 55].

In the context of supersymmetric field theory, our motivation is that of extend-
ing to the orbifold realm some tools that are well-established for field theories
compactified on smooth manifolds. Specifically, working with orbifold equivariant
co-homology, we wish to put on a sounder mathematical footing the technique of
integration of the anomaly polynomials of even-dimensional SCFTs compactified
on orbifolds. Furthermore, following [56], where a new index for three-dimensional
N = 2 theories was computed exploiting the spindle index-character, we present
a discussion of equivariant orbifold indices, that we expect to be key building
blocks for computing supersymmetric partition functions of SQFTs on orbifolds,
extending Pestun’s [57] approach to supersymmetric localization. When the under-
lying space is (the resolution of) a non-compact Calabi–Yau singularity the same
objects have been employed previously to compute Hilbert series of the moduli
spaces of supersymmetric field theories [58–60]. We expect that new insights can
be gained from the study of equivariant indices and their relation to the equivari-
ant volume. In this paper, however, we restrict our localization techniques to the
evaluation of classical geometrical objects. We now summarize the structure of this
paper.

In Sect. 2, we recall the symplectic geometry description of compact toric orbifolds,
following [9, 12, 61, 62]. We introduce the equivariant volume of symplectic toric
orbifolds, that is our main object of interest. We discuss two alternative methods for
evaluating this, namely the Berline–Vergne fixed point formula and the Molien–Weyl
integral formula, that exploits the presentations of the toric orbifolds as symplectic
quotients, based on the Lerman and Tolman’s generalization [12] of Delzant’s con-
struction [8]. Although the topics covered in this section are mainly not original,
we consider an extension to non-compact toric orbifolds, which leads to localization
formulas for odd-dimensional orbifolds, arising as the base of complex cones thus
generalizing the results of [18, 63] for the Sasakian volume. Aspects of the equivari-
ant volume of non-compact symplectic toric manifolds were recently studied in [64,
65]. In this section, we also discuss the equivariant orbifold index of the Dolbeault
complex, twisted by a holomorphic line orbi-bundle. In the toric setting, the geometric
interpretation of this object is that of counting integer lattice points inside a convex
integral polytope (or polyhedral cone, in the non-compact case), corresponding to
sections of the line bundle. It can then be thought of as the quantum (or K-theoretical)
version of the equivariant volume, which is recovered in a limit in which the lattice
spacing goes to zero. Besides this close relationship with the equivariant volume,
equivariant orbifold indices are expected to provide fundamental building blocks for
the construction of supersymmetric partition functions defined on orbifolds [56], with
applications to black hole microstrate counting. We therefore present some examples
of these indices in Appendix C.

In Sect. 3, we discuss in detail a number of examples of toric orbifolds and their
associated equivariant volumes. We start with the complex projective line WP

1[n1,n2],
also known as the spindle. This is the simplest compact toric orbifold, which arises
in complex dimension one. It has a prominent role in several recent supergravity
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constructions corresponding to various wrapped branes [33–49]. Moving to complex
dimension two, we consider generic compact toric orbifolds, described by a rational
convex polyhedron with an arbitrary number of vertices. We then consider in more
detail triangles, namely weighted projective spacesWP

2[n1,n2,n3] and their quotients by
discrete groups, as well as quadrilaterals. Examples of supergravity solutions compris-
ing Hermitian (non-Kähler) metrics on quadrilateral toric orbifolds are discussed in
[50–53]. As awarm-up for Sect. 5, we also describe the pecularities of the non-compact
case in a few explicit examples.

Section4 concerns the application of equivariant localization to the calculation of
the anomaly polynomial of 4d and 6d SCFTs compactified on various orbifolds. Using
this approach we prove the localized form of the anomaly polynomial for theories
compactified on the spindle [33, 35–37], as well as on general four-dimensional toric
orbifolds, for which one example was considered in [50]. Our approach leads to a
uniform derivation for SCFTs compactified on different orbifolds and explains the
localized form of the integrated anomaly polynomials that was previous observed in
examples.

Finally, in Sect. 5 we discuss the application of equivariant localization in the con-
text of supergravity. Firstly, we show that the results of [18] on the localized form
of the Sasakian volume are immediately recovered from the equivariant volume of
the associated non-compact Calabi–Yau singularity. Furthermore, we prove that also
the master volume introduced in [66], in the context of GK geometry [67], can be
extracted from the equivariant volume and as a corollary we derive the factorization in
gravitational blocks of the supergravity free energies for D3 and M5 branes wrapped
on the spindle, reproducing the results of [55] in the toric case. We then propose
analogous constructions for other branes wrapped on the spindle from which, in each
case, we can extract the localized form of the gravitational blocks, which was antic-
ipated in [40]. This leads us to propose that equivariant localization is the common
thread of the geometry of supersymmetric supergravity solutions, at least in setups
with a holographic interpretation. In particular, we believe that the equivariant volume
should be a key object for setting up extremal problems characterizing supersymmetric
geometries, in different supergravity theories.

In Sect. 6, we discuss our findings and indicate some directions for future work.
The paper contains three appendices with some complementary material.

2 The equivariant volume

2.1 The symplectic geometry description of toric orbifolds

In this section, we review the geometry of symplectic toric orbifolds following the gen-
eral formalism developed in [9, 12, 61, 62].We emphasize that although it appears that
we are relying on symplectic geometry, we will be interested in computing topological
quantities that do not depend on the existence of an integrable symplectic structures
and it should be possible to reformulate our computations entirely in terms of complex
geometry. In particular, our results are applicable also to situations in which one is
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interested in metrics that are not compatible with a symplectic structure, such as the
Hermitian (non-Kähler) metrics on toric orbifolds constructed in [50–53].

We consider a symplectic toric orbifold (M2m, ω) in dimension 2m equipped with
an effective Hamiltonian action of the real torus T

m = R
m/2πZ

m . We introduce
symplectic coordinates (yi , φi ) with i = 1, . . . ,m where φi are angular coordinates
on the torus, φi ∼ φi +2π . In terms of these coordinates, the symplectic form is given
by2

ω = dyi ∧ dφi . (2.1)

By a generalization of Delzant’s theorem [8], compact symplectic toric orbifolds are
classified by labelled polytopes which are the image of M2m under the moment maps
yi associated with the toric action [12]. The image of M2m is simply obtained by
forgetting the angular coordinates φi , and it is a rational simple convex polytope P in
R
m . We can describe it by introducing a set of linear functions3

la(y) = yiv
a
i − λa, a = 1, . . . , d, (2.2)

where va are vectors in R
m . The convex polytope is the subset of R

m defined by

P = {y ∈ R
m : la(y) ≥ 0} a = 1, . . . , d. (2.3)

The linear equations

la(y) = 0 (2.4)

define the facets Fa of the polytope. We denote with d the number of facets of P .
The condition that P be rational is equivalent to the fact that the vectors va have
integer entries. The condition that P be simple requires that each vertex p lies at the
intersection of precisely m facets

la1(p) = la2(p) = · · · = lam (p) = 0, (2.5)

and the correspondingm vectors {va1 , . . . , vam } are a basis forRm . The polytope comes
equipped with a label for each facet, a positive integer na such that the structure group
of every point in the inverse image of Fa is Zna .

This construction exhibitsM2m as a torus fibration over the polytopeP and general-
izes the familiar construction for toric varieties. As in the latter case, the torus fibration
is non-degenerate in the interior of P . A particular one-cycle in T

m , determined by
the vector va , collapses at the facet Fa . Thus, each facet Fa defines a symplectic sub-
space of M2m of real codimension two. In the complex case, this becomes a divisor4

2 We adopt the Einstein summation convention for the indices (two repeated indices imply the sum).
However, for the sake of clarity, in some formulas we will write explicitly the sums over the indices.
3 We use interchangeably the notation y and yi to denote a point in R

m .
4 They are called ramification divisors, while D̂a = na Da are called branched divisors, with multiplicity
(or ramification index) na .
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which we will denote Da . Similarly, at the intersection of q facets, more cycles in T
m

degenerate and we have a symplectic subspace of M2m of real codimension 2q. The
intersection of m facets is a vertex of the polytope, and it corresponds to a fixed point
of the T

m action. We denote with n the number of such fixed points. In particular, we
can give an alternative definition of the polytope P as the convex hull of the images
of the fixed points of M2m .

In the context of toric varieties, the vectors va define what is called the fan of
M2m . We will use the same terminology but the reader should be aware that we are
dealing with a generalization of the concept which allows for more general type of
orbifold singularities. For toric varieties, the vectors va are primitive, while in the case
of generic symplectic toric orbifolds they are not. We can always define for each va a
primitive vector v̂a and a positive integer na such that va = na v̂a .5 The integer na is
precisely the label of the facetFa defined above. In particular, each symplectic divisor
Da has a localZna singularity. This cannot happen for toric varieties which are normal
and have no singularities of complex co-dimension less than two. Notice also that the
local singularity at the fixed point given by the intersection of the m facets Fai , with
i = 1 . . .m, has order d = | det(va1 , . . . , vam )|. M2m is a smooth manifold if and only
if all the labels na are one and for each vertex | det(va1 , . . . , vam )| = 1.

We want to equip M2m with a compatible complex structure. Any T
m-invariant

Kähler metric on M2m is of the form [61]

ds2 = Gi j (y)dyidy j + Gi j (y)dφidφ j , (2.6)

where Gi j is determined by a symplectic potential G(y) as

Gi j = ∂2G

∂ yi∂ y j
(2.7)

and Gi j = (G−1)i j is the inverse matrix. Holomorphic coordinates are given by

zi = xi + iφi , xi = ∂G

∂ yi
. (2.8)

The existence of a symplectic potential is equivalent to the integrability of the complex
structure.

The canonical metric on M2m is given by [9]

G(y) = 1

2

d∑

a=1

la log la, (2.9)

so that

Gi j = ∂2G

∂ yi∂ y j
= 1

2

d∑

a=1

vai v
a
j

la
. (2.10)

5 Notice that we are using opposite convections with respect to [51]!
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Notice that Gi j has poles at the facets but the metric is smooth up to orbifold
singularities. The inverse matrix Gi j has rankm−1 at the facets, indicating that a one
cycle in T

m is degenerate. With a change of coordinates, we obtain a smooth orbifold
metric onFa . The structure of poles of (2.9) is compatible with the degeneration ofT

m

at the faces ofP , and it is precisely designed to obtain an orbifold metric on M2m . The
most general Kähler metric onM2m is discussed in [62], and it is obtained by replacing
the symplectic potential G(y) for the canonical metric with G(y) + h(y), where h(y)
is smooth on the whole P . The topological quantities we will discuss in this paper
do not depend on the metric, and we can safely set h(y) = 0. In our applications to
holography, we will encounter metrics that are not Kähler and not even symplectic, but
the underlying spaces are in fact symplectic toric orbifolds and we can therefore use
the symplectic coordinates and the canonical metric to compute topological quantities
that ultimately will not depend on the metric.

Each facet Fa defines a T
m-invariant divisor Da and an associated line bundle

La . These objects will be important for our construction so we will spend some time
discussing their properties. The first Chern class of La has been explicitly computed
in [9, 62]6

c1(La) = − i

2π

[
∂∂̄ log la

]
, (2.11)

where with [α]we denote the co-homology class of the differential form α. An explicit
representative is given by7

c1(La) = d
(
μi
adφi

)
, (2.13)

where

μi
a = μi

a(y) = − 1

4π

Gi jvaj

la
. (2.14)

Notice that μi
a can be seen as a moment map for the torus action

i∂φi
c1(La) = −dμi

a . (2.15)

From Gi jG jk = δik , we find

d∑

a=1

μi
av

a
k = − δik

2π
. (2.16)

6 We believe that there is a minus sign error in equation (6.17) in [9], and we have therefore changed the
sign here.
7 Writing as in (2.8), zi = xi + iφi where xi = ∂G

∂ yi
, we have ∂ = 1

2
∑2

i=1 (dxi + idφi )
(

∂
∂xi

− i ∂
∂φi

)

and, therefore, for a torus invariant function f that only depends on y

∂∂̄ f = − i

2

∂2 f

∂xi ∂x j
dxi ∧ dφ j = − i

2
d

(
∂ f

∂x j
dφ j

)
= − i

2
d

(
Gkj ∂ f

∂ yk
dφ j

)
. (2.12)

With some abuse of language,wewill often denotewith c1(L) an explicit representative of the corresponding
co-homology class.
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We can relate the Chern classes of the divisors to the Kähler form ω as follows.
From

Gi j y j = 1

2

∑

a

vai v
a
j y j

la
= 1

2

∑

a

vai (la + λa)

la
= 1

2

(
∑

a

λav
a
i

la
+
∑

a

vai

)
,

(2.17)

we obtain

yi = −2π
∑

a

λaμ
a
i + 1

2

∑

a

Gi jvaj , (2.18)

so that

ω = dyi ∧ dφi = −2π
∑

a

λad(μ
a
i dφi ) + 1

2
d

(
∑

a

Gi jvaj dφi

)
. (2.19)

Using the degeneration of Gi j at the facets, one can check that
∑

a G
i jvaj dφi is a

well-defined one-form, so that the last term on the right-hand side of (2.19) is exact.
Therefore, we obtain the important relation (see Theorem 6.3 in [9])

[ω]
2π

= −
∑

a

λac1(La). (2.20)

Notice that this equation holds only in co-homology. We see that the parameters λa
defining the shape of the polytopes through (2.3) are parameterizing the Kähler moduli
of the symplectic orbifold.

There are actually only d − m independent line bundles. Indeed, using (2.13) and
(2.16), we find m relations among the Chern classes

d∑

a=1

vai c1(La) = 0, (2.21)

that translate into the familiar m linear relations among the divisors

d∑

a=1

vai Da = 0. (2.22)

These relations imply that, if d is the number of vectors in the fan, there are d − m
independent (2m − 2)-cycles in homology and therefore only d − m independent
Kähler parameters. The d parameters λa are associated with the T

m-invariant divisors
and provide an overparameterization of the Kähler moduli.

In this paper, we will also consider non-compact cases, in particular non-compact
Calabi–Yau cones. In this case, the polytope is replaced by a rational convex polyhedral
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cone. Calabi–Yau cones have typically singularities worse than orbifold. This happens
when more than m facets intersect at a vertex. To use the general formalism of this
section, we will perform a partial resolution to have only orbifold singularities. In
applications to holography, we will also encounter polytopes and polyhedral cones
that are not convex. We will obtain results by performing a suitable extrapolation from
the convex case.

2.2 The definition of the equivariant volume

In this section, we define the equivariant volume. In order to simplify the exposition,
in this and the next two sections we assume that M2m is compact. We will discuss the
subtleties and necessary modifications for the non-compact case in Sect. 2.5.

We want to work equivariantly in the T
m action on M2m , which is generated by the

m vector fields ∂φi . Correspondingly, we introduce m equivariant parameters εi , with
i = 1, . . .m and the vector field ξ = εi∂φi . We can introduce a Hamiltonian H = εi yi
for this vector field

iξω = −dH , (2.23)

and define an equivariant Kähler form

ωT = ω + 2πH = d(yidφi ) + 2πεi yi . (2.24)

We similarly introduce equivariant Chern classes for the line bundles La

cT

1 (La) = c1(La) + 2πεiμ
a
i = d

(
μa
i dφi

)+ 2πεiμ
a
i , (2.25)

using the moment maps μa . All these forms are equivariantly closed

(d + 2π iξ )ω
T = 0, (d + 2π iξ )c

T

1 (La) = 0, (2.26)

with respect to the T
m action. Notice that these expressions are formal linear combi-

nations of forms of different degrees.
Our main object of interest is the equivariant volume of M2m [1],

V(λa, εi ) = 1

(2π)m

∫

M2m

e−H ωm

m! , (2.27)

which is sometimes referred in the literature to as “symplectic volume” or “equivariant
symplectic volume”.

We can write the equivariant volume as

V(λa, εi ) = (−1)m
∫

M2m

e−H− ω
2π = (−1)m

∫

M2m

e−εi yi− ω
2π , (2.28)
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since the integrand over M2m receives contribution only from the piece of degree 2m
in the expansion of the exponential. In terms of the equivariant forms (2.24) and (2.25),
we have

V(λa, εi ) = (−1)m
∫

M2m

e− ωT

2π = (−1)m
∫

M2m

e
∑

a λacT

1 (La). (2.29)

Notice also that the two integrands in (2.29) are not equal but they differ by an equiv-
ariantly exact form by (2.20) and the integrals are therefore equal. Notice that the
last inequality strictly holds only if M2m is compact. We will return to this point in
Sect. 2.5.

A geometrical interpretation of the equivariant volume of compact orbifolds is that
it is the generating functional for the integrals of the equivariant Chern classes

V(λa, εi ) = (−1)m
∑

p

1

p!
d∑

a1,...,ap=1

λa1 . . . λap

∫

M2m

cT

1 (La1) . . . cT

1 (Lap ).

(2.30)

The equivariant intersection numbers

Da1...ap =
∫

M2m

cT

1 (La1) . . . cT

1 (Lap ) = (−1)m
∂ pV(λa, εi )

∂λa1 . . . ∂λap

∣∣∣
λa=0

(2.31)

are polynomials in εi and they are topological in nature. Notice that the integrand
in (2.31) is a formal linear combination of forms of various degree and the integral
selects the piece of degree 2m. In particular, the equivariant intersection numbers are
different from zero for all p ≥ m.

The expression in (2.27) can be easily reduced to an integral over the polytope P
by performing the angular integrations

V(λa, εi ) = 1

(2π)m

∫

M2m

e−H ωm

m! =
∫

P
e−Hdy1 . . . dym =

∫

P
e−εi yi dy1 . . . dym .

(2.32)

Thus, we have another interpretation of the equivariant volume as the volume of the
polytope P with measure e−H . Integrals of this type and their relation to equivariant
localization are discussed in [11].

The equivariant volume satisfies some interesting identities. From the expression
(2.29)

V(λa, εi ) = (−1)m
∫

M2m

e
∑

a λa(c1(La)+2πεiμ
a
i ) (2.33)

and the identities (2.21) and (2.16), we find that the identity

V
(
λa + β jv

a
j , εi
) = e−β j ε jV(λa, εi ) (2.34)
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holds, for arbitrary βi ∈ R
m . This formula reflects the fact that only d −m parameters

λa are geometrically independent. A closely related and useful identity can be obtained
by taking derivatives of (2.33) and using again (2.21) and (2.16)

d∑

a=1

vai
∂V

∂λa
= −εiV. (2.35)

Similarly, we have

d∑

a1,...,aq=1

v
a1
i1

. . . v
aq
iq

∂nV

∂λa1 . . . ∂λaq
= (−1)qεi1 . . . εiqV. (2.36)

In the next sections, we review two different methods to evaluate V(λa, εi ), the
fixed point and the Molien–Weyl formula. They are both discussed in the literature.
Here we adapt them to our notations and we discuss the relations among them.

2.3 The fixed point formula

The equivariant volume can be computed using a fixed point formula. This can be
obtained from (2.27) using the Duistermaat–Heckman theorem [1], the localization
formula for equivariant co-homology [68, 69], or a direct evaluation of (2.32) [10,
11]. Here we use the localization approach and, for completeness, in “Appendix A”
we report an explicit proof for m = 2.

Consider a symplectic toric orbifoldM2m with the properties discussed in Sect. 2.1.
The torus action T

m acts on M2m with n isolated fixed points corresponding to the
vertices of the polytope P . Consider an equivariantly closed form αT on M2m . The
equivariant localization theorem for orbifolds applied to our situation states that

∫

M2m

αT =
n∑

A=1

αT|yA
dAeT|yA

, (2.37)

where the sum is over the fixed points yA of the T
m action, eT is the equivariant Euler

class of the tangent bundle at yA and dA are the orders of the orbifold singularity
at the fixed point yA. In particular, applying this theorem to the computation of the
equivariant volume (2.29) gives

V(λa, εi ) = (−1)m
n∑

A=1

e− 1
2π ωT|yA

dAeT|yA
= (−1)m

n∑

A=1

e
∑d

a=1 λacT

1 (La)|yA
dAeT|yA

. (2.38)

To evaluate the localization formula, we need to compute the restriction cT

1 (La)|yA
of the equivariant Chern classes of La to the A-th fixed point. The fixed point yA is
defined by m linear equations
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la1 = · · · = lam = 0 (2.39)

for a choice of m intersecting facets associated with the vectors {va1, . . . , vam }. The
order of the orbifold singularity is given by

dA = | det(va1 , . . . , vam )|. (2.40)

Wewill denote the A-th fixed point alsowith them-tuples of indices A = (a1, . . . , am)

defining the vertex. In the neighbourhood of the fixed point A = (a1, . . . , am)

Gi j = 1

2

v
a1
i v

a1
j

la1
+ 1

2

v
a2
i v

a2
j

la2
+ · · · + 1

2

v
am
i v

am
j

lam
+ · · · , (2.41)

up to regular pieces. This can be inverted to give

Gi j = 2

d2A

((
ua1A
)
i

(
ua1A
)
j la1 + (ua2A

)
i

(
ua2A
)
j la2 + · · · + (uamA

)
i

(
uamA
)
j lam
)

+ · · · ,

(2.42)

where the vectors uaiA are constructed by taking the wedge product of them−1 vectors
va j with j 	= i . The sign ambiguity is determined by requiring uaiA · vai = dA. The
vectors uaiA have integer entries and satisfy

uaiA · va j = dAδi j (2.43)

as well as

v
a1
i

(
ua1A
)
j + v

a2
i

(
ua2A
)
j + · · · + v

am
i

(
uamA
)
j = dAδi j . (2.44)

They have a dual geometrical interpretation as the inward normal vectors to the facets
of the cone (va1, . . . , vam ) in the fan or, equivalently, as integer vectors along the m
edges of the polytopeP meeting at yA. Notice that them-tuplet of vectors uaiA depends
on the choice of vertex A.

The restriction of the moment maps (2.14) to the fixed points then gives

μa
i

∣∣∣
yA

=
{

− 1
2π

uai
dA

if a ∈ A

0 if a /∈ A
(2.45)

and therefore

cT

1 (La)

∣∣∣
yA

=
{

− εi uai
dA

if a ∈ A

0 if a /∈ A
. (2.46)

Notice that the restriction of cT

1 (La) to a fixed point is not zero only if the point belongs
to the facet Fa .
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15 Page 14 of 79 D. Martelli, A. Zaffaroni

Finally the tangent bundle at a fixed point splits as a direct sum of them line bundles
Lai associated with A = (a1, . . . , am) and so we have [18]

eT|yA =
∏

ai∈A

cT

1 (Lai )|yA = (−1)m
m∏

i=1

ε · uaiA
dA

. (2.47)

Now the fixed point formula gives

V(λa, εi ) =
∑

A=(a1,...,am )

e
−∑m

i=1 λai (
ε·uaiA
dA

)

dA
∏m

i=1
ε·uaiA
dA

, (2.48)

where A runs over the n vertices of the polytope. This formula can be also obtained
by computing the volume of the polytope P , as discussed, for example, in [11].

We note on passing that the identities (2.34), (2.35) and (2.36) can be also derived
from the fixed point formula. For example,

V

⎛

⎝λa +
m∑

j=1

β jv
a
j , εi

⎞

⎠ =
∑

A=(a1,...,am )

e
−∑m

i, j,k=1

β j v
ai
j (u

ai
A )k εk

dA
e
−∑m

i=1 λai (
ε·uaiA
dA

)

dA
∏m

i=1
ε·uaiA
dA

= e−∑m
i=1 βi εiV(λa, εi ), (2.49)

where we explicitly wrote all the sums to explain the derivation. In particular, we used
(2.44) to perform the intermediate summation over i . The proof of (2.35) and (2.36)
is similar.

2.4 TheMolien–Weyl formula

The equivariant volume can be also computed using a Molien–Weyl integral formula
following [64, 65].

The orbifold M2m can be realized as a symplectic quotient. Consider the space C
d ,

where d is the number of vectors in the fan, and the subgroup K of T
d of elements of

the form

(
e2π i Q1 , . . . , e2π i Qd

)
∈ T

d , (2.50)

where

d∑

a=1

Qav
a
i ∈ Z, i = 1, . . . , d. (2.51)

Then, M2m is the symplectic reduction [12, 62]

M2m = C
d//K , (2.52)
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generalizing a familiar result in toric geometry. Notice that, in general, the group K
has a continuous part U (1)d−m

Qa =
d−m∑

A=1

QA
a αA, αA ∈ R (2.53)

which can be expressed in terms of theGLSMcharges QA
a ∈ Z, with A = 1, . . . d−m,

satisfying

d∑

a=1

QA
a vai = 0, (2.54)

as well as a discrete part of more complicated characterization.
Consider first the case where there is no discrete part in the quotient and M2m =

C
d//U (1)d−m . The authors of [64, 65] derived a formula for the equivariant volume

as a function of Kähler parameters tA of the symplectic reduction and the equivariant
parameters of C

d . This is a Molien–Weyl formula obtained by averaging the equiv-
ariant volume of C

d with respect to the U (1)d−m action. The formula reads

VMW (tA, ε̄a) =
∫ d−m∏

A=1

dφA

2π i

e
∑

A φAtA

∏d
a=1

(
ε̄a +∑A φAQA

a

) . (2.55)

A particular contour of integration should be used depending on the direction of the
vector of Kähler parameters tA. A prescription based on the Jeffrey–Kirwan (JK)
residue [70] has been proposed in [64, 65]. Formula (2.55) should be also divided by
the order of the discrete group corresponding to the torsion part of K when this is
present. We will discuss subtleties related to the choice of contour and discrete groups
when illustrating examples.

Notice thatVMW depends on d−m Kähler parameters tA, which is the right number
of geometrically inequivalent parameters for M2m . It also depends on d equivariant
parameters ε̄a associated with the T

d action on the ambient space, which is larger than
the m parameters that we expect for M2m . However, d − m equivariant parameters
can be eliminated by shifting the integration variables. Indeed, up to an exponential
factor, the Molien–Weyl integral is invariant under the shift

VMW

(
tA, ε̄a +

∑

A

QA
a ηA

)
= e−∑A ηAtAVMW (tA, ε̄a), (2.56)

for ηA ∈ R.
We thus have two expressions for the equivariant volume, V(εi , λa), depending

on m equivariant parameters εi and d Kähler parameters λa but with the "gauge"
invariance (2.34), and VMW (ε̄a, tA), depending on d equivariant parameters ε̄a and
d−mKähler parameters tA butwith the "gauge" invariance (2.56). The two expressions
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must agree with a suitable mapping between parameters. The two set of parameters
can be related by comparing gauge-invariant quantities. Based on several examples,
we find evidence that this mapping is given by

tA = −
∑

a

λaQ
A
a , εi =

∑

a

vai ε̄a, (2.57)

and we conjecture that the two expressions for the equivariant volume agree up to a
multiplicative factor when expressed in terms of the over-redundant variables (λa, ε̄a),
namely8

VMW

(
tA = −

∑

a

λaQ
A
a , ε̄a

)
= e

∑
a λa ε̄aV

(
λa, εi =

∑

a

vai ε̄a

)
. (2.58)

As a consistency check of this formula, we can apply to both sides the operator∑
a vai

∂
∂λa

. Since the GLSM charges satify (2.54) and VMW is a function of tA =
−∑a λaQA

a , we obtain zero on the left-hand side. On the right-hand side, we obtain

e
∑

a λa ε̄a

(
∑

a

vai ε̄aV +
∑

a

vai
∂V

∂λa

)
, (2.59)

which is also zero because of the identity (2.35) and the identification (2.57).

2.5 Remarks on the non-compact case

Most of the previous results hold also for non-compact orbifolds, but with some impor-
tant differences. We still define the equivariant volume as

V(λa, εi ) = 1

(2π)m

∫

M2m

e−H ωm

m! = (−1)m
∫

M2m

e− ωT

2π , (2.60)

which we can also write as an integral over a polyhedron P

V(λa, εi ) =
∫

P
e−εi yi dy1 . . . dym . (2.61)

SinceM2m andP are non-compact,weneed to assume that the integrals are convergent.
This happens for the examples we will be interested in, where P is asymptotically a
cone. In this case the Hamiltonian H = εi yi acts as a convergence factor, at least if
the vector ε lies inside the cone.

The fixed point formula and the Molien formula hold under general conditions also
for non-compact orbifolds, and we can even use them as an operative definition for

8 It would be interesting to give a formal proof of (2.58). This would require a careful analysis of all the
residues in (2.55), which is a hard problem, and we do not attempt such a proof here.

123



Equivariant localization and holography Page 17 of 79 15

the equivariant volume. For example, the fixed point formula only assumes that there
are isolated fixed points in P and that there are no contributions from infinity. Notice
that the identities (2.34), (2.35) and (2.36), which follow from the fixed point formula,
are still valid.

However, the co-homological interpretation (2.30) fails. In particular, the two inte-
grals in (2.29) are not equal in general. The second term in (2.19)

ω = dyi ∧ dφi = −2π
∑

a

λac1(La) + 1

2
d

(
∑

a

Gi jvaj dφi

)
, (2.62)

is still exact, but it cannot be ignored in a integral over non-compact orbifolds.9 As
a result, the equivariant volume can be still formally expanded in power series of λa
but the coefficients cannot be straightforwardly interpreted as generalized intersection
numbers as in (2.30). In particular, while in the compact case, the power series of
λa starts at order m and the coefficients are polynomials in εi , in the non-compact
setting the power series has all coefficients different from zero and these are in general
rational function of εi , as it follows from the fixed point formula. We will discussed
explicit examples of non-compact orbifolds in Sects. 3.3 and 5.

2.6 Relation to the equivariant orbifold index

In this section, we briefly discuss how the equivariant volume arises as a limit of
an index character, following the logic in [18, 64, 65]. Examples of calculations of
characters are provided in “Appendix C” as this is not the main theme of this paper.

The equivariant index for the twisted Dolbeault complex on M2m is defined by

Z(qi ,a) =
m∑

p=0

(−1)pTr

{
q|H (0,p)

(
M2m, O

(
∑

a

aDa

))}
(2.63)

where q ∈ T
m is an element of the torus and a ∈ Z, a = 1, . . . , d are integers

specifying a choice of line bundle. The trace is taken on the induced action on the co-
homology. The index can be computed with the Hirzebruch–Riemann–Roch theorem.
We start with the smooth case that is considerably simpler, and we take all the labels
to be one, the vectors va to be primitive and all the orders dA = 1. The fixed point
formula for the equivariant index is

Z(a, qi ) =
∑

A=(a1,...,am )

q−∑m
i=1 ai u

ai
A

∏m
i=1

(
1 − qu

ai
A

) , (2.64)

9 Notice that this does not affect the argument for the fixed point formula. The contribution of ωT to the
fixed point is still ωT = −2π

∑
a λacT

1 (La), since the extra term 1
2
∑

a G
i jvaj vanishes at the fixed point

by (2.42).
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where the symbol qn is an abbreviation for qn11 . . . qnmm . The geometrical interpretation
of the equivariant index is generically to count integer points

Z(a, qi ) =
∑

m∈�(a)

qm, (2.65)

in the polytope

�(a) = {m · va ≥ −a}, m ∈ Z
m, (2.66)

as discussed, for example, in [11]. The equivariant volume can be obtained by setting
qi = e−�εi and taking the limit � → 0. The limit of (2.64) is singular but exhibits the
equivariant volume as the coefficient of the leading pole

Z(a, qi ) =
�→0

V(λa, εi )

�m
+ · · · (2.67)

where we scale a = −λa/�.
Analogously, the Molien–Weyl formula reads [64, 65]

ZMW (TA, q̄a) = (−1)d−m
∫ d−m∏

A=1

dzA
2π i zA

∏
A z

−TA
A

∏d
a=1

(
1 −∏A z

QA
a

A q̄a
) , (2.68)

where the contour is defined again through the JK prescription. Setting q̄a = e−�ε̄a ,
TA = ta/� ∈ Z and changing variables to za = e−�φA , we find

ZMW (TA, q̄a) =
�→0

VMW (tA, εi )

�m
+ . . . . (2.69)

The Molien–Weyl formula (2.68) can be interpreted as an average over the complexi-
fied groupU (1)d−m acting on the coordinates of the ambient spaceC

d . The continuous
average in (2.68) should be supplemented by a discrete average if the group K appear-
ing in the symplectic reduction M2m = C

d//K has a torsion part.
The formulas (2.64) and (2.68) are familiar in the context of non-compact conical

Calabi–Yau singularities. For a = TA = 0, they have been used to compute Hilbert
series for the mesonic moduli space of the dual N = 1 superconformal theories [58,
59]. For a, TA 	= 0 they compute Hilbert series for the baryonic moduli space [60].

The relation between the two formulas is

ZMW

(
TA =

∑

a

QA
a a, q̄a

)
=

d∏

a=1

q̄a
a Z

(
a, qi =

∏

a

q̄
vai
a

)
. (2.70)

The corresponding fixed point formulas for orbifolds are more complicated [7, 71].
Each fixed point contribution is replaced by a discrete Molien formula implementing
the quotient ZdA
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Z(a, qi ) =
∑

A=(a1,...,am )

1

dA

dA−1∑

k=0

e−2π ik
∑m

i=1 Jiai q−∑m
i=1 ai u

ai
A /dA

∏m
i=1

(
1 − e2π ik Ji qu

ai
A /dA

) , (2.71)

where

(
e2π i J1 , . . . , e2π i Jm

) ∈ T
m,

m∑

i=1

vai Ji ∈ Z, (2.72)

is a generator of the local orbifold singularity ZdA . In the limit � → 0, only the term
with k = 0 contributes at the leading order and we recover the fixed point formula
(2.48) as the coefficient of the most singular term (see (2.67)).

In the special case of non-trivial labels but no extra orbifold singularities, we can
use the formulas in Appendix C to resum (2.71) and we obtain

Z(a, qi ) =
∑

A

∏m
i=1 q

−û
ai
A 
 ai

nai
�

∏m
i=1

(
1 − qû

ai
A

) , (2.73)

where the floor function 
x� denotes the integer part of x , va = na v̂a and ua = naûa

have been decomposed into primitive vectors v̂a, ûa and the label na and we assume
that d̂a,a+1 = det(v̂a, v̂a+1) = 1. One can check with elementary methods that this
formula computes indeed the number of integer points in the polytope (2.66).

3 Examples from geometry and holography

To illustrate the previous discussion, in this section we provide explicit examples of
the equivariant volumes for some simple compact and non-compact orbifolds. The
specific examples are chosen among the orbifolds that appear as building blocks of
various supergravity solutions with a holographic dual. We also derive some results
that will be used in Sects. 4 and 5, where we provide more physical applications.

3.1 The spindle

The first example that we consider is the weighted projective line WP
1[n+,n−], namely

the spindle ˚, which is at heart of the recent novel supergravity constructions. It can
be defined as the set of pairs of complex numbers (z1, z2) under the identification

(z1, z2) ∼ (λn+ z1, λ
n− z2), λ ∈ C

∗. (3.1)

This is the most general toric symplectic orbifold in two real dimensions. It is the
simplest example of toric orbifold that is not a toric variety, as its singular points occur
in complex co-dimension one. In particular, the orbifold points, that are fixed under
the U (1) action, are also the divisors and therefore d = n = 2. The image of ˚ under
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Fig. 1 The spindle ˚ as a circle
fibration over a segment

the moment map is simply a segment P = I , exactly as for P
1  S2 and the two

facets Fa are its end-points, defined by the linear equations

la(y) = va y − λa = 0, a = 1, 2, (3.2)

where the one-dimensional non-primitive vectors are v1 = n1, v2 ≡ −n2, where we
will also denote n1 ≡ n+ and n2 ≡ n−.10 The two labels are n+, n− ∈ N. Thus, ˚
is a circle fibration over the segment I , with the circle collapsing at the end-points,
where are the two C/Zn+ , C/Zn− singularities, see Fig. 1.

In the following, it will be convenient to define two rescaled Kähler parameters
λ1 = n+λ̂1, λ2 = n−λ̂2, so that

l1(y) = n+(y − λ̂1), l2(y) = −n−(y + λ̂2). (3.3)

We can then write explicitly the one-dimensional (canonical) metric (2.10)

G11 = 1

2

(
(v1)2

l1
+ (v2)2

l2

)
= 1

2

(
n+

y − λ̂1
− n−

y + λ̂2

)
, (3.4)

and the related moment maps

μ1 = 1

2π

y + λ̂2

n−(y − λ̂1) − n+(y + λ̂2)
, μ2 = 1

2π

y − λ̂1

n−(y − λ̂1) − n+(y + λ̂2)
.

(3.5)

In the conventions of Sect. 2.1, in which la(y) ≥ 0, we have that11 y ∈ [y1, y2] =
[λ̂1,−λ̂2], with the extrema of the interval corresponding to the north and south poles
of ˚, respectively.

We can then write all the relations discussed in Sect. 2.1 explicitly in terms of the
moment maps (3.5). The explicit representatives of the first Chern classes c1(La)

associated with the line bundles La defined by the extrema of the interval (the two
divisors) are

c1(La) = d(μadφ), (3.6)

where φ ∼ φ + 2π is the azimuthal coordinate, and denoting by ε the equivariant
parameter, their equivariant versions are

cT

1 (La) = d(μadφ) + 2πεμa . (3.7)

10 We use this notation to facilitate comparison with the spindle literature in supergravity.
11 Thus, in these conventions, the fibration exists for λ̂1 < −λ̂2.
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The equivariant Kähler form is:

ωT = ω + 2πH = dy ∧ dφ + 2πεy, (3.8)

where H = εy is the Hamiltonian for the vector field ξ = ε∂φ . With this information,
we can check various relations explicitly, without appealing to the fixed point theorem.
For example, it is immediate to compute

∫

˚
c1(La) = 2π

∫ y2

y1
dμa = 2π(μa(−λ̂2) − μa(λ̂1)) = 1

na
. (3.9)

The co-homological relation (2.20) can also be verified explicitly, noting that

y = −2π
∑

a

λaμa + �(y), (3.10)

where

�(y) = (n+ − n−)(y + λ̂2)(y − λ̂1)

n+(λ̂2 + y) + n−(λ̂1 − y)
, (3.11)

is such that �(ya) = 0, implying that �(y)dφ is an exact one-form on the spindle.
Let us now turn to the fixed point relations and the equivariant volume. From (3.5),

it immediately follows that the restriction of the moment maps to the fixed points
reads

μa |yb = − 1

2π

ua

na
δab, (3.12)

where u1 = 1, u2 = −1 and therefore

cT

1 (La)

∣∣∣
yb

= −εua

na
δab. (3.13)

Using these and the fact that the equivariant Euler class of the tangent bundle at a fixed
point ya is

eT|ya = −εua

na
, (3.14)

one can reproduce the integrals (3.9) from the fixed point theorem (2.37). The equiv-
ariant volume can be easily computed either directly

V(λa, ε) = −
∫

˚
e−εy− ω

2π =
∫ y2

y1
e−εydy = 1

ε

(
e
− ελ1

n+ − e
ελ2
n−
)

, (3.15)
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or using the fixed point formula

V(λa, ε) = −
2∑

a=1

e− ωT

2π |ya
naeT|ya

= 1

ε

(
e
− ελ1

n+ − e
ελ2
n−
)

, (3.16)

which of course gives the same result. From this, it is immediate to compute the
nonzero equivariant intersection numbers (2.31),

∫

˚
cT

1 (L1)
s = (−ε)s−1

ns+
,

∫

˚
cT

1 (L2)
s = εs−1

ns−
, (3.17)

generalizing (3.9) to s > 1.
We end this subsection noting that it is straightforward to check directly that the

equivariant volume depends only on the co-homology class of [ω]. Specifically, if we
use a different representative of [ω], such as

ω′ = dy ∧ dφ − d(�(y)dφ), (3.18)

then we have

V(λa, ε) = −
∫

˚
e− ω′T

2π = 1

2π

∫

˚
e−εy+ε�(y)ω′

=
∫ y2

y1
e−εy+ε�(y)d(y − �(y)) =

∫ y2

y1
e−εydy, (3.19)

where the last equality follows trivially from a change of variables and the fact that
�(ya) = 0.

3.2 Four-dimensional toric orbifolds

We now move to compact four-dimensional orbifolds (m = 2), that have applications
in holography [50–52], as well as in geometry [72–74]. The image of M4 under the
moment map is a rational simple convex polygon P in R

2 and its facets Fa , defined
by the linear equations la(y) = 0, are the edges of the polygon, as shown in Fig. 2.
Of course each vertex pa of the polygon lies at the intersection of precisely 2 edges,
so that the simplicity condition is automatic. Moreover, the number of facets/edges d
of P coincides with the number of vertices n, that are also the fixed points of the T

2

action. The condition that P be rational is equivalent to the fact that the d normals
to the edges, va , have integer entries; however, they do not need to be primitive. The
highest common factor na of the two entries of each of the va is precisely the label
associated with an edge/facet Fa .

Each facet defines a symplectic subspace of M4 of real dimension two, namely a
divisor Da of complex dimension one, with a local C/Zna singularity. The vertices
pa of P correspond precisely to points where two divisors Da , Da+1 intersect, with
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Fig. 2 Fixed points are associated with vertices pa of the polytope. The vectors in the fan are orthogonal to
the facets. For each vertex, there is a corresponding cone (va , va+1) in the fan. The two inwards normals
uia , 1 = 1, 2 to the cone, which lie along the edges of the polytope, enter in the fixed point formula through

the quantities εai = ε·uia
da,a+1

local singularity C
2/Zda,a+1 , where da,a+1 = | det(va, va+1)|. The linear dependence

of the d vectors va in R
2 is expressed by the relations

d∑

a=1

QA
a va = 0, (3.20)

defining theGLSMcharges QA
a ∈ Z, with A = 1, . . . d−2, that are used to presentM4

as the symplectic quotientM4 = C
d//U (1)d−2, up to torsion factors.Correspondingly

there are two linear relations among the divisors

d∑

a=1

vai Da = 0, i = 1, 2. (3.21)

The equivariant volume and equivariant intersection numbers can be conveniently
written in terms of the quantities

εai = ε · uia
da,a+1

, i = 1, 2, (3.22)

where uia are the inward normals to the cones (va, va+1) as discussed in Sect. 2.3 and
pictured in Fig. 2. We can rewrite these as

εa1 = − det(va+1, ε)

det(va, va+1)
, εa2 = det(va, ε)

det(va, va+1)
, (3.23)

where ε ≡ (ε1, ε2). In writing these formulas, we have assumed that the vectors va

lie on the plane in anticlockwise order and we have identified cyclically va+d ≡ va .
In particular, the equivariant Euler class of the tangent bundle at a fixed point ya reads
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eT|ya = εa1 εa2 . (3.24)

The restriction to the fixed points of the equivariant Chern classes cT

1 (La) (2.46) can
be written as

cT

1 (La)|yb = −
(
δa,bε

b
1 + δa,b+1ε

b
2

)
, (3.25)

so that the general formula for the equivariant intersection numbers reads

∫

M4

cT

1 (La1) . . . cT

1 (Lap ) =
∑

a

cT

1 (La1)|ya . . . cT

1 (Lap )|ya
da,a+1ε

a
1 εa2

. (3.26)

Below we report explicit formulas for intersection numbers up to p = 4. First of
all, for p = 0, 1 the integrals vanish automatically, giving rise to identities that may
also be verified with elementary algebra. Specifically, we have

0 =
∫

M4

1 =
∑

a

1

da,a+1ε
a
1 εa2

, (3.27)

0 =
∫

M4

cT

1 (La) = − 1

da,a+1ε
a
2

− 1

da−1,aε
a−1
1

. (3.28)

For the double intersection numbers, we reproduce the intersections matrix of divi-
sors (see, e.g. [51]), which is independent of the equivariant parameters ε1, ε2:

Da · Db = Dab =
∫

M4

cT

1 (La)c
T

1 (Lb) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
da−1,a

if b = a − 1,
1

da,a+1
if b = a + 1,

− da−1,a+1
da−1,ada,a+1

if b = a,

0 otherwise,

(3.29)

where we used the identity

εa1

da,a+1ε
a
2

+ εa−1
2

da−1,aε
a−1
1

= − da−1,a+1

da−1,ada,a+1
(3.30)

to deal with the terms occurring in the self-intersection Da · Da . Similarly, we can
compute the integral of three equivariant first Chern classes, that read:

Da1a2a3 =
∫

M4

cT

1 (La1)c
T

1 (La2)c
T

1 (La3)
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= −

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εa−1
2

da−1,a
if ai = a j = ak + 1 ≡ a,

εa1
da,a+1

if ai = a j = ak − 1 ≡ a,

(εa1 )2

da,a+1ε
a
2

+ (εa−1
2 )2

da−1,aε
a−1
1

if a1 = a2 = a3 ≡ a,

0 otherwise,

(3.31)

where the diagonal term can be shown to be linear in εi , using the identity

(
εa1

)2

da,a+1ε
a
2

+
(
εa−1
2

)2

da−1,aε
a−1
1

= − da−1,a+1

d2a−1,ada,a+1

(
2da−1,aε

a
1 + da−1,a+1ε

a
2

)
. (3.32)

For the integrals of four equivariant first Chern classes, we have

Da1a2a3a4 =
∫

M4

cT

1 (La1)c
T

1 (La2)c
T

1 (La3)c
T

1 (La4)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εa−1
2 εa−1

1
da−1,a

if ai = a j = ak + 1 = al + 1 ≡ a,

εa1 εa2
da,a+1

if ai = a j = ak − 1 = al − 1 ≡ a,
(
εa−1
2

)2
da−1,a

if ai = a j = ak = al + 1 ≡ a,
(
εa1

)2
da,a+1

if ai = a j = ak = al − 1 ≡ a,
(
εa1

)3
da,a+1ε

a
2

+
(
εa−1
2

)3

da−1,aε
a−1
1

if a1 = a2 = a3 = a4 ≡ a,

0 otherwise,

(3.33)

where the diagonal term can be shown to be quadratic in εi , using the identity

(
εa1

)3

da,a+1ε
a
2

+
(
εa−1
2

)3

da−1,aε
a−1
1

= − da−1,a+1

d3a−1,ada,a+1

(
3d2a−1,a

(
εa1 )2 + 3da−1,ada−1,a+1ε

a
1 εa2 + d2a−1,a+1

(
εa2
)2)

.

(3.34)

The fixed point formula (2.48) for the equivariant volume specializes to the expres-
sion12

V(λa, εi ) =
d∑

a=1

1

da,a+1ε
a
1 εa2

e−λaε
a
1−λa+1ε

a
2 , (3.35)

12 Notice that there is no summation on a in the exponent.
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which is easily evaluated in examples. On the other hand, starting from the definition
(2.27), the equivariant volume can also be written as in integral over the polygon P
as

V(λa, εi ) =
∫

P
e−yi εi dy1dy2, (3.36)

that can be evaluated explicitly using Stokes’ theorem. Notice that the dependence on
the Kähler parameters λa arises from the shape of P = P(λa). The details of this
calculation are given in “Appendix A”.

3.2.1 The weighted projective spaceWP
2
[N1,N2,N3]

As a first example of equivariant volume for four-dimensional toric orbifolds, we
consider the weighted projective space WP

2[N1,N2,N3] defined as the set of triples of
complex numbers (z1, z2, z3) under the identification

(z1, z2, z3) ∼ (λN1 z1, λ
N1 z2, λ

N1 z3
)
, λ ∈ C

∗. (3.37)

There are various presentations in terms of labelled polytopes [62], and it is interesting
to consider some of them in order to understand better the role of the labels.

Consider first the fan

v1 = (n3, n3), v2 = (−n1, 0), v3 = (0,−n2), (3.38)

where each of the three facets has non-trivial labels. We take the labels na to be
mutually coprime. The GLSM charges are given by

Q ≡ (N1, N2, N3) = (n1n2, n2n3, n1n3), (3.39)

and the symplectic quotient description WP
2[N1,N2,N3] = C

3//U (1), where U (1) acts
with charge Q, is just the definition (3.37) of the weighted projective space. Notice,
however, that our choice of fan corresponds to “non-minimal” Qa = Na that are
products of integers.

The equivariant volume can be computed with the fixed point formula (3.35)

V(λa, εi ) = e−ε2λ1/n3−(ε2−ε1)λ2/n1

ε2(ε2 − ε1)
+ eε1λ2/n1+ε2λ3/n2

ε1ε2
+ e−ε1λ1/n3−(ε1−ε2)λ3/n2

ε1(ε1 − ε2)
.

(3.40)

This expression is a rational function of εi but when expanded in power series in λa
as

V(λa, εi ) =
∞∑

k=0

V(k)(λa, εi ), (3.41)
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whereV(k) is the component of degree k in λa , all singular terms cancel. The constant
and linear terms vanish, and the other V(k)(λa, εi ) are homogeneous polynomials of
degree k − 2 in ε that encode the equivariant intersection numbers of the line bundles
La . In particular, V(2)(λa, εi ) coincides with the non-equivariant limit

V(λa, 0) = 1

2

(
n1n2λ1 + n2n3λ2 + n1n3λ3

n1n2n3

)2
= 1

2

(N1λ1 + N2λ2 + N3λ3)
2

N1N2N3
,

(3.42)

encoding the classical intersections numbers of the divisors Da . Since only one divisor
is geometrically independent because of (2.22), this is a quadratic form of rank one.

We can compare the result with the Molien–Weyl formula (2.55),

VMW (t, ε̄) =
∫

dφ

2π

etφ

(ε̄1 + n1n2φ)(ε̄2 + n3n2φ)(ε̄3 + n1n3φ)
, (3.43)

where we use the charges Q. The JK prescription for a single integration is very
simple.13 It prescribes to take all residues associated with φ with positive charge for
t > 0, and minus the residues for φ with negative charge for t < 0. Taking t > 0 and
performing the residue computation, we obtain

VMW (t, ε̄) = e−ε̄1t/(n1n2)

(n3ε̄1 − n1ε̄2)(n3ε̄1 − n2ε̄3)
+ e−ε̄2t/(n2n3)

(n3ε̄1 − n1ε̄2)(n2ε̄3 − n1ε̄2)

+ e−ε̄3t/(n1n3)

(n3ε̄1 − n2ε̄3)(n1ε̄2 − n2ε̄3)
, (3.44)

with non-equivariant limit

1

2

t2

(n1n2n3)2
= 1

2

t2

N1N2N3
. (3.45)

We see that each residue corresponds to a fixed point. It is easy to see that the two
master volumes coincide under the identification (2.58)

VMW

(
t = −

3∑

a=1

Naλa, ε̄a

)
= e

∑3
a=1 λa ε̄aV(λa, ε1 = ε̄1n3 − ε̄2n1, ε2 = ε̄1n3 − ε̄3n2).

(3.46)

It is interesting to consider also the fan

v1 = (−n3, 0), v2 = (0,−n3), v3 = (n1, n2), (3.47)

13 See [75] for a physics-oriented review.
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where now the GLSM charges are the “minimal” ones

Q ≡ (N1, N2, N3) = (n1, n2, n3). (3.48)

However, in this case there is also a torsion part in the symplectic quotient description.
Indeed, the symplectic action on C

3 is given by

(e2π i Q1 , e2π i Q2 , e2π i Q3), (3.49)

where

∑

a

Qav
a
i ∈ Z. (3.50)

For the minimal fan (3.47) with relatively prime na , the relations

− n3Q1 + n1Q3 ∈ Z, −n3Q2 + n2Q3 ∈ Z, (3.51)

have solution

Q1 = n1α + k1
n3

, Q2 = n2α + k2
n3

, Q3 = n3α, ki = 0, . . . , n3 − 1, α ∈ R.

(3.52)

One ki can be further gauged away by choosing α = integer/n3 (assuming again that
the na are relatively prime). So we are left with a continuous U (1) action generated
by α and an extra discrete group14

� = ZN3 × ZN3

ZN3

, (3.53)

so that

M4 = WP
2[N1,N2,N3]/�. (3.54)

As an exercise, the interested reader can check that the relation

VMW

(
t = −

∑

a

λaNa, ε̄a

)
≡ e

∑
a λa ε̄aV

(
λa, εi =

∑

a

vai ε̄a

)
, (3.55)

still holds. The right-hand side can be computed as before with the fixed point formula
(3.35), while the left-hand side with the Molien–Weyl formula. However, since the
Molien–Weyl integral is blind to the torsion part, the formula (2.55) should be further

14 For the non-minimal case (3.38), we have −n3Q1 + n1Q2, −n3Q1 + n2Q3 ∈ Z which implies Q1 =
n1n2α + k1/n3, Q2 = n3n2α + k2/n1 and Q3 = n1n3α + k3/n2 but all the ki can be absorbed by taking
α = integer/ni if the ni are coprime and we are left with theU (1) action with charges (n1n2, n2n3, n1n3).
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divided by the order N3 of the discrete group �. For example, the non-equivariant
volume is now

1

2

(N1λ1 + N2λ2 + N3λ3)
2

N1N2N 2
3

= 1

2

t2

N1N2N 2
3

, (3.56)

with an extra factor of N3.
Finally, we can consider an example taken from [62].15 The fan is

v1 = (−n2n3, 0), v2 = (0,−n1n3), v3 = (n1n2, n1n2), (3.57)

and the GLSM charges are the “minimal" ones

Q ≡ (N1, N2, N3) = (n1, n2, n3). (3.58)

However, the equations
∑

a Qav
a
i ∈ Z

− n3n2Q1 + n1n2Q3 ∈ Z, −n3n1Q2 + n1n2Q3 ∈ Z, (3.59)

have solution

Q1 = n1α + k1
n2n3

, Q2 = n2α + k2
n1n3

, Q3 = n3α + k3
n1n2

, α ∈ R,

(3.60)

and one ki can be further gauged away by choosing α = integer/(n1n2n3). So we are
left with a continuous U (1) action generated by α and an extra discrete group so that

M4 = WP
2[N1,N2,N3]/�, (3.61)

where

� = ZN2N3 × ZN1N3 × ZN2N3

ZN1N2N3

, (3.62)

is a discrete group of order N1N2N3. We still find

VMW

(
t = −

∑

a

λaNa, ε̄a

)
≡ e

∑
a λa ε̄aV

(
λa, εi =

∑

a

vai ε̄a

)
, (3.63)

15 The reader should be aware that, in [62], the weighted projective space is denoted with WP
2
(N1,N2,N3)

and the example we are discussing with WP
2[N1,N2,N3].
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where the Molien–Weyl integral should be further divided by N1N2N3. The non-
equivariant volume is

1

2

(N1λ1 + N2λ2 + N3λ3)
2

N 2
1 N

2
2 N

2
3

= 1

2

t2

N 2
1 N

2
2 N

2
3

. (3.64)

3.2.2 Quadrilaterals

Let us now discuss the most general four-dimensional toric orbifold with four fixed
points, that we refer to as quadrilaterals, following [73]. A sub-class of this family of
orbifolds has been discussed in [51], and below we will discuss how one can retrieve
those results. It is convenient to parameterize the data of this orbifold in terms of the
six vector products

da,b ≡ det(va, vb) ∈ Z, (3.65)

where va , a = 1, . . . , 4 is the set of toric data, as in Fig. 3. Then, a vector identity
implies that these satisfy the following relation

d1,2d3,4 − d2,3d4,1 = d1,3d2,4, (3.66)

showing that there are five independent integers characterizing a quadrilateral. One
can show that the charges of the U (1)2 action on C

4 can be written in a particularly
symmetric form using this parameterization, and read

Q1 = (d2,4, d4,1, 0, d1,2
)
, Q2 = (d2,3,−d1,3, d1,2, 0

)
. (3.67)

Without loss of generality, one can use an SL(2, Z) transformation to set v1 = (n−, 0),
where n− ∈ Z. The remaining vectors solving the constraint

4∑

a=1

QA
a va = 0, (3.68)

are then easily determined and the full set reads

v1 = (n−, 0), v2 = (a+d2,4, d1,2/n−),

v3 = (a−d2,3 + a+d3,4, d1,3/n−), v4 = (a−d2,4,−d4,1/n−), (3.69)

where d1,2, d1,3, d4,1 are integer multiples of n− and a± ∈ Z such that

a−d1,2 + a+d4,1 = −n−, (3.70)

which always exist by Bezout’s lemma.
The equivariant volumeV(λa, εi ) is easily computed using the general fixed point

formula (3.35), but we shall not write it explicitly as it does not have a compact
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Fig. 3 The fan and the polytope for a generic quarilateral

expression. Expanding it in Taylor series in powers of λa as in (3.41), one can check
thatV(0)(εi ) = V(1)(λa, εi ) = 0, whereas the quadratic part is independent of εi and
reads

V(2)(λa) = 1

2

∑

a,b

λaλbDab, (3.71)

where Dab is the intersection matrix of divisors (3.29), which reads

Dab =

⎛

⎜⎜⎜⎜⎝

d2,4
d1,2d4,1

1
d1,2

0 1
d4,1

1
d1,2

−d1,3
d1,2d2,3

1
d2,3

0

0 1
d2,3

− d2,4
d2,3d3,4

1
d3,4

1
d4,1

0 1
d3,4

d1,3
d3,4d4,1

⎞

⎟⎟⎟⎟⎠
. (3.72)

It may be useful to compare with the orbifold geometry studied in [51] (see also
[50]), which may be viewed as spindle fibered over another spindle, and interpreted
as a natural orbifold generalization of Hirzebruch surfaces. This is obtained setting

d1,3 = 0, d2,4 = −t, d1,2 = m−n−,

d2,3 = m−n+, d3,4 = m+n+, d4,1 = n−m+. (3.73)

and r+ = −ta+, r− = −ta−. For these values, the vectors of the fan reduce to those
written in eq. (4.27) of [51] and the GLSM charges become

Q1 = (−t,m+n−, 0,m−n−) , Q2 = (n+, 0, n−, 0) . (3.74)

We can then perform the U (1)2 quotient of C
4 in two stages. The first quotient using

weights Q1 gives the line bundle O(−t) → ˚m+,m− . The second quotient using
weights Q2 projectivize this bundle, giving a ˚n+,n− → ˚m+,m− bundle. Indeed for
n+ = n− = m+ = m− = 1, this reduces exactly to the Hirzebruch surface Ft , which
is the most general family of toric manifolds with four fixed points.

It is instructive to compare with the Molien–Weyl formula. We do it explicitly for
the case of the ˚n+,n− → ˚m+,m− bundle. The Molien–Weyl integral reads
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Fig. 4 The JK prescription for the ˚n+,n− → ˚m+,m− bundle

VMW = n−
∫

dφ1

2π

dφ2

2π

et1φ1+t2φ2

(ε̄1 − tφ1 + n+φ2)(ε̄2 + n−m+φ1)(ε̄3 + n−φ2)(ε̄4 + m−n−φ1)
.

(3.75)

The multiplicative factor n− takes into account that the U (1)2 action is not effective
since

g1 = e
2π i n+

n− Q1 , g2 = e
−2π i t

n− Q2 , (3.76)

acts in the same way on all points in C
4. The Molien formula mods out twice by a

discrete subgroupZn− and we need tomultiplicate by n− to obtain the right result. The
poles in the integrand are associated with two-dimensional vectors Qa = (Q1

a, Q
2
a),

a = 1, 2, 3, 4. The JK prescription instructs us to take the (simultaneous) residues at
the poles Qa1 and Qa2 if the vector of Kähler parameters (t1, t2) is contained in the
cone (Qa1 ,Qa2). When (t1, t2) lies in the first quadrant, it is contained in four different
cones (see Fig. 4).

In the Kähler chamber t1 > 0 and t2 > 0, we then add four contributions. One can
check that

VMW

(
tA = −

∑

a

λaQ
A
a , ε̄a

)
= e

∑
a λa ε̄aV

(
λa, εi =

∑

a

vai ε̄a

)
, (3.77)

where the gauge-invariant variables (2.57) are

t1 = tλ1 − m+n−λ2 − m−n−λ4 t2 = −n+λ1 − n−λ3

ε1 = n−ε̄1 + r+ε̄2 − n+ε̄3 + r−ε̄4 ε2 = m−ε̄2 − m+ε̄4.
(3.78)

The non-equivariant volume is

VMW (tA, 0) = 2n+t1t2 + m−r−t21 + m+r+t22
2m−m+n2−n2+

. (3.79)
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3.3 Non-compact examples

Weconsider now some non-compact examples where the polytopeP is asymptotically
a polyhedral cone. We compute the volume using the fixed point formula, assuming
that there is a finite number of fixed points and no contributions from infinity. As
anticipated in Sect. 2.5, the equivariant volume is a rational function of εi . As we
will see, two of the singular terms for the Calabi–Yau examples can be identified
with the Sasakian volume of [17, 18] and the master volume introduced in [66]. This
identification will be discussed in more detail in Sect. 5.

3.3.1 C
2/Zp

Our first non-compact example is C
2/Zp, which is a conical orbifold singularity. The

most general toric action is obtained using as fan the vectors

v1 = (1, 0), v2 = (q, p). (3.80)

The corresponding Zp action on (z1, z2) ∈ C
2 is given by

(z1, z2) →
(
e2π i Q1 z1, e

2π i Q2 z2
)

, (3.81)

where the GLSM charges are pure torsion, namely
∑

a

Qav
a ∈ Z

2, (3.82)

whose solution is, for p and q coprime, given by

Q1 = k
q

p
, Q2 = − k

p
, k = 0, . . . , p − 1. (3.83)

This is then the C
2/Zp quotient

(z1, z2) →
(
ω
q
pz1, ω

−1
p z2

)
, (3.84)

with ωp = e
2π i
p , which for |z1|2 + |z2|2 = 1 gives the Lens space L(p, q). The

equivariant volume is obtained from the general formula (3.35), and is entirely encoded
by the contribution of the single fixed point with Zp singularity, namely

VC2/Zp
(λa, εi ) = p

e
1
p (λ1(qε2−pε1)−λ2ε2)

(pε1 − qε2)ε2
. (3.85)

Expanding (3.85) in powers of λa , we obtain

VC2/Zp
(λa, εi ) = p

ε2(pε1 − qε2)
−
(

λ1

ε2
+ λ2

pε1 − qε2

)
+ O(λ2a), (3.86)
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where the constant and linear terms are nonzero, as a difference with the compact case.
They are also singular functions of ε. The constant piece is actually the Sasakian vol-
ume of the Lens space L(p, q), and the linear term is the correspondingmaster volume
introduced in [66]. In particular, for q = 1 that corresponds to the “supersymmetric”
Lens space L(p, 1), the linear term coincides precisely with (B.6) of [76].

Since there are no continuous GLSM charges, the Molien–Weyl formula is trivial

VMW
C2/Zp

(ε̄a) = 1

pε̄1ε̄2
, (3.87)

where there are no Kähler parameters t and we divide by p for the order of the discrete
group Zp. Nevertheless, it is still true that

VMW
C2/Zp

(ε̄a) = e
∑

a λa ε̄aVC2/Zp

(
λa, εi =

∑

a

vai ε̄a

)
, (3.88)

where the gauge-invariant combinations are

ε1 = ε̄1 + q ε̄2, ε2 = pε̄2. (3.89)

3.3.2 O(−p) → ˚

Let us now consider the asymptotically conical non-compact orbifold16 O(−p) → ˚,
where ˚ = ˚n+,n− is a spindle with Zn+ , Zn− singularities at its poles. This can be
thought of as a “blow-up” of the C

2/Zp of the previous section, where the apex of the
cone is replaced with the spindle ˚. In general, this is a partial resolution, but in the
special case that n+ = n− = 1, it is a complete resolution.

The GLSM charges are given by

Q = (n+,−p, n−), (3.90)

where notice that the space is a Calabi–Yau if and only if p = n+ + n−. In particular,
only for p = 2 we have a complete resolution of the CY singularity C

2/Z2. The
vectors of the fan solving the condition

3∑

a=1

Qav
a = 0, (3.91)

can be taken to be

v1 = (1, 0), v2 = (t, n−) v3 = (q, p), (3.92)

16 The non-compact examples of this section are the total space of some vector bundles over a base orbifold,
but we denote them using the more schematic notation “fibre → base”.
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Fig. 5 The fan and the polytope forO(−p) → ˚. The resolution introduces a compact facet in the polytope
that is orthogonal to v2. The corresponding segment represents the toric polytope of a spindle ˚

with t, q ∈ Z satisfying

tp − qn− = n+, (3.93)

which always exist by Bezout’s lemma. Indeed, we see that the basis (3.92) is obtained
from (3.80) by adding the vector (t, n−), which is normal to the edge representing the
spindle, as illustrated in Fig. 5.

Alternatively, the basis (3.92) can be obtained from (3.69) of the compact example,
by removing v3 and setting n− = 1, d4,1 = −p, d1,2 = n−, d2,4 = −n+ and
a+d2,4 = t , a−d2,4 = q. The condition (3.70) obeyed by a+, a− becoming the
condition (3.93) for t, q.

The equivariant volume is obtained from the general formula (3.35), and now it
receives contributions from the two orbifold fixed points, with Zn− , Zn+ singularities,
namely

VO(−p)→˚(λa, εi ) = n−
e

1
n− (λ1(tε2−n−ε1)−ε2λ2)

ε2(n−ε1 − tε2)
+ n+

e
1
n+ (λ2(qε2−pε1)+λ3(n−ε1−tε2))

(qε2 − pε1)(n−ε1 − tε2)
,

(3.94)

and expanding this in λa , we get

VO(−p)→˚(λa, εi ) = p

ε2(pε1 − qε2)
−
(

λ1

ε2
+ λ3

pε1 − qε2

)
+ O(λ2a), (3.95)

which coincides with (3.86). Thus, we see that up to linear order, the information about
the (partial) resolution iswashed out as there is no dependence on n− and n+, nor on the
Kähler parameter λ2, corresponding to the compact divisor˚. Specifically, the leading
and sub-leading terms reproduce precisely the Sasakian and GMS master volume of
the Lens space L(p, q). Notice that this behaviour is independent of the Calabi–Yau
condition p = n+ + n−. Another notable case is given by n+ = n− = p = 1, which
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corresponds to the smooth non-compact space O(−1) → P
1, namely the blow-up of

C
2 at one point17. This is not a Calabi–Yau and its link is the round S3.
We can also compare with the Molien–Weyl formula

VMW
O(−p)→˚(t, ε̄a) =

∫
dφ

2π

etφ

(ε̄1 + n+φ)(ε̄2 − pφ)(ε̄3 + n−φ)
, (3.96)

where, according to the JK prescirption, for t > 0 we take the residues for the terms
with positive charge Qi , φ = −ε̄1/n+ and φ = −ε̄3/n−. We find, as usual

VMW
O(−p)→˚

(
t = −

∑

a

Qaλa, ε̄a

)
= e

∑
a λa ε̄aVO(−p)→˚

(
λa, εi =

∑

a

vai ε̄a

)
,

(3.97)

where the gauge-invariant combinations are

t = −n+λ1 + pλ2 − n−λ3, ε1 = ε̄1 + t ε̄2 + q ε̄3, ε2 = n−ε̄2 + pε̄3.

(3.98)

3.3.3 O(−1) ⊕ O(−1) → P
1

We now consider the two small resolutions of the conifold singularity {z1z2 =
z3z4|zi ∈ C

4}, corresponding to the asymptotically conical non-compact manifold
O(−1) ⊕ O(−1) → P

1, known in the physics literature as resolved conifold. The
toric data consist in the fan

v1 = (1, 0, 0), v2 = (1, 1, 0), v3 = (1, 1, 1), v4 = (1, 0, 1), (3.99)

with GLSM charges

Q = (1,−1, 1,−1). (3.100)

The corresponding polytope is a conical non–compact polyhedron with four facets all
intersecting at the tip of the cone. Since the vectors va lie on a plane, or, equivalently∑

a Qa = 0, this defines a conical Calabi–Yau threefold. In order to use the results
of Sect. 2, we need to resolve the conifold singularity. This can be done in a standard
way by triangulating the fan as in Fig. 6. The fan is now the union of the two cones
(v1, v2, v4) and (v2, v3, v4), each associatedwith a vertexof the polytope and therefore
with a fixed point of the torus action. The original conical singularity has been replaced
by a compact two cycle, which can be visualized as a circle fibration over the segment
connecting the two vertices of the polytope. There are actually two small resolutions
related by a flop. The second one is obtained by triangulating the fan in a different

17 In this case, we have t − q = 1 and therefore we can take t = 1, q = 0, reproducing the obvious fan
v1 = (1, 0), v2 = (1, 1), v3 = (0, 1).
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Fig. 6 One of the two small resolutions of the conifold singularity and the corresponding non-compact
polytope projected on the plane where the vectors va live

way, by adding the line v1 − v3 and considering the fan which is the union of the two
cones (v1, v2, v3) and (v1, v3, v4).

The fixed point formula (2.48) reads

V(λa, εi ) =
∑

A=(a1,a2,a3)

e−ε·(λa1u
a1
A +λa2u

a2
A +λa3u

a3
A )/da1,a2,a3

da1,a2,a3

(
ε·ua1A

da1,a2,a3

)(
ε·ua2A

da1,a2,a3

)(
ε·ua3A

da1,a2,a3

) , (3.101)

where A runs over the triangular cones of the resolution,da1,a2,a3 = | det(va1 , va2 , va3)|
is the order of the orbifold singularity at the fixed point and uaA are the inward normals
to the faces of the cones as in Fig. 7.

Consider first the resolution in Fig. 6. The necessary data are

(a1, a2, a3) = (1, 2, 4), ua1A = (1,−1,−1), ua2A = (0, 1, 0), ua3A = (0, 0, 1),

(a1, a2, a3) = (2, 3, 4), ua1A = (1, 0,−1), ua2A = (−1, 1, 1), ua3A = (1,−1, 0),

Fig. 7 The contribution of a single vertex of the polytope to the fixed point formula for m = 3
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and the equivariant volume is

V(λa, εi ) = e−(ε1−ε2−ε3)λ1−ε2λ2−ε3λ4

ε2ε3(ε1 − ε2 − ε3)
+ e−(ε1−ε3)λ2−(−ε1+ε2+ε3)λ3−(ε1−ε2)λ4

(ε1 − ε2)(ε1 − ε3)(−ε1 + ε2 + ε3)
.

(3.102)

At λa = 0, we recover the Sasakian volume of the 5-dimensional base of the singular
cone (cfr (7.30) in [18])

V(0)(εi ) = V(λa = 0, εi ) = ε1

ε2ε3(ε1 − ε2)(ε1 − ε3)
, (3.103)

and the quadratic part is, up to a normalization, themaster volume introduced in [66]18

2V(2)(εi )

=
4∑

a=1

λa
(
λa−1 det(va, va+1, ε) − λa det(va−1, va+1, ε) + λa+1 det(va−1, va, ε)

)

det(va−1, va, ε) det(va, va+1, ε)
.

(3.104)

Things work similarly for the second resolution

(a1, a2, a3) = (1, 2, 3), ua1A = (1,−1, 0), ua2A = (0, 1,−1), ua3A = (0, 0, 1),

(a1, a2, a3) = (1, 3, 4), ua1A = (1, 0,−1), ua2A = (0, 1, 0), ua3A = (0,−1, 1).

(3.105)

The equivariant volume now reads

V(λa, εi ) = e−(ε1−ε2)λ1−(ε2−ε3)λ2−ε3λ3

ε3(ε1 − ε2)(ε2 − ε3)
+ e−(ε1−ε3)λ1−ε2λ3−(ε3−ε2)λ4

ε2(ε1 − ε3)(ε3 − ε2)
, (3.106)

which is different from (3.102). The difference between the equivariant volumes for
the two resolutions starts at order three in the Kähler parameters

V

∣∣∣
res2

− V

∣∣∣
res1

= (λ1 − λ2 + λ3 − λ4)
3

6
+ O(λ4a). (3.107)

In particular, Eqs. (3.103) and (3.104) are valid for both resolutions. We see that the
first terms in the λa expansion of V, which are singular in εi , capture the geometry
of the asymptotic singular cone and are therefore independent of the resolution. The
difference (3.107) is instead a power series in λa with coefficients which are regular
polynomials in εi , and this reflects the fact that the different flops differ by a compact
cycle.

18 In this formula, we identify cyclically v5 = v1.

123



Equivariant localization and holography Page 39 of 79 15

It is also interesting to compare with the result of the Molien–Weyl formula (2.55)
which, using Q = (1,−1, 1,−1), reads

VMW (t, ε̄) =
∫

dφ

2π i

etφ

(ε̄1 + φ)(−ε̄2 + φ)(ε̄3 + φ)(−ε̄4 + φ)
. (3.108)

We need to specify a prescription for the contour and the residues to take, which
depends on the sign of t and the choice of resolution. The JK prescription requires
to take the residues where the charge Q is positive for t > 0 (first resolution) and
minus the residues where the charge Q is negative for t < 0 (second resolution). For
example, for t > 0 we take the two residues φ = −ε̄1 and φ = −ε̄3, obtaining

VMW (t, ε̄) = e−t ε̄3

(ε̄1 − ε̄3)(ε̄2 + ε̄3)(ε̄3 + ε̄4)
− e−t ε̄1

(ε̄1 − ε̄3)(ε̄1 + ε̄2)(ε̄1 + ε̄4)
,

(3.109)

while for t < 0 we take (minus) the residues associated with negative charge, φ = ε̄2
and φ = ε̄4. It is easy to check that in both cases

VMW

(
t = −

∑

a

λaQa, ε̄a

) ∣∣∣t>0
t<0

= e
∑

a λa ε̄aV

(
λa, εi =

∑

a

vai ε̄a

) ∣∣∣res1
res2

,

(3.110)

where the gauge-invariant variables explicitly read

t = −λ1 + λ2 − λ3 + λ4, ε1 = ε̄1 + ε̄2 + ε̄3 + ε̄4, ε2 = ε̄2 + ε̄3, ε3 = ε̄3 + ε̄4.

(3.111)

4 Integrating the anomaly polynomial on orbifolds

In this section, we will consider field theories associated with D3 and M5 branes
and we will show how the formalism of equivariant integration can be employed to
determine the anomaly polynomials of lower-dimensional theories, obtained compact-
ifying the original theories on orbifolds. For theories compactified on the spindle, these
results were obtained in [33, 35–37], but the equivariant formalism allows for uniform
derivations for various branes wrapped on different orbifolds. In the case of theories
compactified on manifolds, the method of integration of the anomaly polynomial is
well known and is reviewed in [77], towhichwe refer formore details. In this reference
is also discussed the extension in which background gauge fields for the isometries of
the compactification manifolds are turned on, and the relation to equivariant integra-
tion is spelled out. In a SCFT in (even) dimension d, the anomaly polynomial can be
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thought of as a formal (d+2)-formon an auxiliary (d+2)-dimensional space Zd+2 that
is the total space of a Mp fibration over a (d+2−p)-dimensional base space Bd+2−p,

Mp ↪→ Zd+2 → Bd+2−p, (4.1)

and integrating it on Mp gives a (d + 2 − p)-form, that is the anomaly polynomial of
a (d− p)-dimensional SCFT. In [33], an extension of this construction to the case that
M2 = ˚ is a spindle has been proposed and succesfully matched to the dual super-
gravity solution. More generally, here we will assume thatMp (and hence, generically,
also Zd+2 ) is an orbifold.

The anomaly polynomial is a linear combination of characteristic classes of vector
bundles on Zd+2, which (using the splitting principle) can always be decomposed in
terms of first Chern classes of holomorphic line (orbi-)bundles on Zd+2. Specifically,
for anyU (1) symmetry acting onMp, the latter can be fibered over Bd+2−p by gauging
thisU (1)with a connection on a line bundleJ over Bd+2−p, denoted AJ . WhenM2m
is a toric orbifold, this consists in replacing the occurrences of each term dφi with dφi+
AJi , where Ji are auxiliary line bundles with c1(Ji ) = [FJi

]
/2π ∈ H2(Bd+2−p, Z)

and FJi = dAJi . This recipe is formally equivalent to consider equivariant first
Chern classes, as follows. Starting from the line bundles La with equivariant first
Chern classes cT

1 (La) discussed in Sect. 2.1, one can make the replacement

cT

1 (La) = c1(La) + 2πμi
aεi �→ c1(La) = c1(La) + 2πμi

ac1(Ji ). (4.2)

One can then use these c1(La) as a basis to parameterize the characteristic classes
appearing in the anomaly polynomials.

4.1 D3 branes on the spindle

For 4-dimensional SCFTs, the anomaly polynomial is a 6-form defined on an six-
dimensional orbifold Z6 that we take to be the total space of a ˚ fibration over an
auxiliary space B4,

˚ ↪→ Z6 → B4. (4.3)

Neglecting terms that are sub-leading in the large N limit the six-form anomaly poly-
nomial is given by

A4d = 1

6

∑

I ,J ,K

cI J K c1(FI )c1(FJ )c1(FK ), (4.4)

where cI J K are the cubic ’t Hooft anomaly coefficients cI J K =Tr(FI FJ FK ) and FI

denote the generators of global U (1) symmetries. The c1(FI ) are formal first Chern
classes associated with these U (1)I symmetries that can be decomposed as19

19 To avoid clumsiness in the formulas,we systematically use theEinstein’s notation for the indices a, b, . . .
in this section.
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c1(FI ) = �I c1
(
F2d
R

)− paI c1(La), c1(La) = c1(La) + 2πμac1(J ), (4.5)

where paI ∈ Z are “fluxes stuck at the fixed points”, La are the line bundles discussed
in Sect. 3.2 and c1(F2d

R ) ∈ H2(B4, Z) is the first Chern class of the 2d R-symmetry
line bundle.

The anomaly polynomial of the two-dimensional theory is obtained integrating the
anomaly polynomial of the four-dimensional theory on the spindle,

A2d =
∫

˚
A4d, (4.6)

and is a four-form on B4. Substituting (4.5) in (4.4), it is immediate to see that this is
exactly equivalent to the equivariant integral on the spindle

F(�I , ε) = 1

6

∑

I ,J ,K

cI J K

∫

˚

(
�I − paI c

T

1 (La)
)(

�J − paJ c
T

1 (La)
)(

�K − paK c
T

1 (La)
)
,

(4.7)

where we have expressed the resulting four-form as a function of the variables �I

and the equivariant parameter ε. This can also be understood as allowing the trial 2d
R-symmetry to mix with theU (1) symmetry of the spindle, formally setting c1(J ) =
εc1(F2d

R ) (thus “undoing” the replacement (4.2)), and extracting the coefficient of the
four-form A2d = F(�I , ε)c1(F2d

R )2. Expanding the integrand we obtain20

F(�I , ε) = 1

6

∑

I ,J ,K

cI J K p
a
I

[
−3�J�K Da + 3pbJ�K Dab − pbJp

c
K Dabc

]
, (4.8)

with the equivariant intersection numbers

Da =
∫

˚
cT

1 (La), Dab =
∫

˚
cT

1 (La)c
T

1 (Lb), Dabc =
∫

˚
cT

1 (La)c
T

1 (Lb)c
T

1 (Lc),

(4.9)

whose nonzero values are given in (3.17).Alternatively, the same result can be obtained
by evaluating the equivariant integral (4.7) using the fixed point theorem (2.37),
explaining the observation made in [35]. Specifically, we get

F(�I , ε) = F1(�I , ε) + F2(�I , ε), (4.10)

where, in terms of the trial 4d central charge

a4d(�I ) = 9

32

∑

I ,J ,K

cI J K�I�J�K , (4.11)

20 We use that cI J K are totally symmetric to write (4.8).
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we have

Fa(�I , ε) = (−1)a
16

27ε
a4d(�

a
I ), �a

I ≡ �I − (−1)apaI
ε

na
. (4.12)

Notice that the terms singular in ε (cubic in the �I ) cancels out, as expected.
The expression above depends on the paI , but it can be rewritten in terms of “physical

fluxes” nI , defined as the integrals of the flavour line bundles [77]

c1(EI ) ≡ −paI c1(La), (4.13)

namely

nI ≡ −
∫

˚
c1(EI ) = p1I

n1
+ p2I

n2
. (4.14)

Recall that in general supersymmetry can be preserved on the spindle by coupling
with a background R-symmetry gauge field with first Chern class

c1(ER) = −σ 1c1(L1) − σ 2c1(L2), (4.15)

where σ a = ±1, corresponding to either twist or anti-twist [41]. Since the supercharge
should couple to 2c1(F2d

R ) + c1(ER) we must have

∑

I

(
�I c1

(
F2d
R

)+ c1(EI )
)

= 2c1
(
F2d
R

)+ c1(ER), (4.16)

implying the constraints

∑

I

�I = 2,
∑

I

paI = σ a . (4.17)

As a consequence, the physical fluxes obey

∑

I

nI = σ 1

n1
+ σ 2

n2
(4.18)

and we can introduce new variables

ϕI ≡ �I + 1

2

(
p1I
n1

− p2I
n2

)
ε,

∑

I

ϕI − 1

2

(
σ 1

n1
− σ 2

n2

)
ε = 2. (4.19)

In terms of these variables, the gravitational blocks depend only on the physical fluxes,
namely

Fa(ϕI , ε) = (−1)a
16

27ε
a4d
(
ϕI − (−1)a nI

2 ε
)
, (4.20)
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yielding

F(ϕI , ε) = − 1

24

∑

I ,J ,K

cI J KnI
[
2ϕJϕK + nJnK ε2

]
, (4.21)

in agreement with [40].
Notice that (4.21) is much simpler than the analogous expression in eq. (5.9) of

[35] and is therefore the most convenient form to be used in the extremization. The
reason is that in the variables ϕI the expression is manifestly independent of the
redundant parameters r I0 used in the construction in [35], as we now explain. In this
reference, one starts from the background gauge fields AI = ρI (y)dφ inherited from
the supergravity solution, where y, φ are coordinates on the spindle. This is lifted to Z6
by the gauging procedure dϕ �→ dϕ + AJ , which leads to the connection one-forms
AI = ρI (y)(dφ + AJ ), where dAJ = 2πc1(J ), so that

dAI = ρ′
I (y)(dφ + AJ ) + 2πρI (y)c1(J ). (4.22)

Comparing with (4.5) leads us to identify ρI (y) precisely with our moment maps,
namely

ρI (y) = −2πpaIμa . (4.23)

In our notation,21 the functions ρI (y) satisfy [35]

ρI (y1) = 1

2
nI − 1

4
r I0

(
1

n1
+ 1

n2

)
, ρI (y2) = −1

2
nI − 1

4
r I0

(
1

n1
+ 1

n2

)
,

(4.24)

where
∑

I r
I
0 = 2, while using (3.12) we have

2πpaIμa |yb = (−1)b
pbI
nb

, (4.25)

implying that we must identify

r I0
2

(
1

n1
+ 1

n2

)
= −p1I

n1
+ p2I

n2
. (4.26)

Summing over I , we then get

− σ 1

n1
+ σ 2

n2
=
∑

I

(
−p1I
n1

+ p2I
n2

)
= 1

n1
+ 1

n2
, (4.27)

21 We identify their pi with our −nI .
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consistently with σ 1 = −1, σ 2 = 1, corresponding to the anti-twist [35]. This shows
that the constants r I0 parameterize the redundancy in the relation between the physical
fluxes nI and the paI . However, notice that (4.26) implies that r I0 ∈ Q.

4.2 M5 branes on the spindle

The anomaly polynomial of M5 brane 6-dimensional SCFTs is an eight-form defined
on an eight-dimensional orbifold Z8 that we take to be the total space of a ˚ fibration
over an auxiliary space B6,

˚ ↪→ Z8 → B6. (4.28)

Neglecting terms that are sub-leading in the large N limit, the eight-form anomaly
polynomial is given by:

A6d = N 3

24
p2(R) = N 3

24
c1(F1)

2c1(F2)
2, (4.29)

where p2(R) is the second Pontryagin class of the SO(5)R normal bundle to the M5
brane in the eleven-dimensional spacetime. The FI , I = 1, 2 are the generators of
U (1)1 ×U (1)2 ⊂ SO(5)R global symmetries that are preserved when the M5 brane
is compactified on the spindle [37]. The c1(FI ) are the first Chern classes of the line
bundles on Z8 associated with these U (1)I symmetries and are decomposed as

c1(FI ) = �I c1
(
F4d
R

)− paI c1(La). (4.30)

The anomaly polynomial of the four-dimensional theory is obtained integrating the
anomaly polynomial the six-dimensional theory on the spindle,

A4d =
∫

˚
A6d, (4.31)

and is a six-form on B6. We now substitute (4.30) in (4.29), where c1(La) is as in
Eq. (4.5) and c1(F4d

R ) ∈ H2(B6, Z) is the first Chern class of the 4d R-symmetry
line bundle. Formally setting c1(J ) = εc1(F4d

R ) and extracting the coefficient of the
six-form A4d = F(�I , ε)c1(F4d

R )3 lead to the equivariant integral

F(�I , ε) = N 3

24

∫

˚

(
�1 − pa1c

T

1 (La)
)2(

�2 − pa2c
T

1 (La)
)2

, (4.32)

which may be expanded as

F(�I , ε) = N 3

24

[− 2�1�2
(
�1p

a
2 + �2p

a
1

)
Da + (�2

1p
a
2p

b
2 + �2

2p
a
1p

b
1 + 4�1�2p

a
1p

b
2

)
Dab

− 2pa1
(
�1p

b
2 + �2p

b
1

)
pc2Dabc + pa1p

b
1p

c
2p

d
2Dabcd

]
, (4.33)
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where the nonzero equivariant intersection numbers are given in (3.17). Alternatively,
the same result can be obtained evaluating the equivariant integral (4.32) using the
fixed point theorem (2.37). Specifically, we get

F(�I , ε) = F1(�I , ε) + F2(�I , ε), (4.34)

where, in terms of the “trial 6d central charge”22

a6d(�I ) ≡ N 3

24
�2

1�
2
2, (4.35)

we have

Fa(�I , ε) = (−1)a
1

ε
a6d(�

a
I ), �a

I ≡ �I − (−1)apaI
ε

na
. (4.36)

Notice that the terms singular in ε (quartic in the �I ) cancel out, as expected. The
rest of the discussion proceeds exactly as for the D3 branes in the previous subsection.
In particular, supersymmetry implies that the constraints (4.17) hold and the physical
fluxes nI obey (4.18). In terms of the variables ϕI (4.19), the fixed point contributions
read:

Fa(ϕI , ε) = (−1)a
1

ε
a6d
(
ϕI − (−1)a nI

2 ε
)
, (4.37)

which give the very simple expression

F(ϕI , ε) = −N 3

48
(ϕ1n2 + ϕ2n1)(4ϕ1ϕ2 + n1n2ε

2), (4.38)

in agreement with [40].
Let us briefly compare the results above with the corresponding calculation in [37].

Again, the functions ρI (y) used in [37] should be identified with our moment maps as
ρI (y) = −2πpaIμa , and the resulting paI are easily obtained from the expressions in
eq. (A.2) of [37]. However, due to the supergravity coordinates and the specific gauge
used in [37], these are quadratic irrational functions of the spindle parameters and
the physical fluxes and do not depend on any free parameter. One can check that the
constraint (4.17) on the paI is respected, with σ 1 = −1 and σ 2 = −1, consistently with
the fact that the discussion in [37] concerns the twist case.23 Notice that the form of
(4.38) is much simpler than the corresponding function computed [37]. In particular,
in (4.38) there are no linear and cubic terms in ε.

22 There is no notion of trial central charge in a 6d SCFT, and however,we adopt this conventional definition,
in analogy with the 4d case.
23 We identify their Pi with our −nI .
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4.3 M5 branes on 4d orbifolds

We now consider M5 branes compactified on a four-dimensional toric orbifold24 as
discussed in Sect. 3.2. The eight-form anomaly polynomial (4.29) is defined on an
eight-dimensional orbifold Z8 that we take to be the total space of a M4 fibration over
an auxiliary space B4,

M4 ↪→ Z8 → B4, (4.39)

and integrating it on M4 gives a four-form, that is the anomaly polynomial of a 2d
SCFT:

A2d =
∫

M4

A6d. (4.40)

The c1(FI ) now decompose as

c1(FI ) = �I c1
(
F2d
R

)− paI c1(La), c1(La) = c1(La) + 2πμi
ac1(Ji ), (4.41)

where J1,J2 are the auxiliary line bundles with c1(Ji ) ∈ H2(Z4, Z). The La , a =
1, . . . , d are the line bundles discussed in Sect. 3.2 and c1(F2d

R ) ∈ H2(Z4, Z) is the
first Chern class of the 2d R-symmetry line bundle.

Substituting (4.41) in (4.29) and setting c1(Ji ) = εi c1(F2d
R ) lead to the equivariant

integral

F(�I , εi ) = N 3

24

∫

M4

(
�1 − pa1c

T

1 (La)
)2(

�2 − pa2c
T

1 (La)
)2

, (4.42)

which has exactly the same form of (4.32)! Indeed, expanding it, this gives again
(4.33), where now Da = 0 and the nonzero equivariant intersection numbers can be
read off from (3.29), (3.31), and (3.33), respectively. On the other hand, employing
the fixed point theorem, we can write (4.42) as a sum of contributions over the fixed
points, namely25

F(�I , εi ) = N 3

24

n∑

a=1

1

da,a+1ε
a
1 εa2

(
�1 − pa1ε

a
1 − pa+1

1 εa2

)2 (
�2 − pa2ε

a
1 − pa+1

2 εa2

)2
,

(4.43)

in agreement with the formula conjectured in [51]. In terms of the gravitational blocks,
we have

F(�I , εi ) =
n∑

a=1

Fa(�I , εi ), Fa(�I , εi ) = 1

da,a+1ε
a
1 εa2

a6d(�
a
I ), (4.44)

24 The M5 brane anomaly polynomial in an example of this type of compactification was studied in [50].
25 Notice that there is no summation on a in the expressions inside the parenthesis.
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with

�a
I = �I − paI ε

a
1 − pa+1

I εa2 . (4.45)

The physical fluxes are now defined by integrating the first Chern classes of the flavour
line bundles, c1(EI ) = −paI c1(La), over the various divisors, namely

qaI ≡ −
∫

Da

c1(EI ) = pbI Dab. (4.46)

However, recall that this relation cannot be inverted and therefore it is not manifest
that (4.43) depends only on the physical fluxes. That this is true was proved in [51],
as we now recall, translating the arguments to our current notation.26 From (3.21), it
immediately follows that

d∑

a=1

vaDab = 0 ⇒
d∑

a=1

vaqaI = 0, (4.47)

therefore, only d−2 physical fluxes are linearly independent. In particular, the “gauge”
transformation

paI → p̃aI = paI + det(λI , v
a), (4.48)

where λI ∈ R
2 are arbitrary two-dimensional constant vectors,27 leaves the physical

fluxes qaI invariant. In order to discuss how this transformation affects (4.43), we will
assume,28 following [51], that supersymmetry requires the background R-symmetry
gauge field to have first Chern class

c1(ER) = −
d∑

a=1

σ ac1(La), (4.49)

where σ a = ±1, generalizing the twist and anti-twist for the spindle [41]. This corre-
sponds to the following constraints

�1 + �2 = 2 + det(W , ε), pa1 + pa2 = σ a + det(W , va), (4.50)

26 Recall that in this paper we denote the non-primitive, “long”, vectors of the fan by va , the corresponding
divisors as Da , and their intersection matrix as Dab . While in [51] these were denoted by v̂a , D̂a , and D̂a,b ,
respectively. Similarly, (paI )here = (map

a
I )there and (qaI )here = (qaI /ma)there.

27 Notice that these λI have nothing to do with the Kähler parameters λa appearing elsewhere.
28 This holds in all known examples of supergravity solution corresponding to M5 branes wrapped on
four-dimensional toric orbifolds [50–53]. It should be possible to prove this, along the lines of the analysis
in [41].
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where ε = (ε1, ε2) and W ∈ R
2 is a two-dimensional constant vector transforming

as

W → W̃ = W + λ1 + λ2 (4.51)

under (4.48). Performing this transformation in (4.43) implies that the variables �a
I

change as

�a
I → �I − p̃aI ε

a
1 − p̃a+1

I εa2 = �I − paI ε
a
1 − pa+1

I εa2 − det(λI , ε), (4.52)

thus

F(�I , εi ) → F(�̃I , εi ), �̃I ≡ �I − det(λI , ε), (4.53)

where �̃I obey the same constraint as the �I , namely

�̃1 + �̃2 = 2 + det(W̃ , ε) − det(λ1, ε) − det(λ2, ε) = 2 + det(W , ε). (4.54)

This is exactly the same function as the initial one, completing the proof.

5 Non-compact Calabi–Yau singularities

The geometry of many type II and M theory solutions arising from branes can be
modelled on singular Calabi–Yau cones. In this section, we consider the equivariant
volume of partial resolutions of non-compact (asymptotically conical) Calabi–Yau
singularities and provide many applications to holography.

Consider a non-compact toric Calabi–Yau X of complex dimension m defined by
a fan with primitive vectors va , a = 1, . . . , d. The Calabi–Yau condition requires the
vectors va to lie on a plane. We choose an SL(m; Z) basis where the first component
of all the vectors va is one

va = (1, wa) wa ∈ Z
m−1. (5.1)

Notice that (2.54) implies that the GLSM charges QA
a are traceless

d∑

a=1

QA
a = 0. (5.2)

We assume that X is the (partial) resolution of a Calabi–Yau conical singularity, as
in some of the examples in Sect. 3.3. This means that the convex rational polyhedron

P = {la(y) = vai yi − λa ≥ 0 a = 1, . . . , d}, (5.3)

is asymptotically a cone. More precisely, we assume that the large yi approximation
of the polyhedron
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P ′ = {lak (y) = v
ak
i yi ≥ 0 k = 1, . . . , d ′}, (5.4)

is a non-compact cone with a single vertex in y = 0 and d ′ facets. Notice that only
the non-compact facets of P are relevant for the asymptotic behaviour and, in general
d ′ ≤ d. The vectors vak , k = 1, . . . , d ′, define the fan of the singular cone Xsing of
which X is a resolution. The fan of Xsing consists of a single cone, and it corresponds
to a singularity which is, in general, not of orbifold type.

The resolution replaces the singularity ofP ′ with compact cycles of real dimension
2m − 2, corresponding to the bounded facets of P , as well as sub-cycles of smaller
dimensions.29 We assume that P has only orbifold singularities. From the dual point
of view, the fan of X is the union of m-dimensional cones, each corresponding to a
vertex of P and therefore to a fixed point. Each cone is specified by a choice of m
adjacent vectors (va1 , . . . , vam ). We use the notation A = (a1, . . . , am) to identify the
set of such cones and we assume that there are n of them.

Using the results of Sect. 2.3, the equivariant volume is given by

V(λa, εi ) =
∑

A=(ai ,...,am )

e−ε·(λa1u
a1
A +...+λam uamA )/da1,...,am

da1,...,am

(
ε·ua1A

da1,...,am

)
. . .
(

ε·uamA
da1,...,am

) , (5.5)

where A runs over the m-dimensional cones of the resolution, da1,...,am =
| det(va1, , . . . , vam )|, and uaA are the inward normal to the facets of A defined in
Sect. 2.3.

5.1 GK geometry and the GMSmaster volume

In this section, we explore some general properties of the equivariant volume for non-
compact Calabi–Yau singularities and its relation with other volumes appearing in
the literature in similar contexts, like the Sasakian volume of [17, 18] and the master
volume introduced in [66].

Consider the formal expansion

V(λa, εi ) =
∞∑

k=0

V(k)(λa, εi ), (5.6)

whereV(k)(λa, εi ) is homogeneous of degree k in λa .We start by observing some gen-
eral properties of the homogeneous quantitiesV(k)(λa, εi ). From (2.35), by matching
degrees in λa , we have

d∑

a=1

vai
∂V(k)

∂λa
= −εiV

(k−1). (5.7)

29 The example of the conifold discussed in Sect. 3.3.3 is special in that there are no compact four-cycles.
This is due to the fact we just subdivide the fan without introducing new vectors.
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By considering the case i = 1 and the fact that, for Calabi–Yaus, va1 = 1, we also have

d∑

a=1

∂V(k)

∂λa
= −ε1V

(k−1). (5.8)

We can combine (5.7) and (5.8) into

d∑

a=1

∂V(k)

∂λa
(ε1v

a
i − εi ) = 0. (5.9)

It follows from this equation that V(k) are invariant under the gauge transformation

λa → λa +
m∑

i=1

γi (ε1v
a
i − εi ), (5.10)

which allows to eliminate m − 130 unphysical λa that do not correspond to non-trivial
co-homology classes.

In the compact case, the terms with k < m in the expansion (5.6) are identically
zero. Indeed they can be written as in (2.31) and they are integrals of forms of degree
less than 2m. As we already discussed in Sect. 2.5, in the non-compact case this is not
true and also the terms with k < m are not vanishing. They are rational functions of
ε encoding some interesting geometrical information that we will now elucidate.

It is important to observe thatV(k)(λa, εi )with k < m only depends on the d ′ Kähler
parameters λa associated with the singular fan and the non-compact directions. The
Kähler parameter λa associatedwith the compact directions starts contributing at order
m in the expansion. This can be understood as follows. The compactKähler parameters
are associated with the bounded facets of the original polytope. We can always modify
the polytope by adding new facets and making it compact. We can also assume that
the bounded facets of the original polytope are not modified by this operation. The
compactKähler parameter enters in the fixed point formula only in the terms associated
with the vertices of the bounded facets and, therefore, their contribution to V for the
old and new polytope is the same. Since the new polytope is compact, this contribution
must start at order m.

The term of zero degree is simply

V(0, εi ) = 1

(2π)m

∫

X
e−H ωm

m! =
∫

P ′
e−εi yi dy1 . . . dym (5.11)

and it computes the equivariant volume of the singular Calabi–Yau cone Xsing, or
equivalently, the regularized volume of the polyhedron P ′. At λa = 0, the metric of
Xsing becomes conical

ds2(X) = dr2 + r2ds2(Y ). (5.12)

30 i = 1 is trivial.
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A choice of Kähler metric exhibits Xsing as a cone over a Sasakian manifold Y of
real dimension 2m − 1. As shows in [17, 18] there is family of Sasakian metrics
parameterized by the Reeb vector ξ = εi∂φi . They correspond to different choices of

the radial coordinate r2
2 = H , where H = εi yi is the Hamiltonian for ξ . Expression

(5.11) then reduces, up to a numerical factor, to the Sasakian volume of Y [17, 18]

vol[Y ](εi ) = 2πm

(m − 1)!V(0, εi ) . (5.13)

The specialization of (5.5) to λa = 0 in the smooth case

V(0, εi ) =
∑

A=(ai ,...,am )

1

da1,...,am

(
ε·ua1A

da1,...,am

)
. . .
(

ε·uamA
da1,...,am

) , (5.14)

was derived indeed in [18].
The term of degree m − 1 is also interesting. It coincides, up to a numerical factor,

with the master volume introduced in [66]. To define the master volume, one foliates
the 2m − 1 base Y as

ds2(Y ) = η2 + ds22m−2, (5.15)

where η is the dual one form to ξ (iξ η = 1) and the metric ds22m−2 is conformally
Kähler with Kähler form ωB . We turn on the d ′ Kähler parameters λa associated with
the non-compact facets of the polyhedron by letting ωB vary [66]

[ωB]
2π

= −
∑

a

λaca, (5.16)

where ca are the co-homology classes that uplift to c1(La) on the Calabi–Yau Xsing.
Notice that [dη] = 2π

∑
a ca [66]. The master volume is then defined as

V(λa, εi ) =
∫

Y
η ∧ ωm−1

B

(m − 1)! = (−2π)m−1

(m − 1)!
∑

a1,...,am−1

λa1 . . . λam−1

∫

Y
η ∧ ca1 ∧ · · · ∧ cam−1 . (5.17)

For example, for m = 3, the master volume reads [66]

V(λa, εi ) = (2π)3

2!
d ′∑

a=1

λa
(
λa−1 det(va, va+1, ε) − λa det(va−1, va+1, ε) + λa+1 det(va−1, va, ε)

)

det(va−1, va, ε) det(va, va+1, ε)

(5.18)

where the vectors va with a = 1, . . . , d ′ run over the fan of the singular cone Xsing.
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Notice that, in the original approach of [66], the master volume is defined by
considering conical non-Kähler metrics on X . In our approach instead, we give up
the conical condition on X and we use a Kähler metric. Despite the difference of
approaches, we can recover the master volume as the term of degree m − 1 in the
equivariant volume

V(λa, εi ) = (2π)mV(m−1)(λa, εi ) , (5.19)

where we stress that

V(m−1) = 1

(m − 1)!
d ′∑

a1,...,am−1=1

∂m−1V

∂λa1 . . . ∂λam−1

∣∣∣
λ=0

λa1 . . . λam−1, (5.20)

is a function only of the Kähler parameters λa , a = 1, . . . , d ′, associated with the
fan of the singular cone. The identity (5.19) can be checked by direct computation.
The case m = 3 is explicitly worked out in section B. By differentiating m − 1 times
equation (2.35) for i = 1

d∑

a1=1

∂V

∂λa1
= −ε1V, (5.21)

setting λa = 0 and multiplying by λa2 . . . λam , we can also rewrite (5.19) as

V(λa, εi ) = − (2π)m

ε1(m − 1)!
d ′∑

a1,...,am=1

∂mV

∂λa1 . . . ∂λam

∣∣∣
λ=0

λa1 . . . λam−1 , (5.22)

where the analogy with (5.17) is manifest.
As observed in [66], the master volume reduces to the Sasakian volume when all

the Kähler parameters are equal. We can understand this statement in our formalism
as follows

V(0)(εi ) = (−1)m−1

εm−1
1

d ′∑

a1,...,am−1=1

∂nV

∂λa1 . . . ∂λam−1

∣∣∣
λ=0

= (m − 1)!
(−ε1)m−1(2π)m

V(λa = 1, εi ), (5.23)

where we used (2.36) with all ik = 1 and λa = 0 and Eq. (5.19).
The master volume plays an important role in supergravity solutions based on GK

geometry [25, 66]. In this context, the so-called supersymmetric action

SSUSY = −
d∑

a=1

∂V
∂λa

, (5.24)
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plays an even more important role. It is the object that needs to be extremized in order
to find a solution of the equation of motions. Using (5.8) we find

SSUSY = ε1(2π)mV(m−2)(λa, εi ) . (5.25)

5.2 Gravitational blocks from the equivariant volume

In this section, we use the equivariant volume to study type II and M theory branes
compactified on a spindle. Supersymmetry is preserved either with a topological twist
or an antitwist [41]. From the field theory point of view, we consider the case where
a superconformal field theory compactified on a spindle flows in the IR to a super-
conformal quantum mechanics or to a two-dimensional superconformal field theory.
The corresponding supergravity solutions describing the IR limit have a geometry
AdS2 × Z or AdS3 × Z , respectively, and can be interpreted as the near-horizon
geometry of black holes or black strings.

The local geometry of such brane systems can be modelled in terms of CYm-folds.
We can describe many D-branes and M-branes configurations in terms of a formal
fibration

CYm ↪→ CYm+1 → ˚, (5.26)

where the CYm encode the geometry and the information about the original higher-
dimensional CFT.

It is often useful to define an off-shell free energy F(�I , ε), or extremal function,31

depending on chemical potentials �I for the continuous global symmetries of the
higher-dimensional CFT and an equivariant parameter ε for the rotation along the
spindle, whose extremization gives the entropy of the black hole or the central charge
of the two-dimensional CFT. All these extremal functions should arise by evaluating
the supergravity action on supersymmetric solutions that obey a subset of the equations
of motion. The extremization with respect to �I and ε is then equivalent to imposing
the remaining equations of motion. Explicit examples of this construction are given in
[17, 66]. Extremal functions of known black holes and black strings can be expressed
in terms of gravitational blocks [54]. The general form of the extremal functions for
branes compactified on a spindle in this context was proposed in [40], covering also
cases where the explicit computation of the supergravity action from first principles
is still missing. The characteristic form of the off-shell free energy F is given by a
gluing

F(�I , ε) = 1

ε

(F(�+
I ) ± F(�−

I )
)

(5.27)

where the blockF encodes some universal properties of the higher-dimensional SCFT
and it is related to the geometry of CYm , and the gluing depends on the details of the

31 Often also called entropy functions, even if the related physical observable is not the entropy of a black
hole.
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fibration (5.26). For D3 and M5 branes, F is related to the central charge of the
higher-dimensional CFT. For other types of branes, F is the sphere-free energy of the
higher-dimensional CFT at large N [40, 54].

In this section, we focus on the gravitational interpretation of (5.27). In the case
of M2 and D3 branes, the off-shell free energy can be expressed in terms of the
supersymmetric action in the formalism ofGKgeometry and the decomposition (5.27)
was explicitly proved in [55] from the gravitational point of view. We will show how
to recover and reinterpret this results in terms of the equivariant volume. In the case
of D2, D4 and M5 brane systems, we cannot apply the GK formalism but we will
propose a possible and intriguing extension.

5.2.1 The geometry of CYm fibred over the spindle

As a preliminary, in this section we derive a general expression for the equivariant
volume of the fibration (5.26). Consider a CY cone m-fold defined by m-dimensional
vectors va , with va1 = 1, and the (m + 1)-dimensional toric geometry specified by the
fan [55]

Va = (0, va), V+ = (n+, w+), V− = (−σn−, w−), (5.28)

where σ = ±1. This is a fibration over a spindle WP
1[n+,n−] specified by the vectors

w±. Notice that the (m + 1)-dimensional geometry is still a Calabi–Yau if the first
component of the vectors w± is one, w±1 = 1, which we will assume. As shown in
[55], this geometry explicitly appears in the gravity solutions of M2 and D3-branes
compactified on a spindle with

w+ = (1,−a+ �p), w− = (1,−σa− �p), (5.29)

where a−n+ + a+n− = 1 and σ = ±1 and �p is a (m − 1)-dimensional vector. In this
context, supersymmetry is preserved with a twist (σ = 1) or an anti-twist (σ = −1).
Notice also that, in the anti-twist case, the toric diagram is not convex and it does
not strictly define a toric geometry. We will nevertheless proceed also in this case,
considering it as an extrapolation from the twist case.

The fixed point formula is

VCYm+1(λa, εi ) =
∑

(a1,...,am+1)∈A

e−ε(m+1)·(∑m+1
i=1 λai U

ai )/da1,...,am+1

da1,...,am+1

∏m+1
i=1

(
ε(m+1)·Uai

da1,...,am+1

) , (5.30)

where A runs over the polyhedral cones of a resolution and ε(m+1) = (ε0, ε1, . . . , εm).
For ease of notation, we drop the label A from the normal vectorsUa . We can choose
a resolution for the CYm by subdividing the m-dimensional fan. We then obtain a
resolution of the CYm+1 by considering polyhedra where V+ and V− are added to the
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m-dimensional cones (V a1 , . . . , V am ). Let’s assume also da1,...,am = 1 for the CYm .
The inward normals to the tetrahedra are

(V a1 , . . . , V am , V+) → Uai = (−uai · w+, n+uai ), U+ = (1, 0, . . . , 0),

(V a1 , . . . , V am , V−) → Uai = −(−uai · w−,−σn−uai ), U− = (−1, 0, . . . , 0),

(5.31)

where uai are the inward normals to the CYm cones, we identified am+1 = ± and
σ = −1 is obtained by analytic continuation.

The contribution of the tetrahedra with vertex V+ is

∑

(a1,...,a3)∈A

e−(ε(m)−ε0w+/n+)·(∑m
i=1 λai u

ai )−ε0λ+/n+

ε0
∏m

i=1

(
ε(m) − ε0w+

n+

)
· uai

= 1

ε0
VCYm

(
λa + ε0

n+ε1 − ε0
λ+, ε(m) − ε0w+

n+

)
,

(5.32)

where ε(m) = (ε1, . . . , εm), and we used da1,...,am+1 = n+ and the identity among
normals

∑
i u

ai = (1, 0, . . . , 0).32

The contribution of the tetrahedra of V− is obtained by replacing w+ with w−, n+
with −σn− and λ4 ≡ λ+ with a new variable λ−. The signs in Uai are compensated
by da1,a2,a3,a4 = −(−σn−) (we work for positive σ and analytically continue the
result), which also brings an overall extra sign.

The final result is

VCYm+1 = 1

ε0
VCYm

(
λ+
a , ε+

i

)− 1

ε0
VCYm

(
λ−
a , ε−

i

)
(5.33)

where

ε+ = ε(m) − ε0w+
n+

, λ+
a = λa + ε0

n+ε1 − ε0
λ+,

ε− = ε(m) + ε0w−
σn−

, λ−
a = λa − ε0

σn−ε1 + ε0
λ−,

(5.34)

and we see that VCYm+1 can be obtained by gluing two copies of VCYm .

32 Consider for simplicity m = 3. Assuming an order such that det(v1, v2, v3) = 1,
∑

i u
ai = v2 ∧

v3 + v3 ∧ v1 + v1 ∧ v2. Let ei be the canonical basis in R
3. Then

∑
i u

ai · e2,3 = 0. For example,∑
i u

ai ·e2 = det(e2, v2, v3)+det(e2, v3, v1)+det(e2, v1, v2) = v33 −v23 +v13 −v33 +v23 −v13 = 0 where

we used va1 = 1. On the other hand,
∑

i u
ai · e1 = det(e1, v2, v3) + det(e1, v3, v1) + det(e1, v1, v2) = 1

since it is the sum of the areas of three triangular cones obtained by triangulating (v1, v2, v3) with the
insertion of e1 (it lies in the same plane). The sum of the three areas is the area of the original cone
d1,2,3 = 1.
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5.2.2 The case of D3 branes

The case of D3 and M2 branes can be described in terms of GK geometry [66].
We consider a system of branes sitting at the tip of a conical toric Calabi–Yau three-
fold singularity (CYm) with Sasaki–Einstein base Y2m−1 and further compactified on a
spindle. The dual supergravity solution has an AdS2×Z9 and AdS3×Z7 near-horizon
geometry, for M2 and D3 branes, respectively. The internal manifolds Z2m+1 are
obtained by fibering the Sasaki–Einstein base Y2m−1 over the spindle. Supersymmetry
requires that the cone C(Z2m+1) is topologically a CYm+1, although the supergravity
metric is not Ricci-flat.

The supergravity solution can be described in terms of a family of backgrounds
that depends on the equivariant parameters εi and the Kähler parameters λα of the
CYm+1 [66]. To avoid confusion, we will use Greek letters to label the vectors in
the m + 1-dimensional fan and the associated Kähler parameters. The conditions for
supersymmetry can be compactly written as:

∑

α

∂SSUSY
∂λα

= 0, νmMα = −∂SSUSY
∂λα

, (5.35)

where SSUSY is the supersymmetric action (5.24) of the CYm+1

SSUSY = ε1(2π)m+1V
(m−1)
CYm+1

(λα, εi ), (5.36)

and Mα are integer fluxes, encoding the flux quantization conditions of the M-theory
four-form or the type IIB RR five-form. νm is a normalization constant that depends
on the dimension. The fluxes Mα contain the information about the number of branes
N and the topological details of the Sasaki–Einstein fibration over the spindle. Notice
that for consistency of (5.35) with (5.9), we must have

∑

α

V αMα = 0, (5.37)

where V α are the vectors in the fan of the CYm+1.33 Given (5.9) and (5.37), only
d − m + 1 equations in (5.35) are actually independent. Combining Eq. (5.35) with
the m − 1 gauge invariances (5.10), we can eliminate all the λα . We are left with a
functional of the equivariant parameters εi that needs to be extremized in order to find
the solution of the equations of motion.

Let us nowspecialize to the case ofD3-braneswherem = 3.The solutionAdS3×Z7
is dual to a two-dimensional CFT. In this context, the Killing vector ξ = ∑m

i=1 εi∂φi

is interpreted as the R-symmetry of the dual CFT and the extremization of the super-
symmetric action is the geometrical dual of c-extremization [78] in two-dimensional
CFTs [25, 66].

33 In our examples, the index α will split into an index a associated with the CYm fan and the two indices
± associated with the spindle.
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More explicitly, the on-shell value of the supersymmetric action, up to a normal-
ization coefficient, is the exact central charge of the two-dimensional CFT, while the
off-shell value of SSUSY as a function of εi after imposing (5.35) equals the charge
c as a function of a trial R-symmetry. This has been proved explicitly in [79] for the
case of a compactification on S2, or on a Riemann surface, and in [55] for a spindle.
More precisely, SSUSY as a function of εi coincides with the trial c-function after the
baryonic directions in the trial R-symmetry have been extremized.34 It is also shown in
[55] how to write the supersymmetric action as the gluing of two gravitational blocks
[54]. We now recover this result in our formalism.

We can extract the supersymmetric action from the gluing formula (5.33)

VCY4 = 1

ε0
VCY3

(
λ+
a , ε+

i

)− 1

ε0
VCY3

(
λ−
a , ε−

i

)
, (5.38)

where

ε+ = ε(3) − ε0w+
n+

, λ+
a = λa + ε0

n+ε1 − ε0
λ+,

ε− = ε(3) + ε0w−
σn−

, λ−
a = λa − ε0

σn−ε1 + ε0
λ−.

(5.39)

Notice that the redefinitions are homogeneous in λα . This means that the previous
identity can be easily truncated at a given order in λα . Taking the quadratic piece and
using (5.19) and (5.25), we obtain

SSUSY|CY4 = 2π
ε1

ε0

(VCY3

(
λ+
a , ε+

i

)− VCY3

(
λ−
a , ε−

i

))
, (5.40)

since the supersymmetric action is the quadratic part ofVCY4 and the 3dmaster volume
is the quadratic part ofVCY3 . We thus recover the factorization in gravitational blocks
derived in [55] (see for example (7.27) and (7.31) in that paper).

We can be more explicit in the special case of S5 and the dual N = 4 SYM. This
example is discussed in [55] in a different gauge. The vectors are

v1 = (1, 0, 0), v2 = (1, 1, 0), v3 = (1, 0, 1), (5.41)

and the equivariant and master volume read

VC3 = e−(ε1−ε2−ε3)λ1−ε2λ2−ε3λ3

(ε1 − ε2 − ε3)ε2ε3
,

VC3 = (2π)3((ε1 − ε2 − ε3)λ1 + ε2λ2 + ε3λ3)
2

2(ε1 − ε2 − ε3)ε2ε3
. (5.42)

34 This is similar to what happens for the Sasakian volume and the trial a-charge for D3 branes sitting at
the tip of a conical toric Calabi–Yau three-fold singularity [17, 80].
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We parameterize the fluxes Mα as

(M1, M2, M3, M+, M−) ≡ N
(
n1, n2, n3,

1
n+ , 1

σn−
)
, (5.43)

where the constraint (5.37) further requires

3∑

I=1

nI = − 1

n+
− 1

σn−
, n2 = −w+2

n+
− w−2

σn−
, n3 = −w+3

n+
− w−3

σn−
.

(5.44)

Wewill be cavalier about the normalization of the fluxes in the following, but it is clear
than N should be proportional to the number of colours of the dual theory. We can use
the gauge freedom (5.10) to set λ1 = λ2 = λ3 = 0. The master volume evaluated at
the two poles in this gauge reads

VC3(λ±, ε±
i ) = (2π)3ε20λ

2±
2n2±

(
ε±
1 − ε±

2 − ε±
3

)
ε±
2 ε±

3

, (5.45)

and we can find λ± by solving the α = ± components of the second equation in (5.35)
(recall that only two of them are independent)

− ν3N = (2π)4ε1ε0λ+
n+
(
ε+
1 − ε+

2 − ε+
3

)
ε+
2 ε+

3

,

−ν3σN = − (2π)4ε1ε0λ−
n−
(
ε−
1 − ε−

2 − ε−
3

)
ε−
2 ε−

3

. (5.46)

Defining

ε0 = ε, ε1 = �1 + �2 + �3, ε2 = �2, ε3 = �3, (5.47)

the extremization in [66] must be done under the condition ε1 = 2/(m−3) = 2 which
corresponds to

�1 + �2 + �3 = 2. (5.48)

We then see that �I , with I = 1, 2, 3, parameterize the R-charges of the three chiral
fields of N = 4 SYM. The supersymmetric action (5.40) is then obtained by gluing
blocks

SSUSY|CY4 = F(�+
1 ,�+

2 ,�+
3

)

ε
− F(�−

1 ,�−
2 ,�−

3

)

ε
, (5.49)
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with the appropriate function for N = 4 SYM [54]

F(�1,�2,�3) = ν23

64π4 N
2�1�2�3, (5.50)

and

�+
1 = �1 − ε

n+

(
1 −

3∑

I=2

w+I

)
, �+

2 = �2 − ε

n+
w+2, �+

3 = �3 − ε

n+
w+3,

�−
1 = �1 + ε

σn−

(
1 −

3∑

I=2

w−I

)
,�−

2 = �2 + ε

σn−
w−2,�

−
3 = �3 + ε

σn−
w−3.

(5.51)

We can see that this result reproduces the anomaly polynomial computed in Sect. 4.
In doing so, we need to be careful that there is some ambiguity in identifying the
chemical potentials associated with the R-symmetry in (5.47). Any redefinition�I →
�I + δI ε with

∑3
I=1 δI = 0 would respect the constraint (5.48) and would lead to a

potentially good choice of R-symmetry chemical potential. To avoid this ambiguity,
we can compare the objects that are invariant under this redefinition

3∑

I=1

�+
I = 2 − ε

n+
,

3∑

I=1

�−
I = 2 + ε

σn−
, �+

I − �−
I = εnI . (5.52)

It is then easy to see that the same relations hold for the anomaly as written in (4.10)
with σ 1 = −1 and σ 2 = −σ .

Notice that the supersymmetric action scales like N 2 as expected forN = 4 SYM.
This can be understood from the fact that SSUSY|CY4 is quadratic in λα and, from
(5.35), λα scales linearly with N .

5.2.3 The case of M2 branes

We consider now the case of M2 sitting at the tip of a conical toric CY4 with Sasaki–
Einstein base Y7 and further compactified on a spindle. The dual M theory solutions
correspond to 4d black holes and have an AdS2 × Z9 near-horizon geometry. We
can again describe the system in terms of GK geometry. The supersymmetric action
provides an entropy functional for the black hole. The construction is the gravitational
dual of I-extremization [81] and has been applied to the case of a compactification
on S2 in [82–84]35 and in the case of a compactification on the spindle in [55, 85].

From the gluing formula (5.33), we find

VCY5 = 1

ε0
VCY4

(
λ+
a , ε+

i

)− 1

ε0
VCY4

(
λ−
a , ε−

i

)
, (5.53)

35 Or, more generally, in the case of a compactification on a Riemann surface.
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where

ε+ = ε(4) − ε0w+
n+

, λ+
a = λa + ε0

n+ε1 − ε0
λ+,

ε− = ε(4) + ε0w−
σn−

, λ−
a = λa − ε0

σn−ε1 + ε0
λ−.

(5.54)

Taking the piece cubic in λ, we recover the result in [55]

SSUSY|CY5 = 2π
ε1

ε0

(VCY4

(
λ+
a , ε+

i

)− VCY4

(
λ−
a , ε−

i

))
. (5.55)

To simplify the discussion, we restrict to the case Z7 = S7 which is dual to the
ABJM theory with k = 1 compactified on the spindle. The vectors are

v1 = (1, 0, 0, 0), v2 = (1, 1, 0, 0), v3 = (1, 0, 1, 0), v4 = (1, 0, 0, 1),

(5.56)

and the equivariant volume is

VC4 = e−(ε1−ε2−ε3−ε4)λ1−ε2λ2−ε3λ3−ε4λ4

(ε1 − ε2 − ε3 − ε4)ε2ε3ε4
. (5.57)

We parameterize the fluxes Mα as

(M1, M2, M3, M4, M+, M−) ≡ N
(
n1, n2, n3, n4,

1
n+ , 1

σn−

)
, (5.58)

where the constraint (5.37) further requires

4∑

I=1

nI = − 1

n+
− 1

σn−
, nI = −w+I

n+
− w−I

σn−
, I = 2, 3, 4, (5.59)

and N will be related to the number of colours of the dual theory. We use again the
gauge freedom (5.10) to set λ1 = λ2 = λ3 = λ4 = 0 and we determine λ± solving
(5.35). This time, the master volume evaluated at the two poles in this gauge reads

VC4(λ+, ε+
i ) = (2π)4ε30(−λ+)3

6n3+
(
ε+
1 − ε+

2 − ε+
3 − ε+

4

)
ε+
2 ε+

3 ε+
4

,

VC4(λ−, ε−
i ) = (2π)4ε30(λ−)3

6(σn−)3
(
ε−
1 − ε−

2 − ε−
3 − ε−

4

)
ε−
2 ε−

3 ε−
4

,

(5.60)

and we can find λ± by solving the α = ± components of Eq. (5.35) (recall that only
two of them are independent)
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ν4N = (2π)5ε1ε
2
0λ

2+
2n2+

(
ε+
1 − ε+

2 − ε+
3 − ε+

4

)
ε+
2 ε+

3 ε+
4

,

ν4N = (2π)5ε1ε
2
0λ

2−
2n2−

(
ε−
1 − ε−

2 − ε−
3 − ε−

4

)
ε−
2 ε−

3 ε−
4

. (5.61)

There is a sign ambiguity in solving (5.61) that we fix to match the gravitational
entropy function result and the explicit geometric analysis in [55].36 Define

ε0 = ε

2
, ε1 = �1 + �2 + �3 + �4

2
, ε2 = �2

2
, ε3 = �3

2
, ε4 = �4

2
.

(5.62)

The extremization in [66] must be done under the condition ε1 = 2/(m − 3) = 1,
which corresponds to

�1 + �2 + �3 + �4 = 2. (5.63)

We then see that �I , with I = 1, 2, 3, 4, parameterize the R-charges of the four chiral
fields of ABJM. The supersymmetric action (5.40) is then given by gluing blocks:

SSUSY|CY5 = F(�+
1 ,�+

2 ,�+
3 ,�+

4 )

ε
− σ

F(�−
1 ,�−

2 ,�−
3 ,�−

4 )

ε
, (5.64)

with the appropriate function for the ABJM theory [54]

F(�1,�2,�3,�4) = ν
3/2
4

24π5/2
N 3/2

√
�1�2�3�4, (5.65)

and

�+
1 = �1 − ε

n+

(
1 −

4∑

I=2

w+I

)
, �+

I = �I − ε

n+
w+I , I = 2, 3, 4,

�−
1 = �1 + ε

σn−

(
1 −

4∑

I=2

w+I

)
, �−

I = �I + ε

σn−
w−I , I = 2, 3, 4.

(5.66)

Notice that

4∑

I=1

�+
I = 2 − ε

n+
,

4∑

I=1

�−
I = 2 + ε

σn−
,�+

I − �−
I = εnI , I = 1, 2, 3, 4.

(5.67)

36 We see from (5.61) that (ε±
1 − ε±

2 − ε±
3 − ε±

4 )ε±
2 ε±

3 ε±
4 should be positive. We then choose the solution

λ+ < 0, λ− > 0 which is consistent with [55]—for example, one can compare with (7.16) and (7.26) in
that reference.
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This formula matches the entropy function found in [40, 55].37

Notice that the entropy function scales like N 3/2 as expected for the ABJM theory.
The reason is that SSUSY|CY5 is cubic in λα and, from (5.35), λα scales as

√
N . Notice

also that the gluing (5.64) involves a different relative sign for the twist and anti-twist.
This is typical of M2 and D4 branes and it is not present for D3 and M5 branes [40].

5.2.4 The case of M5 branes

The case of M5 branes compactified on a spindle has no known description in terms
of GK geometry. However, a stack of M5 branes in flat space in M theory probes a
transverse geometry that is C

2 × R, suggesting that the relevant CY2 is simply C
2. In

the associated supergravity solution AdS7 × S4, the base S3 of the cone C
2 is fibred

over a real direction to give the S4. Notice that there is a supersymmetric generalization
where the M5 branes probe a C

2/Zp × R and the CY2 could be replaced by C
2/Zp.

We now consider the CY3 consisting of C
2 fibered over the spindle with fan

V 1 = (0, 1, 0), V 2 = (0, 1, 1), V+ = (n+, w+), V− = (−σn−, w−),

(5.68)

with

w+ = (1, p+), w− = (1, p−). (5.69)

From the gluing formula (5.33), we have

VCY3 = 1

ε0
VC2

(
λ+
a , ε+

i

)− 1

ε0
VC2

(
λ−, ε−

i

)
, (5.70)

where

ε+ = ε(2) − ε0w+
n+

, λ+
a = λa + ε0

n+ε1 − ε0
λ+,

ε− = ε(2) + ε0w−
σn−

, λ−
a = λa − ε0

σn−ε1 + ε0
λ−,

(5.71)

and the equivariant volume of C
2 can be read from (3.85) with p = q = 1

VC2 = e−λ1(ε1−ε2)−λ2ε2

ε2(ε1 − ε2)
. (5.72)

In analogy with SSUSY in the context of GK geometry, we expect to be able to
extract an off-shell free energy F , for the spindly M5 branes AdS5 solutions found in
[37] from the equivariant volume of C

2 fibred over the spindle. We now show that this

37 To compare with (5.22) in [40], one needs to identify nhereI = −ntherei , nhere± = nthere∓ and 2εthere = −ε.
The chemical potentials are related by the redefinition ϕI = �I − ε

n+ w+I − ε
2nI for I = 2, 3, 4 and

ϕ1 = �1 − ε
n+ (1 − w+2 − w+3 − w+4) − ε

2n1.
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is the case by an appropriate generalization of Eq. (5.35). A scaling argument for N
suggests that the correct generalization is

νM5Mα = −∂V
(2)
CY3

∂λα

, F = V
(3)
CY3

,
∑

α

MαV
α = 0, (5.73)

where the flux equation uses the quadratic piece, but the extremal function is the cubic
piece of the equivariant volume. In this way, λα is linear in N and the extremal function
F cubic in N , as expected for M5 branes. Here and in the following subsections we
will not be concerned with precise normalizations.

Following the same logic as in previous sections, we solve the constraint on the
fluxes

Mα = N
(
n1, n2,

1
n+ , 1

σn−
)
, (5.74)

with n1 + n2 = − 1
n+ − 1

σn− and define

ε0 = ε

2
, ε1 = �1 + �2

2
, ε2 = �2

2
, (5.75)

with �1 + �2 = 2. The chemical potentials �1 and �2 can be associated with the
Cartan subgroup of the SO(5) R-symmetry of the (2, 0) theory. We find that, after
solving for λ± in the gauge λ1 = λ2 = 0, the extremal function is given by gluing
two blocks

F = F(�+
1 ,�+

2 )

ε
− F(�−

1 ,�−
2 )

ε
, (5.76)

with the appropriate function for the (2, 0) theory [54]

F(�1,�2) = ν3M5

48
N 3(�1�2)

2, (5.77)

and

�+
1 = �1 − ε

n+
(1 − p+), �+

2 = �2 − ε

n+
p+,

�−
1 = �1 + ε

σn−
(1 − p−), �−

2 = �2 + ε

σn−
p−.

(5.78)

Notice that

2∑

I=1

�+
I = 2 − ε

n+
,

2∑

I=1

�−
I = 2 + ε

σn−
, �+

I − �−
I = εnI . (5.79)

We see that we have reproduced the (2, 0) anomaly integrated on the spindle (4.34)
with σ 1 = −1 and σ 2 = −σ .
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5.2.5 The case of D4 branes

We now turn to the case of D4 branes compactified on a spinde. The massive type IIA
supergravity solution associated with a system of D4 and D8 branes is topologically
AdS6 times an hemisphere S4 [86], suggesting that the relevant CY2 is again C

2.
Supergravity solutions with an AdS4 factor corresponding to compactifications of the
dual 5d SCFT on a spindle have been found in [40, 42].

It is intriguing to observe that we can again extract an off-shell free energy for
these spindly solutions from a generalization of Eq. (5.35) valid for GK geometry. We
consider as before the equivariant volume (5.70) of C

2 fibred over the spindle. This
time we take

νD4Mα = −∂V
(3)
CY3

∂λα

, F = V
(5)
CY3

,
∑

α

MαV
α = 0, (5.80)

so that λα ∼ N 1/2 and F ∼ N 5/2 as expected for D4 branes.
We use the same definitions (5.74) and (5.75) of the previous section. After solving

for λ± in the gauge λ1 = λ2 = 0, the extremal function is given by38

F = F(�+
1 ,�+

2

)

ε
− σ

F(�−
1 ,�−

2 )

ε
, (5.81)

where for the 5d SCFT [54]

F(�1,�2) = ν
5/2
D4

60
√
2
N 5/2(�1�2)

3/2, (5.82)

and

�+
1 = �1 − ε

n+
(1 − p+), �+

2 = �2 − ε

n+
p+,

�−
1 = �1 + ε

σn−
(1 − p−), �−

2 = �2 + ε

σn−
p−.

(5.83)

Notice that

2∑

I=1

�+
I = 2 − ε

n+
,

2∑

I=1

�−
I = 2 + ε

σn−
, �+

I − �−
I = εnI . (5.84)

We have reproduced the entropy function in [40, 42].39

38 We made a choice of determination for the fractional power that is similar to the M2 brane case and
correctly reproduce the supergravity result.
39 To compare with (5.33) in [40], one needs to identify nhereI = −ntherei , nhere± = nthere∓ and 2εthere = −ε.
The chemical potentials are related by the redefinition ϕ1 = �1 − ε

n+ (1 − p+) − ε
2n1 and ϕ2 = �2 −

ε
n+ p+ − ε

2n2.
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5.2.6 The case of D2 branes

We finally consider the case of D2 branes compactified on a spinde. The massive
type IIA supergravity solution associated with a system of D2-branes is topologically
AdS4 × X6, where the internal manifold is a Sasaki–Einstein five-manifold foliated
over a segment [87, 88]. Supergravity solutions with an AdS2 factor corresponding to
compactifications of the dual 3d SCFT on a spindle have been found in [46].

We expect that the corresponding extremal function is related to the equivariant
volume of a CY3 fibred over the spindle. A scaling argument suggests to use:

νD2Mα = −∂V
(4)
CY4

∂λα

, F = V
(5)
CY4

,
∑

α

MαV
α = 0, (5.85)

so that λα ∼ N 1/3 and F ∼ N 5/3 as expected for D2 branes.
We can verify that this is the case for the solution associated with C

3 where the
three-dimensional SCFT is a pureN = 2 Chern–Simons theory with the same matter
content and superpotential of the maximal supersymmetric Yang–Mills theory [87]
that we indicate as D2k . We have

VCY4 = 1

ε0
VC3

(
λ+
a , ε+

i

)− 1

ε0
VC3

(
λ−
a , ε−

i

)
, (5.86)

where VC3 is given in (5.42). The fluxes can be written as in (5.43). Since the matter
content of the theory is the same as for N = 4 SYM we can still use the parameteri-
zation

ε0 = ε, ε1 = �1 + �2 + �3, ε2 = �2, ε3 = �3, (5.87)

with �1 + �2 + �3 = 2, and interpret the �I , with I = 1, 2, 3, as the R-charges of
the three chiral fields of the theory.

We can use the gauge freedom (5.10) to set λ1 = λ2 = λ3 = 0, and we can find λ±
by solving the first equation in (5.85). The extremal function (5.85) is then obtained
by gluing two blocks

F = F(�+
1 ,�+

2 ,�+
3 )

ε
− F(�−

1 ,�−
2 ,�−

3 )

ε
, (5.88)

where for the D2k theory

F(�1,�2,�3) ∝ N 5/3(�1�2�3)
2/3, (5.89)

and

�+
1 = �1 − ε

n+

(
1 −

3∑

I=2

w+I

)
, �+

2 = �2 − ε

n+
w+2, �+

3 = �3 − ε

n+
w+3,
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�−
1 = �1 + ε

σn−

(
1 −

3∑

I=2

w−I

)
,�−

2 = �2 + ε

σn−
w−2,�

−
3 = �3 + ε

σn−
w−3.

(5.90)

Notice that

3∑

I=1

�+
I = 2 − ε

n+
,

3∑

I=1

�−
I = 2 + ε

σn−
, �+

I − �−
I = εnI . (5.91)

This is the natural expectation for the extremal function for a D2 brane theory. It would
be interesting to have a more complete analysis in supergravity to compare with.

6 Discussion

In this paper, we provided several applications of equivariant localization to quantum
field theory and holography. In particular, we have shown that the equivariant volume,
a basic and well-studied geometrical object in symplectic geometry, is at the heart of
many constructions characterizing supersymmetric geometries. It generalizes at once
the Sasakian volume of [17, 18] and the master volume introduced in [66] that have
been proven very useful in the study of superconformal field theories dual to branes
sitting at Calabi–Yau singularities, and generalizations thereof. The corresponding
quantum (or K-theoretical) version, the equivariant index-character, is analogously
crucial for studying the Hilbert series of the moduli spaces of the corresponding
SCFTs and we expect that it still has many surprises to unveil.

More specifically, we proposed that the equivariant volume should be the key object
for all the extremal problems characterizing supersymmetric geometries with a holo-
graphic interpretation, in different supergravity theories. We showed in this paper that
all the extremization problems associated with compactifications on the spindle of M2
and D3 brane at Calabi–Yau singularities as well as M5, D4 and D2 brane configu-
rations in flat space, can be re-expressed in terms of the equivariant volume. In the
case of M2 and D3 branes, it was known before that the extremization problem can
be expressed in terms of the master volume [66] and we showed how this object is
encoded in the equivariant volume of the associated fibered Calabi–Yaus. In the M5,
D4 and D2 branes there is not yet an analogous of the construction in [66], but we
showed that the relevant extremal functions can be written in terms of the equivariant
volume. We leave for future work the analysis of more complicated situations, like
M5 and D4 branes compactified on a four-dimensional orbifolds M4 or D2 branes
in massive type IIA associated with a generic Sasaki–Einstein five-manifold foliated
over a segment [88]. These examples are more complicated but we are confident that
the corresponding extremal functions and extremization problems can be written and
formulated solely in terms of the equivariant volume.

In this paper, we discussed the factorization (5.27) of the extremal functions asso-
ciated with spindly black objects in terms of gravitational blocks both from the
gravitational and the field theory point of views. On the geometry side, in all cases
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the factorization is an immediate corollary of the fixed point localization formula
for the equivariant volume, applied to the relevant non-compact geometry—see Eq.
(5.33). For D3 and M5 branes, F and Fm are related to the central charge of the lower
and higher-dimensional SCFT, respectively, and the gluing (5.27) is nothing else that
equivariant localization applied to the computation of the higher-dimensional anomaly
polynomial that we discussed in Sect. 4. For other types of branes, Fm is the sphere-
free energy of the higher-dimensional SCFT at large N [40, 54], and (5.27) is typically
related to the large N factorization properties of SCFT partition functions of theories
with a holographic dual [89–91]. In this context, the factorization becomes visible
after taking the large N limit of the SCFT free energy, which is usually expressed in
terms of a matrix model. The partition function of three-dimensional N = 2 SQFTs
compactified on a spindle times a circle was derived in [56], generalizing at once the
superconformal index and the topologically twisted index. The large N limit of this
spindle index is currently under investigation [92] and we expect to reproduce the
factorization (5.27), thus closing the circle.

The derivation of partition functions of SQFTs compactified on orbifolds is another
arena where the results of this paper could be useful. Indeed, quantum field theory
localization relies on the use of the equivariant index theorem [93], and the building
blocks of this construction will involve generalizations of the index-character dis-
cussed in Sect. 2.6 and Appendix C. More precisely, the index-character enters as a
basic building block for partition functions on M × S1 where supersymmetry is pre-
served with a topological twist on M, while it needs to be generalized in the case of
general σ a as in (4.49). In particular, it would be interesting to generalize the five-
dimensional indices of [90, 94, 95] to the case of a five-dimensional SCFT defined on
M4 × S1 and apply the result to reproduce the entropy function for the supergravity
solutions associated with D4 branes compactified on a four-dimensional orbifold [51],
as well as recover the anomaly polynomial results for M5 branes compactified on a
four-dimensional orbifold discussed in Sect. 4.3.40
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ADirect proof of the fixed point formula for M4

In this section, we derive the fixed point formula (3.35) for four-dimensional toric orb-
ifolds. We use the notations introduced in Sect. 3.2. We start by writing the equivariant
volume as an integral over the polytope, as in (2.32)

V(λa, εi ) = 1

(2π)2

∫

M4

e−H ω2

2
=
∫

P
e−yi εi dy1dy2, (A.1)

which can be evaluated by elementary methods. Defining the one-form

ν ≡ e−yi εi

ε · ε
(ε2dy1 − ε1dy2) (A.2)

and, using Stoke’s theorem, we have

V(λa, εi ) =
∫

P
dν =

∫

∂P
ν =

∑

a

∫

Fa

ν, (A.3)

where a facet Fa of the polytope is defined by the linear equation

Fa = {la ≡ vai yi − λa = 0}. (A.4)

We can introduce a coordinate41 s ∈ [smin
a , smax

a ] on each facet Fa , writing

yi |Fa = ṽai s + λa

va · va
vai , (A.5)

where ṽai ≡ εi jv
a
j . The extrema of the interval can be determined by intersecting Fa

with Fa−1 and Fa+1, respectively, and read

smin
a = 1

〈va−1, va〉
(

λa−1 − va−1 · va

va · va
λa

)
,

smax
a = 1

〈va+1, va〉
(

λa+1 − va+1 · va

va · va
λa

)
, (A.6)

where 〈v,w〉 ≡ det(v,w). Plugging (A.5) into ν and integrating we have

∫

Fa

ν = va · ε

ε · ε〈va, ε〉exp
[
− ε · va

va · va
λa

] (
exp
[〈va, ε〉smax

a

]− exp
[
〈va, ε〉smin

a

])
.

(A.7)

41 With a slight abuse of notation we do not denote this with an index sa .
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Recalling that

εa1 = − 〈va+1, ε〉
〈va, va+1〉 , εa2 = 〈va, ε〉

〈va, va+1〉 , (A.8)

and using the vector identities

〈va+1, va〉ε · va + 〈va, ε〉va · va+1 = −〈ε, va+1〉va · va,

〈va−1, va〉ε · va + 〈va, ε〉va−1 · va = −〈ε, va−1〉va · va, (A.9)

we obtain the compact expression

∫

Fa

ν = va · ε

ε · ε〈va, ε〉
(
e−(εa1λa+εa2λa+1) − e

−
(
εa−1
1 λa−1+εa−1

2 λa

))
. (A.10)

Now, for a four-dimensional orbifold

cT

1 (La)|yb = −
(
δb,aε

b
1 + δb,a−1ε

b
2

)
, (A.11)

so that
∫

Fa

ν = va · ε

ε · ε〈va, ε〉
(
e
∑

b λbcT

1 (Lb)|ya − e
∑

b λbcT

1 (Lb)|ya−1

)
. (A.12)

Rearranging the contributions of the vertices in the sum

V(λa, εi ) =
∑

a

∫

Fa

ν =
∑

a

(
va · ε

ε · ε〈va, ε〉 − va+1 · ε

ε · ε〈va+1, ε〉
)
e
∑

b λbc1(Lb)|ya

=
∑

a

1

da,a+1ε
a
1 εa2

e
∑

b λbc1(Lb)|a , (A.13)

where we used another other standard vector identity

〈va+1, ε〉ε · va − 〈va, ε〉va+1 · ε = −〈va, va+1〉ε · ε, (A.14)

we obtain the localization formula (3.35).

B Direct proof of themaster volume formula for CY3

Weconsider a singularCalabi–Yauconewith fan specifiedby thevectorsva = (1, wa),
with a = 1, . . . , d ′ and wa ∈ Z

2. The projection on the plane with first coordinate
equal to one is a convex polytope called toric diagram in the physics literature. We
label the vectors va along the toric diagram in anticlockwise order and we identify
vectors cyclically, vd

′+1 ≡ v1. In order to apply the fixed point formula we need to
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Fig. 8 The triangles in the toric diagram contributing a λa dependence in the fixed point formula for V

resolve the singularity. This can be done by triangulating the toric diagram. We add
new vectors vα = (1, w̄α), α = d ′ + 1, . . . , d with w̄α lying inside the toric diagram
until it becomes the union of triangles.

The master volume V is a function of the λa associated with the external vectors
va = (1, wa) only. The equivariant volumeV is a function of all λ and can be obtained
from the fixed point formula (5.5), where the sum is extended to all triangles in which
the toric diagram has been partitioned. The computation is fortunately local. Every
particular external λa enters in just two fixed point contributions, associated with the
two triangles in Fig. 8, where v̄ is an internal point.

Denoting 〈v,w, u〉 ≡ det(v,w, u), and taking into account the orientations of the
inward normals uaA, we can write

V = d2I e
−(λ̄〈va−1,va ,ε〉+λa−1〈va ,v̄,ε〉+λa〈v̄,va−1,ε〉)/dI
〈va−1, va, ε〉〈va, v̄, ε〉〈v̄, va−1, ε〉

+d2I I e
−(λa〈va+1,v̄,ε〉+λ̄〈va ,va+1,ε〉+λa+1〈v̄,va ,ε〉)/dI I
〈va+1, v̄, ε〉〈va, va+1, ε〉〈v̄, va, ε〉 + . . . (B.1)

where λ̄ is the Kälher parameter associated with the internal point v̄, dI =
|〈va−1, va, v̄〉| and dI I = |〈va+1, va, v̄〉| are the orders of the local singularities and
the dots refer to terms independent of λa . We can then compute

∂2V

∂λ2a

∣∣∣
λ=0

= 〈v̄, va−1, ε〉
〈va−1, va, ε〉〈va, v̄, ε〉 + 〈va+1, v̄, ε〉

〈va, va+1, ε〉〈v̄, va, ε〉
= − 〈va−1, va+1, ε〉

〈va−1, va, ε〉〈va, va+1, ε〉
∂2V

∂λa∂λa−1

∣∣∣
λ=0

= 1

〈va−1, va, ε〉
∂2V

∂λa∂λa+1

∣∣∣
λ=0

= 1

〈va, va+1, ε〉 ,

(B.2)

thus recovering the master volume expression (5.18).
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C The equivariant index

In this appendix, we present some simple examples of character indices. It is an
interesting topic, with many applications for example to localization computations
[56], but, since it is not the main theme of this paper we will be brief.

C.1 The equivariant index for the spindle

We consider the spindle ˚ = WP
1[n+,n−]. As in Sect. 3.1 we take v1 = n+, v2 = −n−

and GLSM charges Q = (n−, n+). We take n+ and n− relatively prime.
The character computes the equivariant index

Z(q,a) =
1∑

p=0

(−1)pTr{q|H (0,p)(˚, O(+D+ + −D−))}, (C.1)

where q is the weight for the T action. We recall that not all the T-invariant divisors
are inequivalent. In particular, for the spindle, (2.22) implies n+D+ = n−D−.

The fixed point formula (2.71) has contribution from two poles of the spindle. In
each contribution, we need to add an average over the local singularity ZdA

Z(a, q) = 1

n+

n+−1∑

k=0

e−2π ik+/n+q−+/n+

1 − e2π ik/n+q1/n+ + 1

n−

n−−1∑

k=0

e−2π ik−/n−q−/n−

1 − e2π ik/n−q−1/n− .

(C.2)

Setting q = e−ε� and ± = −λ1,2/� and taking the limit � → 0 we recover the
equivariant volume (3.16) as the coefficient of the leading pole as in (2.67). Only the
terms with k = 0 contribute to the limit. The index can been resummed using [56]

1

k

k−1∑

�=0

ω−α�
k

1 − ω�
ku

= uα−k
α
k �

1 − uk
, (C.3)

whereωk = e
2π i
k , u is a complex number, α is an integer number and the floor function

denotes the integer part. This formula can be proved by expanding both sides in power
series of u. The result is

Z(a, q) = q
−
⌊

+
n+
⌋

1 − q
+ q

⌊
−
n−
⌋

1 − q−1 = q
−
⌊

+
n+
⌋

− q
1+
⌊

−
n−
⌋

1 − q
. (C.4)

Notice that, although there were fractional powers of q in (C.2), the final formula
contains only integer powers. We see that, for ± > 0,

Z(a, q) = q
−
⌊

+
n+
⌋

+ · · · + q

⌊
−
n−
⌋

, (C.5)
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the character has only positive signs and counts the sections of

H0(WP
1[n+,n−], O(+D+ + −D−)), (C.6)

refined with respect to the T action. Geometrically, we see that the exponents are the
integers

− +
n+

≤ m ≤ −
n−

, m ∈ Z, (C.7)

corresponding to the integer points in the polytope (2.66)

�(a) = {m ∈ Z|v1m ≥ −+, v2m ≥ −−}. (C.8)

The Molien–Weyl formula (2.68) reads:

ZMW (T , q̄a) = −
∫

dz

2π i z1+T

1

(1 − zn− q̄1)(1 − zn+ q̄2)
. (C.9)

The relation between the two formulas is as in (2.70)

ZMW (T = n+− + n−+, q̄a) =
∏

a=±
q̄a
a Z

(
±, q = q̄n++ q̄−n−−

)
. (C.10)

This can be checked by computing explicitly the residue related to q̄i . One obtain two
sums over zk− = q̄−1/n−

1 e2π ik−/n− and zk+ = q̄−1/n+
2 e2π ik+/n+ for k± = 0, . . . n± −1

that match the fixed point formula.42 On the other hand, we can also evaluate the
integral in a simpler way. We define the grand-canonical partition function

∞∑

T=0

ZMW (T , q̄a)w
T = −

∫
dz

2π i

1

(1 − zn− q̄1)(1 − zn+ q̄2)(z − w)

= 1

(1 − wn− q̄1)(1 − wn+ q̄2)
,

(C.11)

where we evaluated the integral by deforming the contour circling zk± into a contour
around z = w,which is the only other singularity of the integrand. From this expression
we see that ZMW (T , q̄a) for T > 0 counts the monomials in (q̄1, q̄2) of charge T
under the rescaling with weights Q = (n−, n+). These are precisely the holomorphic
sections

H0(WP
1[n+,n−], O(T )), (C.12)

42 We assume that n+ and n+ are relatively prime.
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where the line bundle O(T ) corresponds to Chern class c1 = [ F
2π

]
with Chern number

1
2π

∫
F = T

n+n− .

C.2 The equivariant index forWP
2
[N1,N2,N3]

For simplicity, we only consider the case of the “non-minimal" fan

v1 = (n3, n3), v2 = (−n1, 0), v3 = (0,−n2), (C.13)

and Q = (N1, N2, N3) = (n1n2, n2n3, n1n3). The orbifold is M4 = WP
2[N1,N2,N3]

if the na are coprime. There are only labels and not extra orbifold singularities in the
sense that the corresponding primitive vectors v̂a , obtained by dividing va by the label
na , satisfy d̂a,a+1 = det(v̂a, v̂a+1) = 1.

The fixed point formula (2.71) requires averaging over the local orbifold singularity.
For example, we can consider the contribution from the fixed point associated with the
cone (v2, v3). The local data are d2,3 = n1n2 and u1 = (−n2, 0) and u2 = (0,−n1).
The local orbifold action is determinedby J2n1 = s, J3n2 = pwhere s, p are integers:

(
e2π i J2 , e2π i J3

) = (e2π i s
n1 , e

2π i p
n2
)
. (C.14)

The fixed point contribution is

V = 1

n1n2

n1−1∑

s=0

n2−1∑

p=0

(
e
2π i s

n1 q−1/n1
1

)−2
(
e
2π i p

n2 q−1/n2
2

)−3

(
1 − e

2π i s
n1 q−1/n1

1

)(
1 − e

2π i p
n2 q−1/n2

2

)

= q

 2
n1

�
1 q


 3
n2

�
2

(1 − 1/q1)(1 − 1/q2)
,

(C.15)

where we use the identity (C.3). The contributions of the other fixed points can be
computed similarly. Combining the three contributions, we find

V(a, qi ) = q

⌊
2
n1

⌋

1 q

⌊
3
n2

⌋

2

(1 − 1/q1)(1 − 1/q2)
+
(
q1
q2

)−
⌊

3
n2

⌋

q
−
⌊

1
n3

⌋

1(
1 − q1

q2

)
(1 − q1)

+
(
q2
q1

)−
⌊

2
n1

⌋

q
−
⌊

1
n3

⌋

2(
1 − q2

q1

)
(1 − q2)

,

(C.16)

in agreement with the general formula (2.73). One can check that

V(a, qi ) =
∑

m∈�(a)

qm (C.17)

counts (with a T
2 weight) the integer points in the polytope

�(a) = {m · va ≥ −a}, m ∈ Z
2. (C.18)
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Fig. 9 The integer points counted by (C.15)

This can be proved with elementary methods. By expanding in power series (C.15) in
1/q1 and 1/q2, we obtain all the integer points in an infinite cone, as in Fig. 9.

By similarly expanding the other power series in (C.16) for |qi | > 1 and |q2/q1| >

1, we find three competing contributions, which cancel except for the points inside the
polytope as depicted in Fig. 10.

The Molien–Weyl formula gives instead

ZMW (T , q̄a) = −
∫

dz

2π i z1+T

1(
1 − zN1 q̄1

)(
1 − zN2 q̄2

)(
1 − zN3 q̄3

) . (C.19)

This can be explicitly evaluated by taking the residues at zNa q̄a = 1, and one recovers
formula (2.70):

ZMW

(
TA =

∑

a

QA
a a, q̄a

)
=

d∏

s=1

q̄a
a Z

(
a, qi =

∏

a

q̄
vai
a

)
, (C.20)

where the gauge-invariant quantities are explicitly given by

q1 = q̄n31 q̄−n1
2 , q2 = q̄n31 q̄−n2

3 , T = n1n21 + n2n32 + n3n13.

(C.21)

Fig. 10 The power series contributing to (C.16). The yellow and orange power series enter with a plus sign,
while the green with a minus sign. The result is just the set of integer points in the triangle (colour figure
online)
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One can check that the three set of residues at zNa q̄a = 1 precisely correspond to the
three fixed point contributions. For example, the residue associated with q̄1 reads

1

n1n2

n1n2−1∑

k=0

q̄T /N1
1 ω−kT

N1(
1 − ω

kN2
N1

q̄2q̄
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1

)(
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kN3
N1

q̄3q̄
−N3/N1
1

)

= 1

n1n2

n1n2−1∑
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q̄T /n1n2
1 ω−kT

n1n2(
1 − ω

kn3
n1 q̄2q̄

−n3/n1
1

)(
1 − ω

kn3
n2 q̄3q̄

−n3/n2
1

)

= 1
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q̄
1+ n32

n1
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n2
1 ω

−kn32
n1 ω
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n2(
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1

)(
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1
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1 q̄2
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3
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1
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 2
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�(
q̄n23 q̄−n3

1
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 3
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(
1 − q̄n12 q̄−n3

1

)(
1 − q̄n23 q̄−n3

1

)

= q̄1
1 q̄2

2 q̄3
3

q

 2
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�
1 q


 3
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�
2

(1 − 1/q1)(1 − 1/q2)
, (C.22)

reproducing the contribution (C.15). In the sum, we replaced k with n3k using the fact
that the ni are coprime. We also used the identity

1

n1n2

n1n2−1∑

k=0

ω
−k�1
n1 ω

−k�2
n2(

1 − ωk
n1u1

)(
1 − ωk

n2u2
) = u

�1−n1
 �1
n1

�
1 u

�2−n2
 �2
n2

�
2(

1 − un11
)(
1 − un22

) , (C.23)

which can be proved by expanding both sides in power series of u.
The grand-canonical partition function

∞∑

T=0

ZMW (T , q̄a)w
T = −

∫
dz

2π i

1

(1 − zN1 q̄1)(1 − zN2 q̄2)(1 − zN3 q̄3)(z − w)

(C.24)

can be also computed deforming the contour to encircle z = w which gives

∞∑

T=0

ZMW (T , q̄a)w
T = 1

(1 − wN1 q̄1)(1 − wN2 q̄2)(1 − wN3 q̄3)
. (C.25)

We see that ZMW (T , q̄a) for T > 0 counts the monomials in (q̄1, q̄2, q̄3) of charge
T under the rescaling with weights Q = (N1, N2, N3). These are precisely the holo-
morphic sections

H0(WP
2[N1,N2,N3], O(T )), (C.26)

123



15 Page 76 of 79 D. Martelli, A. Zaffaroni

of the line bundle O(T ). In the familiar case of WP
2, where Ni = 1, these are just

the homogeneous polynomials of degree T .
In the presence of d̂a,a+1 = det(v̂a, v̂a+1) 	= 1, we would need more general

formulas for resumming the averages over the orbifold action and we will not discuss
this case.
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