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1 Introduction

The production of identified hadrons in high-energy particle collisions has been among the
very first observables studied in experimental particle physics. These measurements were
usually performed in a single-particle inclusive manner, i.e. differential in the kinematics
of the identified hadron but fully inclusive over all hadronic activity in the event. Very
extensive measurements of single-inclusive hadron production were performed at e+e−

colliders [1]. The resulting legacy data sets provide important information on the transition
from partons to hadrons and are used to tune the parameters of empirical hadronisation
models [2, 3] that form the basis of modern Monte Carlo event simulation.

In QCD, single-inclusive hadron production can be described by convoluting single-
inclusive parton production, which is calculable in perturbation theory, with fragmentation
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functions (FF, [4, 5]) that parametrise the parton-to-hadron transition as a function of
the fractional momentum transfer. The factorisation behaviour of FFs closely resembles
that of parton distribution functions (PDF), and they also fulfil Altarelli-Parisi evolution
equations [6] in their associated resolution scale. In contrast to a description based on
empirical hadronisation models, the FF framework can be systematically expanded [7]
in perturbative QCD by computing higher-order corrections to the partonic coefficient
functions and the FF evolution kernels. The coefficient functions for single-inclusive hadron
production are known to next-to-leading order (NLO) for electron-proton [7–9] and proton-
proton [10] collisions and to next-to-next-to-leading order (NNLO) for electron-positron
annihilation [11, 12]. The FF evolution kernels are also known to NLO [13] and NNLO [14].
The initial conditions to the FF evolution equations reflect the non-perturbative dynamics
of the parton-to-hadron transition. They can not be computed from first principles in
perturbative QCD, and are typically determined by global fits to experimental data on
single-inclusive hadron cross sections [15–23] for various hadron species.

The fragmentation function formalism was initially developed for light quarks, where
the initial conditions to the evolution equations are purely non-perturbative. In the case of
heavy quarks, the quark mass acts as an infrared regulator that prevents exactly collinear
emissions in the fragmentation process (dead-cone effect, [24, 25]). By introducing a
perturbative contribution to the heavy-quark fragmentation functions [26], it is possible to
incorporate the heavy quark mass effects for observables including identified heavy hadrons
(or identified heavy quark jets, [27]) into otherwise fully massless calculations at higher
orders, and resum large logarithms of collinear origin [28]. The perturbative heavy-quark
FFs were computed up to NNLO [29, 30] and augmented by soft-gluon resummation [31].
They were used especially in NLO calculations of identified heavy hadron production.

Identified hadrons play an increasingly important role in precision measurements at the
LHC, for example in cross sections in association with a vector boson or a photon, where
they are relevant to determining the flavour decomposition of PDFs, or in the study of
hadron production in jet substructure studies [32–34] or hadron-in-jet production [35–37].

These collider measurements do however not fall into the class of single-inclusive hadron
production observables, since their final state definition involves a set of criteria that is
applied not only to the identified hadron momentum but to the full final state of the
event. These criteria can be fiducial cuts on other particles, or more generally any type of
infrared-safe event classification criterion, such as the application of a jet algorithm or of an
event shape requirement. While FFs for the hadron species under consideration may well be
known from a global fit, their application to these less inclusive observables is prevented by
the incomplete understanding of the parton-level cross sections for identified hadrons in the
presence of generic event-based fiducial selection criteria. Instead, data on these processes
is typically compared only to Monte Carlo event simulation using empirical hadronisation
models, which offer a considerably larger degree of flexibility in adapting to specific final
state definitions than the FF framework, however with the drawback of considerably lower
theory precision.

Higher order corrections to single-inclusive coefficient functions are typically obtained
by analytical integration of the relevant parton-level subprocesses from real and virtual
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contributions. For fully exclusive fiducial cross sections, this approach is not viable due
to the complexity of the final state definition. Instead, one employs a subtraction method
to extract infrared singular real radiation contributions and to recombine them with
virtual contributions to obtain infrared-finite predictions. The subtracted real and virtual
subprocesses are individually finite and can be integrated numerically, taking into account
the fiducial cuts defining the observable under consideration. Generic subtraction methods
for NLO [38, 39] and NNLO [40–49] calculations are available and have been used widely for
jet cross sections. For processes involving hadron fragmentation, any subtraction method
requires an extension in order to keep track of parton momentum fractions in unresolved
emissions, which are usually integrated over. Such an extension is available at NLO for
dipole subtraction [38]. At NNLO, recent work towards fragmentation processes yielded
results for heavy hadron production in top quark decays [50] in the residue subtraction
method [45] and photon fragmentation [51, 52] in the antenna subtraction method [43, 44].

It is the objective of this paper to extend the antenna subtraction formalism to
incorporate hadron fragmentation processes up to NNLO. In section 2, we establish the
relevant notation for hadron fragmentation processes. Sections 3 and 4 develop the antenna
subtraction for identified hadrons at NLO and NNLO, respectively, by introducing the
fragmentation antenna functions and describing the structure of the subtraction terms. The
integration of the fragmentation antenna functions in final-final kinematics is described
in section 5, where we also investigate their relation to inclusive antenna functions in
initial-final kinematics. Our results are validated by re-deriving existing results for single-
inclusive NNLO coefficient functions in vector boson and Higgs boson decay in section 6.
As an illustration of the method, in section 7 we describe the subtraction for hadron-in-
jet fragmentation in three-jet final states in e+e− annihilation. Finally, in section 8 we
summarise our results and provide an outlook on future applications and extensions.

2 Hadron fragmentation processes in the antenna formalism

Processes with identified hadrons require the introduction of a fragmentation function to
describe the fragmentation of the high-energy quark or gluon into the actually detected
hadron. In this paper, we focus on one hadron (plus jets) production at e+e− colliders:

e+ + e− → H(KH) +X (+jets ) (2.1)

where we identify a hadron H with momentum KH and possibly some jets, which may
or not contain the identified hadron. The restriction to e+e− initial states is largely for
notational simplicity, allowing us the develop the essential aspects of the antenna subtraction
formalism for identified hadron cross sections in a clear and concise manner. Its extension
to hadron-hadron collisions is straightforward and will be discussed in section 8.

The fully differential cross section can be written as

dσH =
∑
p

∫
dη DH

p

(
η, µ2

a

)
dσ̂p

(
η, µ2

a

)
, (2.2)

where the index p runs over all possible partons in the process, DH
p is the physical (mass-

factorised) fragmentation function describing the collinear fragmentation process of the
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parton p into the hadron H, and µ2
a is the fragmentation scale (which may differ from the

renormalisation scale). Note that a single-hadron cross section in QCD is usually written
as differential in the three-momentum of the detected hadron [10, 38, 53] as

K0
H

dσH

d3KH
=
∑
p

∫ dη
η2 D

H
p (η) k0

p

dσ̂p
d3kp

∣∣∣∣∣
~kp= ~KH/η

, (2.3)

where kp is the momentum of the fragmenting parton, carrying 1/η of the momentum of
the detected hadron KH . Such a definition is not suitable for a parton-level generator.
However, as shown in [54], (2.2) and (2.3) are indeed equivalent for one-particle inclusive
cross sections. Hence we will adopt the former as our master equation, which is necessary
to deal with the additional presence of jets in the final state.

The short-distance one-parton exclusive cross section appearing in (2.2) admits a
perturbative expansion in the renormalised strong coupling constant αs,

dσ̂p(η) = dσ̂LO
p (η) +

(
αs
2π

)
dσ̂NLO

p (η) +
(
αs
2π

)2
dσ̂NNLO

p (η) . (2.4)

For instance, the LO cross section is defined as the integration over the n particle phase
space of the tree-level Born partonic cross section:

dσ̂LO
p (η) =

∫
n

dσ̂B
p (η) , (2.5)

with

dσ̂B
p (η) = NB dΦn(k1, . . . , kn;Q) 1

Sn
M0
n(k1, . . . , kn) J({k1, . . . , kn}n, ηkp) , (2.6)

with NB the Born-level normalisation factor, Sn a symmetry factor for final-state particles,
M0
n the squared tree-level n-particle matrix element and dΦn the usual phase space for a

n-parton final state with total four-momentum Qµ in d = 4 − 2ε space-time dimensions.
Compared to the standard jet cross sections, the element of novelty here is the modified jet
function J , which retains a dependence on the momentum fraction η, similarly to what was
done in the photon fragmentation case in [51]. The purpose of the modified jet function is
to define jet observables and/or any additional observable depending on the momentum
kp of the identified parton. In the framework of collinear factorisation encoded in (2.2),
the momentum kp of the identified parton is proportional to the momentum KH of the
identified hadron according to the simple relation KH = ηkp.

Beyond leading order, it is well known that infrared divergences of soft and collinear
origin appear in the short-distance cross section. They are guaranteed to cancel between
real and virtual contributions in sufficiently inclusive observables, but a subtraction method
is required in order to deal with such divergences in the intermediate steps of the calculation.
In the antenna subtraction formalism [43, 44], the singularities associated to single or
double unresolved particles in real emission matrix elements are locally subtracted by means
of counterterms built out of antenna functions [55–57]. Each antenna function encodes
the radiation pattern between a pair of hard radiators, thus reproducing the behaviour
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of the matrix element in the singular limits, but being simple enough to be analytically
integrated over the unresolved degrees of freedom. The integrated subtraction terms are
then added back at the virtual level, so as to cancel the explicit poles appearing in the
virtual matrix elements.

Most of the elements introduced in [43], necessary to deal with jet cross sections in e+e−

collisions, can be used for exclusive one-particle cross sections as well. However, whenever
we identify a parton, we spoil the cancellation of collinear divergences. The physical reason
is that by identifying for example a quark we are in the position to distinguish a quark
from a collinear quark-gluon pair. These collinear divergences are subtracted from the
short-distance cross sections by means of mass factorisation counterterms and absorbed in
the bare fragmentation functions, which eventually result in mass-factorised fragmentation
functions, the ones appearing in (2.2). In order to allow for a proper subtraction of final-state
collinear divergences, we need to keep track of the momentum fraction of the fragmenting
parton in the intermediate layers of the calculation. We do so by introducing fragmentation
antenna functions which explicitly depend on the momentum fraction of the fragmenting
parton. After integrating over all kinematical variables except the momentum fraction, these
fragmentation antenna functions have the proper structure to be combined with the mass
factorisation counterterms and result in a cancellation of final-state collinear divergence at
the integrand level, before performing the convolution with the fragmentation function. In
the following sections, we describe how the subtraction has to be modified to account for
the presence of identified hadrons at NLO and NNLO.

3 Subtraction at NLO

The NLO corrections to the one-parton exclusive cross section in (2.4) contain contributions
from real emission of one extra parton and virtual corrections. As it is customary in
antenna subtraction, we introduce a real subtraction term dσ̂S

p and a virtual subtraction
term dσ̂T

p , to be subtracted from the real cross section dσ̂R
p and the virtual cross section

dσ̂V
p , respectively. The NLO short-distance cross section can then be written as

dσ̂NLO
p (η) =

∫
n+1

[
dσ̂R

p (η)− dσ̂S
p (η)

]
+
∫
n

[
dσ̂V

p (η)− dσ̂T
p (η)

]
. (3.1)

Each term in square brackets in (3.1) is free of infrared divergences and suitable for a
numerical implementation. Note the subscript in (3.1), indicating that each term retains a
dependence on the parton which is undergoing the fragmentation process.

The real partonic cross section dσ̂R
p is given by (2.6) with an additional parton. It is

decomposed according to its colour orderings. As for the real subtraction term dσ̂S
p , it will

be given by the sum of several terms, summing over all possible single unresolved partons:

dσ̂S
p =

∑
j

dσ̂S
p,j . (3.2)

The dσ̂S
p,j are obtained by summing over all colour connections in which the parton j can

become unresolved. They are further decomposed in two types of contributions as

dσ̂S
p,j = dσ̂S,non−id.p

p,j + dσ̂S,id.p
p,j , (3.3)
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where the first term contains all configurations where the identified parton p is not colour-
connected to the unresolved parton j, such that we can use the standard NLO subtraction
term with final-final kinematics, with p appearing unmodified in the respective reduced
matrix element.

In order to subtract the infrared limits involving the unresolved parton j colour-
connected to the identified p and a second hard parton k, we newly introduce the following
subtraction term

dσ̂S,id.p
p,j = NRdΦn+1 (k1, . . . , kp, . . . , kn+1;Q) 1

Sn+1

×X0
3 (kp, kj , kk) M0

n

(
k1, . . . , K̃, k̃p, . . . , kn+1

)
J
({
. . . , K̃, k̃p, . . .

}
n
, η z k̃p

)
,

(3.4)

where NR = NBC(ε)/C(ε), with

C(ε) = (4πe−γE )ε

8π2 , C(ε) = (4πe−γE )ε , (3.5)

which are customary normalisation factors in the antenna subtraction formalism, and NB
the Born-level normalisation factor of the process under consideration. The X0

3 function
is just the standard three-particle tree-level antenna function in the final-final kinematics,
depending on the final state momenta which sum up to q = kj + kk + kp with Q2 ≥ q2 > 0.
The phase space mapping involves the reconstruction of the momentum fraction z, used
to define k̃p = kp/z, and of a recoil momentum K̃. The momentum fraction z is defined
by projecting the momentum of the fragmenting parton and the momentum of its parent
parton pair onto a specific reference four-vector that can be chosen freely. In our case, we
choose q as reference direction, resulting in

z = spj + spk
spj + spk + sjk

,

K̃ = kj + kk − (1− z)kp
z
,

(3.6)

which satisfies all the required properties. In particular, in the collinear limit kp ‖ kj , z
approaches the momentum fraction of kp along the common collinear direction. Hence
the overall momentum fraction entering the jet function is the product of η and z. It
should be noted that the definition of z used here differs from the choice made in [51] for
photon fragmentation antenna functions, where in the final-final kinematics kk was used as
reference in the definition of z. As a consequence, the integrated NLO fragmentation antenna
functions differ from the ones listed in [51]. The different choice of reference momentum
was appropriate in the photon case (where emitter and recoil could always be identified in
an unambiguous manner), but generalises only poorly to the hadron fragmentation case.

In order to reach the factorisation of the phase space, we follow closely [58] by inserting

1 =
∫

ddq δ (q − kp − kj − kk) , (3.7)
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and
1 = q2

2π

∫ dz
z

∫ [
dK̃

]
(2π)d δ

(
q − kp

z
− K̃

)
. (3.8)

Since in (3.4) we are integrating over kp, we need to introduce the one-particle phase space
for k̃p. They are related by [

dk̃p
]

= [dkp] z2−d = [dkp] z−2+2ε , (3.9)

which is due to the fact that [dp] ∝ Ed−3dE. Hence, by integrating over q, we get

dΦn+1 (k1, . . . , kp, kj , kk, . . . , kn+1;Q) = dΦn

(
k1, . . . , k̃p, K̃, . . . , kn+1;Q

)
× q

2

2πdΦ2 (kj , kk; q − kp) z1−2ε dz . (3.10)

We define the integrated version of the fragmentation antenna function over the two particle
phase space as

X 0,id.p
3 (z) = 1

C(ε)

∫
dΦ2

q2

2π z
1−2εX0

3

(
kid.
p , kj , kk

)
. (3.11)

The (simple) integration is discussed in section 5.1, and explicit expressions for the X 0,id.p
3

can be found in appendix B. The integrated form of the subtraction term is then∫
1

dσ̂S,id.p
p,j = NV

∫
dz dΦn

(
k1, . . . , k̃p, K̃, . . . , kn+1;Q

) 1
Sn

×X 0,id.p
3 (z) M0

n

(
k1, . . . , k̃p, K̃, . . . , kn+1

)
J
({
. . . , k̃p, K̃, . . .

}
n
, η z k̃p

)
,

(3.12)

with NV = NRC(ε) = NBC(ε). The above expression contains the infrared poles required
to cancel explicit poles of the virtual matrix element associated with the colour-connections
involving the identified parton momentum p as well as collinear poles proportional to the
Altarelli-Parisi splitting functions, which need to be properly subtracted by means of a
NLO mass factorisation counterterm dσ̂MF,NLO

p , defined as

dσ̂MF,NLO
p (η) = −NV

∑
h

∫
dz dΦn (k1, . . . , kh, . . . , kn;Q) µ−2ε

a Γ(1)
p←h (z)

× 1
Sn

M0
n (k1, . . . , kh, . . . , kn) J ({k1, . . . , kh, . . . , kn}n, η z kh) ,

(3.13)

with µ2
a the mass factorisation scale and Γ(1)

p←h the leading order mass factorisation kernel
(see appendix A). The full virtual subtraction term is then given by

dσ̂T
p (η) = −

∑
j

∫
1

dσ̂S
p,j − dσ̂MF,NLO

p . (3.14)

Note that the integrated antenna functions and the mass factorisation kernels can be
eventually combined into fragmentation dipoles, analogous to the initial-state dipoles
introduced for hadron-collider processes [44].

An explicit example of subtraction at NLO is given in section 7, where we study
identified hadron production inside jets in e+e− → 3 jets final states.
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4 Subtraction at NNLO

Predictions at NNLO require the calculation of three different contributions, namely double-
real (RR), real-virtual (RV) and double-virtual (VV) contributions relative to the Born
process. Each of these pieces is separately infrared divergent, whereas their sum is guaranteed
to be finite. In order to handle the implicit divergences and explicit poles that arise in
the intermediate steps of the calculation, three subtraction terms are introduced: a RR
subtraction term dσ̂S

p , a RV subtraction term dσ̂T
p and a VV subtraction term dσ̂U

p , such
that the analogue of (3.1) at NNLO reads

dσ̂NNLO
p (η) =

∫
n+2

[
dσ̂RR

p − dσ̂S
p

]
+
∫
n+1

[
dσ̂RV

p − dσ̂T
p

]
+
∫
n

[
dσ̂VV

p − dσ̂U
p

]
, (4.1)

where a dependence on η in the integrands is understood. The structure of the dσ̂S
p , dσ̂T

p

and dσ̂U
p subtraction terms has been discussed extensively in previous works: when the hard

radiators are both in the final state (final-final kinematics) [43], one radiator in the final
state and one in the initial state (initial-final kinematics) [58, 59] or both radiatiors in the
initial state (initial-initial kinematics) [58, 60, 61]. A comprehensive review of the formalism
in hadron-hadron collisions is given in [44]. In this section, we limit ourselves to explain
where the subtraction terms have to been modified in order to account for the presence of
the identified particle. Since an identified particle in the final state is conceptually similar to
an initial state particle, the structure of the subtraction terms is close to the one provided
in the initial-final case in [59].

The real-real subtraction term dσ̂S
p is built out of several pieces, each of which accounts

for a particular type of unresolved configuration. The first piece, dσ̂S,a
p deals with the single

unresolved limits of the double real matrix elements. Its structure is similar to the NLO
real subtraction term, already introduced in (3.2). The second piece, dσ̂S,b

p accounts for the
double unresolved limits of the RR matrix element. We can distinguish configurations with
the identified parton p colour-connected or not to the pair of unresolved partons j and k.
In the latter case, we can use the standard NNLO subtraction term. In the former case, we
introduce the subtraction term

dσ̂S,b,id.p
p,jk =

NRR dΦn+2 (k1, . . . ,kn+2;Q) 1
Sn+2

×
[
X0

4 (kp,kj ,kk,kl)M0
n

(
k1, . . . , k̃p, K̃, . . . ,kn+2

)
J
({
. . . , k̃p, K̃, . . .

}
n
,η z k̃p

)
−X0

3 (kp,kj ,kk)X0
3

(
k̃p, K̃,kl

)
M0
n

(
k1, . . . ,

˜̃kp, ˜̃K,. . . ,kn+2
)
J
({
. . . , ˜̃kp, ˜̃K,. . .

}
n
,η z ˜̃kp

)
−X0

3 (kj ,kk,kl)X0
3

(
kp, k̃jk, k̃kl

)
M0
n

(
k1, . . . ,

˜̃kp, ˜̃K,. . . ,kn+2
)
J
({
. . . , ˜̃kp, ˜̃K,. . .

}
n
,η z ˜̃kp

)]
,

(4.2)

with NRR = NBC(ε)2/C(ε)2. The two products of three-parton antenna function are
necessary to subtract the single unresolved limits of the four-parton antenna function,
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such that dσ̂S,b,id.p
p,jk is active only in the double unresolved limits. They each involve two

consecutive NLO phase space mappings, whose results are abbreviated as (˜̃kp, ˜̃K) and where
the intermediate momenta (k̃jk, k̃kl) indicate a standard final-final NLO mapping. The
genuine NNLO mapping to (k̃p = kp/z, K̃) in the first term is a generalisation of (3.6) with
more than one parton becoming unresolved. Explicitly, it reads:

z = spj + spk + spl
spj + spk + sjk + spl + sjl + skl

,

K̃ = kj + kk + kl − (1− z)kp
z
.

(4.3)

with p the fragmenting parton, j and k the two unresolved partons, and l the other final state
radiator. Such a mapping satisfies the appropriate limits in all double singular configurations.
Moreover, it turns into an NLO phase space mapping in its single unresolved limits, as
required in order to cancel the single unresolved limits of the X0

4 antenna function. The
integral of the tree-level four-particle antenna function over the three-particle phase space

X 0,id.p
4 (z) = 1

[C(ε)]2
∫

dΦ3
q2

2π z
1−2εX0

4

(
kid.
p , kj , kk, kl

)
, (4.4)

reappears at the virtual-virtual level; its integration is discussed in section 5.2.
The subtraction terms with two unresolved partons almost colour-unconnected (dσ̂S,c)

or colour-unconnected (dσ̂S,d) do not require new ingredients: they contain products of
tree-level three-parton antenna functions or fragmentation antenna functions in the final-
final kinematics. They appear, after integration, at the real-virtual or at the virtual-virtual
level, as the product of an integrated antenna function X 0

3 with an unintegrated antenna
function X0

3 or as a product of two X 0
3 , respectively. In order to avoid oversubtraction

of large-angle soft gluon radiation, additional soft antenna functions Sajc [62] are used to
construct dσ̂S,e; in such soft antenna functions, the hard momenta a and c can be arbitrary
on-shell momenta in the initial or final state. The integral of the soft antenna function in
the final-final kinematics is given in [62], whereas in the initial-final kinematics in [44, 59].
Given the freedom we have in the choice of the hard momenta of the soft antenna function,
we can use the known results in processes with fragmentation as well.

At the real-virtual level, we need to remove the explicit infrared poles of the one-
loop matrix element and to also subtract its single unresolved limit. The former purpose
is accomplished by the integral of dσ̂S,a

p , which combined with mass factorisation terms
(see below), results in dσ̂T,a

p . The latter purpose requires the introduction of a new
subtraction term:

dσ̂T,b,id.p
p,j = NRV dΦn+1 (k1, . . . , kn+1;Q) 1

Sn+1
J
({
. . . , k̃p, K̃, . . .

}
n
, η z k̃p

)
×
[
X0

3 (kp, kj , kk) M1
n

(
k1, . . . , k̃p, K̃, . . . , kn+1

)

+X1
3 (kp, kj , kk) M0

n

(
k1, . . . , k̃p, K̃, . . . , kn+1

) ]
, (4.5)
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with NRV = NBC(ε)2/C(ε), and where we have used the NLO momentum mapping (3.6).
In here, M1

n is the one-loop reduced matrix element and X1
3 is the one-loop three-parton

antenna function in the final-final kinematics, whose integral over the two-particle phase
space is denoted as

X 1,id.p
3 (z) = 1

C(ε)

∫
dΦ2

q2

2π z
1−2εX1

3

(
kid.
p , kj , kk

)
; (4.6)

it is reintroduced at the virtual-virtual level. Its integration is presented in section 5.3. In
order to assemble dσ̂T,a

p and dσ̂T,b
p , one also needs the real-virtual mass factorisation term:

dσ̂MF,RV
p (η) = −NRV

∑
h

∫
dz µ−2ε

a Γ(1)
p←h(z)

(
dσ̂R

h (η z)− dσ̂S
h(η z)

)
, (4.7)

which contributes both to dσ̂T,a
p and dσ̂T,b

p . The last piece needed for the subtraction at
the real-virtual level is dσ̂T,c, which results from the integration of dσ̂S,c and dσ̂S,e, plus
additional terms to ensure an IR finite contribution, which are added back at the double
virtual level.

At the virtual-virtual level, there are no implicit infrared divergences; the explicit poles
of the two-loop matrix element are canceled by the integrated form of the appropriate
subtraction terms, together with the double virtual mass factorisation term:

dσ̂MF,VV
p (η) = −NVV

∑
h

∫
dz µ−2ε

a

[
Γ(2)
p←h(z) dσ̂B

h (η z)

+ Γ(1)
p←h(z)

(
dσ̂V

h (η z)− dσ̂T
h (η z)

)]
, (4.8)

with NVV = NBC(ε)2, to result in dσ̂U
p , and Γ(2)

p←h are the colour-stripped version of the
next-to-leading order splitting kernels defined in (A.8).

5 Integration of fragmentation antenna functions

The integration of the X0
3 , X0

4 and X1
3 fragmentation antenna functions is closely related

to the integration of the corresponding initial-final antenna functions described in [58, 59].

5.1 Integration of NLO antenna functions

According to the definition of the X 0,id.p
3 given in (3.11), we integrate the antenna function

over the two-particle phase space with kinematics

q + (−kp)→ k1 + k2 , (5.1)

with s12 = (q − kp)2 = q2(1− z) and

z = 2 kp · q
q2 . (5.2)
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The fragmenting parton kp may be regarded as an initial state parton with negative four-
momentum, and we are then looking at the 1→ 3 process with one identified parton as a
2→ 2 scattering process with rescaled invariant mass. By inserting the explicit expression
for the two-particle phase space, (3.11) reduces to a simple one-dimensional integral

X 0,id.p
3 (z) = z1−2ε (1− z)−ε

(
q2

4

)1−ε
eγε

Γ (1− ε)

∫ +1

−1
dv
(
1− v2

)−ε
X0

3 (s12, s1p, s2p)

(5.3)
where

s1p = q2

2 z(1− v) , s2p = q2

2 z(1 + v) . (5.4)

After integration, the (1− z)−ε factor, which regulates end-point soft divergences, can be
safely expanded in term of distributions, according to

(1− z)−1+kε = − 1
kε
δ(1− z) +

∑
n

(−kε)n

n! Dn(1− z) (5.5)

with
Dn(1− z) =

( logn(1− z)
1− z

)
+
. (5.6)

Explicit expressions for the integrated X 0,id.p
3 antenna functions are provided in appendix B.

We note that they can be related to the inclusively integrated initial-final antenna functions
derived in [58] by replacing

Q2 → −q2 , x→ 1/z , (5.7)

as can be evidenced form (5.1).

5.2 Integration of NNLO real-real antenna functions

Similarly to the steps preformed in the previous section, we integrate the X0
4 over a

three-particle phase space with 2→ 3 kinematics

q + (−kp)→ k1 + k2 + k3 . (5.8)

The integration is performed with well-known techniques, based on multi-loop calculation
technology. Namely, we rewrite the three-particle phase space in terms of cut propagators,
in order to express it as a cut through a three-loop vacuum polarisation diagram. Then, we
reduce the occurring integrals as linear combinations of a smaller set of master integrals,
with the help of Reduze2 [63]. We managed to reduce to the same set of 9 master integrals
which appears in the initial-final case, see section 4 of [59]. This is ultimately due to the
fact that the processes

q + (−kp)→ k1 + k2 + k3 , q2 > 0 , (q − kp)2 = (1− z) q2 (5.9)

and

q + ki → k1 + k2 + k3 , q2 = −Q2 < 0 , (q + ki)2 = (1− x)/xQ2 (5.10)

feature the same kinematics with a different definition of invariants.
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The master integrals have been calculated by exploiting the differential equations
method [64]. We first use epsilon [65] to find the canonical form [66, 67] of the differential
equations. Once expressed in the canonical form, the differential equations can be iteratively
solved in term of the harmonic polylogarithms (HPLs) [68], with unknown boundary
conditions. In order to impose the boundary conditions, and at the same time check the
structure of the master integrals, we can fully exploit the similarity between (5.9) and (5.10):
the master integrals for real-real fragmentation antenna functions are related to the master
integrals for initial-final antenna functions, reported in appendix A.1 of [59], by means of
the replacement (5.7), which amounts to an analytic continuation. In particular, HPLs of
argument 1/z are expressed as HPLs of argument z by means of an iterative procedure
(see for instance section 6 of [68]), which is implemented in the Mathematica package
HPL [69, 70]. Full consistency has been found with the master integrals found by means
of the differential equation approach, after adjustment of some typographical mistakes, in
particular in (A.9) of [59] the endpoint term should be corrected as

ε

(
256 ζ3 −

43
18π

4
)
→ ε

(
−74

45π
4
)
.

Once the explicit expressions for the master integrals have been found, they can be
substituted inside the antenna functions. At this point, the factor (1− z)−2ε can be safely
expanded in distributions according to (5.5). The whole workflow of the calculation has
been implemented in FORM [71].

In table 1 we list all the integrated tree-level four-parton antenna functions; they differ
by the nature of the identified particle and the hard radiators they collapse to. Some
momentum permutations of identified particles in A0,id.p

4 , B0,id.p
4 , D0,id.p

4 , Ẽ0,id.p
4 and in all

gluon-gluon antenna functions are not shown in table 1, because the integrated antenna
functions turn out to be the same: this is ultimately due to the symmetries present in the
unintegrated antenna functions under permutation of partons of the same flavour. Instead
in the case of C0,id.p

4 and E0,id.p
4 different identified particles lead to different results at

the integrated level: hence they are distinguished by a label indicating the fragmenting
parton. Explicit expressions for the integrated X 0,id.p

4 antenna functions are provided as
supplementary material attached to this paper.

5.3 Integration of NNLO real-virtual antenna functions

The integration of the X1
3 fragmentation antenna is performed over a two-particle phase

space with 2→ 2 kinematics, as in section 5.1. The X1
3 antenna functions are expressed in

terms of rational functions of invariants multiplying one-loop bubble and box integrals. In
order to use the same techniques of section 5.2, we rewrite the one-loop integrals in terms
of propagators, and then we write the two-particle phase space integral of the one-loop
antenna functions as a three-loop integral with two cut propagators. By doing so, we reduce
to the same set of 6 master integrals of the initial-final case [59]. The master integrals are
determined with the differential equation method, with boundary conditions obtained by
internal consistency of the set of equations, or by a direct calculation at z = 1. Three of
them contain as subdiagram a one-loop bubble, one of them a one-loop triangle (that can
be expressed in terms of one-loop bubbles), and two of them a one-loop box.
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Hard radiators Notation Integral of In the supplementary material

Quark-quark

A0,id.q
4 A0

4(1id.
q , 3g, 4g, 2q̄) qA40

A0,id.g
4 A0

4(1q, 3id.
g , 4g, 2q̄) gA40

Ã0,id.q
4 Ã0

4(1id.
q , 3g, 4g, 2q̄) qA40t

Ã0,id.g
4 Ã0

4(1q, 3id.
g , 4g, 2q̄) gA40t

B0,id.q
4 B0

4(1id.
q , 3q′ , 4q̄′ , 2q̄) qB40

B0,id.q′

4 B0
4(1q, 3id.

q′ , 4q̄′ , 2q̄) qpB40

C0,id.q̄
4 C0

4 (1q, 3q, 4q̄, 2id.
q̄ ) qbC40

C0,id.q1
4 C0

4 (1id.
q , 3q, 4q̄, 2q̄) q1C40

C0,id.q3
4 C0

4 (1q, 3id.
q , 4q̄, 2q̄) q3C40

Quark-gluon

D0,id.q
4 D0

4(1id.
q , 2g, 3g, 4g) qD40

D0,id.g2
4 D0

4(1q, 2id.
g , 3g, 4g) g2D40

D0,id.g3
4 D0

4(1q, 2g, 3id.
g , 4g) g3D40

E0,id.g
4 E0

4(1q, 2q′ , 3q̄′ , 4id.
g ) gE40

E0,id.q1
4 E0

4(1id.
q , 2q′ , 3q̄′ , 4g) q1E40

E0,id.q2
4 E0

4(1q, 2id.
q′ , 3q̄′ , 4g) q2E40

E0,id.q3
4 E0

4(1q, 2q′ , 3id.
q̄′ , 4g) q3E40

Ẽ0,id.g
4 Ẽ0

4(1q, 2q′ , 3q̄′ , 4id.
g ) gE40t

Ẽ0,id.q1
4 Ẽ0

4(1id.
q , 2q′ , 3q̄′ , 4g) q1E40t

Ẽ0,id.q2
4 Ẽ0

4(1q, 2id.
q′ , 3q̄′ , 4g) q2E40t

Gluon-gluon

F0,id.g
4 F 0

4 (1g, 3id.
g , 4g, 2g) gF40

G0,id.g
4 G0

4(1id.
g , 3q, 4q′ , 2g) gG40

G0,id.q
4 G0

4(1g, 3id.
q , 4q′ , 2g) qG40

G̃0,id.g
4 G̃0

4(1id.
g , 3q, 4q′ , 2g) gG40t

G̃0,id.q
4 G̃0

4(1g, 3id.
q , 4q′ , 2g) qG40t

H0,id.q
4 Ĥ0

4 (1id.
q , 3q̄, 4q′ , 2q̄′) qH40

Table 1. Integrated tree-level four-parton antenna functions X 0,id.p
4 .

In the real-virtual case, the master integrals for fragmentation antenna functions
cannot be inferred from the master integrals for initial-final antenna functions, reported in
appendix A.2 of [59], since the analytic continuation from (5.10) to (5.9) acts differently
on the different bubble and box integrals and must be performed prior to the phase space
integration. Consequently, a simple relationship between space-like and time-like real-virtual
master integrals can not be established.

The integrated one-loop squared matrix elements are subsequently renormalised, as
described in detail in section 4.2 of [59]: the strong coupling constant renormalisation
is carried out in the MS scheme at fixed scale µ2 = q2; in the case of quark-gluon and
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Hard radiators Notation Integral of In the supplementary material

Quark-quark

A1,id.q
3 A1

3(1id.
q , 3g, 2q̄) qA31

A1,id.g
3 A1

3(1q, 3id.
g , 2q̄) gA31

Ã1,id.q
3 Ã1

3(1id.
q , 3g, 2q̄) qA31t

Ã1,id.g
3 Ã1

3(1q, 3id.
g , 2q̄) gA31t

Â1,id.q
3 Â1

3(1id.
q , 3g, 2q̄) qA31h

Â1,id.g
3 Â1

3(1q, 3id.
g , 2q̄) gA31h

Quark-gluon

D1,id.q
3 D1

3(1id.
q , 3g, 2g) qD31

D1,id.g
3 D1

3(1q, 3id.
g , 2g) gD31

D̂1,id.q
3 D̂1

3(1id.
q , 3g, 2g) qD31h

D̂1,id.g
3 D̂1

3(1q, 3id.
g , 2g) gD31h

E1,id.q
3 E1

3(1id.
q , 3q′ , 2q̄′) qE31

E1,id.q′

3 E1
3(1q, 3id.

q′ , 2q̄′) qpE31

Ẽ1,id.q
3 Ẽ1

3(1id.
q , 3q′ , 2q̄′) qE31t

Ẽ1,id.q′

3 Ẽ1
3(1q, 3id.

q′ , 2q̄′) qpE31t

Ê1,id.q
3 Ê1

3(1id.
q , 3q′ , 2q̄′) qE31h

Ê1,id.q′

3 Ê1
3(1q, 3id.

q′ , 2q̄′) qpE31h

Gluon-gluon

F1,id.g
3 F 1

3 (1g, 3id.
g , 2g) gF31

F̂1,id.g
3 F̂ 1

3 (1g, 3id.
g , 2g) gF31h

G1,id.g
3 G1

3(1id.
g , 3q, 2q′) gG31

G1,id.q
3 G1

3(1g, 3id.
q , 2q′) qG31

G̃1,id.g
3 G̃1

3(1id.
g , 3q, 2q′) gG31t

G̃1,id.q
3 G̃1

3(1g, 3id.
q , 2q′) qG31t

Ĝ1,id.g
3 Ĝ1

3(1id.
g , 3q, 2q′) gG31h

Ĝ1,id.q
3 Ĝ1

3(1g, 3id.
q , 2q′) qG31h

Table 2. Integrated one-loop three-parton antenna functions X 1,id.p
3 .

gluon-gluon antenna functions, the effective operators used to couple an external current
to the parton radiators are also renormalised. Finally, in order to obtain the integrated
one-loop antenna functions, we subtract from the renormalised one-loop squared matrix
elements the corresponding integrated tree-level antenna function multiplied with the virtual
one-loop correction to the hard radiator vertex.

In table 2 we list all the integrated one-loop three-parton antenna functions; they differ
by the nature of the identified particle and the hard radiators they collapse to. Explicit
expressions for the integrated X 1,id.p

3 antenna functions are provided as supplementary
material attached to this paper.

– 14 –



J
H
E
P
1
0
(
2
0
2
2
)
1
3
6

6 Coefficient functions for hadron production at e+e− colliders

6.1 Identified hadrons in γ/Z boson decay

Next-to-next-to-leading order corrections to the coefficient functions contributing to the
longitudinal and transverse one-hadron energy spectrum in e+e− annihilation have been
first derived in [11, 72] and independently rederived in [12]. Since the antenna functions
are extracted from double-real and real-virtual matrix elements for γ∗ → qq̄ decay [55], by
combining integrated antenna functions with quark form factors, we are in the position to
calculate these coefficient functions in an independent manner. This comparison provides a
strong check on the correctness of our integrated A-type, B-type and C-type fragmentation
antenna functions, and indirectly on our whole procedure.

The cross section differential in the energy fraction x = 2Ep/
√
s of the identified hadron

is usually written as

dσH

dx =
∫ 1

x

dz
z

NF∑
p=1

σ(0)
p

[
DH

S

(
x

z

)
CS
q (z) +DH

g

(
x

z

)
CS
g(z) +DH

NS,p

(
x

z

)
CNS
q (z)

]
,

(6.1)
where we have introduced the singlet (S) and non-singlet (NS) combination of fragmentation
densities, defined as

DH
S = 1

NF

NF∑
p=1

(
DH
p +DH

p̄

)
, DH

NS,p = DH
p +DH

p̄ −DH
S . (6.2)

It is customary to also define the purely singlet (PS) coefficient function CPS
q = CS

q − CNS
q .

Higher order QCD corrections to the C coefficient functions originate from radiation
in the final state. All electroweak effects factor out of the coefficient functions, and are
included in the pointlike total cross section σ(0)

p for the process e+ + e− → p+ p̄, which in
the simple QED-only case is equal to the well-known e2

pN4πα2/(3s).
The coefficient functions C are the mass-factorised and UV-renormalised version of

the parton fragmentation functions F̂ , whose expansion in the (unrenormalised) strong
coupling constant reads

F̂ = F̂ (0) +
(
α̂s
4π

)
Sε

(
µ2

0
Q2

)ε
F̂ (1) +

(
α̂s
4π

)2
S2
ε

(
µ2

0
Q2

)2ε

F̂ (2) +O
(
α̂3
s

)
, (6.3)

where α̂s is the bare coupling, Sε = (4πe−γE )ε and µ2
0 is the mass parameter of dimensional

regularisation. The parton fragmentation functions are obtained as projections of the parton
structure tensor Ŵµν onto its longitudinal (F̂L), transverse (F̂T ) and asymmetric (F̂A)
components. They are in one-to-one correspondence with the homonymous contributions in
the angular distribution of the detected hadron,

d2σH

dx d cos θ = 3
8
(
1 + cos2 θ

) dσHT
dx + 3

4 sin2 θ
dσHL
dx + 3

4 cos θdσHA
dx . (6.4)

Since we are fully inclusive over the angle of emission of the detected hadron, we consider
the trace Ŵµ

µ , which is related to the combination

− z

d− 2Ŵ
µ
µ = F̂T + 2

d− 2 F̂L ≡ F̂U . (6.5)
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The chosen normalisation is such that, at leading order, we have

F̂ (0)
U,q = F̂ (0)

T,q = δ(1− z) , F̂ (0)
L,q = 0 , F̂ (0)

U,g = F̂ (0)
T,g = F̂ (0)

L,g = 0 . (6.6)

The relationships we observe between the parton fragmentation functions and the integrated
fragmentation antenna functions read at NLO

1
CF
F̂ (1)
U,q = 4A0,id.q

3 + 8 δ(1− z)V (1)
q |N , (6.7)

1
CF
F̂ (1)
U,g = 4A0,id.g

3 , (6.8)

and at NNLO
1
CF
F̂NS,(2)
U,q |N = 2A0,id.q

4 + 8A1U,id.q
3 + δ(1− z)V (2)

q |N , (6.9)

1
CF
F̂NS,(2)
U,q |NF

= 2B0,id.q
4 + δ(1− z)V (2)

q |NF
, (6.10)

1
CF
F̂NS,(2)
U,q |1/N = −Ã0,id.q

4 − 8 Ã1U,id.q
3 − 4 C0,id.q̄

4

−2 C0,id.q1
4 − 2 C0,id.q3

4 + δ(1− z)V (2)
q |1/N , (6.11)

1
CFNF

F̂PS,(2)
U,q = 2B0,id.q′

4 , (6.12)

for an identified quark and
1

CFNF
F̂ (2)
U,g|N = 4A0,id.g

4 + 8A1U,id.g
3 , (6.13)

1
CFNF

F̂ (2)
U,g|1/N = −2 Ã0,id.g

4 − 8 Ã1U,id.g
3 , (6.14)

for an identified gluon, respectively. The notation is such that X|Y denotes the part of X
proportional to Y . The superscript U denotes the unrenormalised one-loop squared matrix
elements, see section 5.3. Finally, the V (1)

q and V (2)
q terms are given by

V (1)
q = <

[
∆
(
q2, 1

)]
F

(1)
U,q , (6.15)

V (2)
q =

(
F

(1)
U,q

)2
+ 2<

[
∆
(
q2, 2

)]
F

(2)
U,q , (6.16)

where F (1)
U,q and F

(2)
U,q are the unrenormalised first and second order coefficients of the

quark form factor respectively, with the normalisation fixed by (6.3) and by requiring that
F

(0)
U,q = 1, and

∆
(
q2, κ

)
=
(
−sgn

(
q2
)
− i0

)−κε
. (6.17)

Explicit expressions for F (1)
U,q and F (2)

U,q can be found in [73, 74].
In order to compare against the results of [11, 72], several convolutions between

splitting functions and coefficient functions needed to be computed; the Mathematica
package MT [75] has been extensively used. Eqs. (6.7)–(6.14) are in full agreement with
the results of [11, 72] at NLO and NNLO at all colour levels.
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6.2 Identified hadrons in Higgs boson decay to gluons

The gluon-gluon antenna functions F , G and H have been derived [57] from the decay
process H → gg at NLO and NNLO, in the effective theory where the Higgs couples
directly to gluons, which is valid in the limit of infinitely massive quarks. The second-order
coefficient functions for the one-hadron inclusive Higgs decay in such an effective theory
were first obtained in [14]. Here we are in the position to compare suitable combinations of
integrated antenna functions against the results of [14], in a very similar way to what we
have done in section 6.1 for the γ∗/Z → qq̄ decay.

Since the Higgs boson is a scalar, the parton fragmentation functions have only one
component, T̂i, where a quark (i = q) or a gluon (i = g) is identified. T̂i admits an expansion
similar to (6.3),

T̂i = T̂ (0)
i +

(
αs
4π

)(
µ2
R

Q2

)ε
T̂ (1)
i +

(
αs
4π

)2
(
µ2
R

Q2

)2ε

T̂ (2)
i +O

(
α3
s

)
, (6.18)

where we choose to adopt an expansion in terms of the renormalised coupling constant αs,
with µ2

R the renormalisation scale, for ease of comparison against [14]. The normalisation is
such that

T̂ (0)
q = 0 , T̂ (0)

g = δ(1− z) . (6.19)

At NLO we find the following relationships:

1
TF
T̂ (1)
q = 8G0,id.q

3 , (6.20)

T̂ (1)
g |N = 2F0,id.g

3 + 4 δ(1− z)V (1)
g |N , (6.21)

T̂ (1)
g |NF

= 2G0,id.g
3 + 4 δ(1− z)V (1)

g |NF
, (6.22)

whereas at NNLO we obtain
1
TF
T̂ (2)
q |N = 4G0,id.q

4 + 16G1R,id.q
3 , (6.23)

1
TF
T̂ (2)
q |1/N = −2 G̃0,id.q

4 − 16 G̃1R,id.q
3 + 4J̃ 0,id.q

4 , (6.24)

1
TF
T̂ (2)
q |NF

= 4H0,id.q
4 + 16 Ĝ1R,id.q

3 , (6.25)

for the quark fragmentation function and

T̂ (2)
g |N2 = F0,id.g

4 + 4F1R,id.g
3 + 4 δ(1− z)V (2)

g |N2 , (6.26)

T̂ (2)
g |NNF

= 2G0,id.g
4 + 4G1R,id.g

3 + 4 F̂1R,id.g
3 + 4 δ(1− z)V (2)

g |NNF
, (6.27)

T̂ (2)
g |NF /N = −G̃0,id.g

4 − 4 G̃1R,id.g
3 + 4 δ(1− z)V (2)

g |NF /N , (6.28)

T̂ (2)
g |N2

F
= 4 Ĝ1R,id.g

3 + 4 δ(1− z)V (2)
g |N2

F
, (6.29)

for the gluon fragmentation function, respectively. The superscript R denotes the renor-
malised one-loop squared matrix elements, i.e. the integrated one-loop three-particle antenna
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functions before the subtraction of the integrated tree-level antenna function multiplied
with the virtual one-loop correction to the hard radiator vertex, see section 5.3. V (1)

g and
V

(2)
g are related to the gluon form factor, and they are defined in full analogy with the

quark case (see (6.15) and (6.16), respectively). Finally, the antenna function J̃ 0,id.q
4 , which

appears in (6.24), comes from the infrared-finite interference of four quark final states with
identical quark flavour (see [59]). Its expression is:

J̃ 0,id.q
4 =

(
−9

4 + 7
2z −

7
2z

2 +
(
2− 4z + 4z2

)
ζ3

)
+O(ε) . (6.30)

As it is finite in all limits, it does not appear in table 1.
Eqs. (6.20)–(6.29) are in full agreement with the results of [14] at NLO and NNLO at

all colour levels.

7 Infrared structure of e+e− → 3 jets with fragmentation at NLO

As an example of the formalism, in this section we present explicit expressions for the
antenna subtraction terms for one identified hadron in the e+e− → 3 jets process, as studied
by OPAL [35], at NLO. We keep the notation as close as possible to [62], where the
subtraction terms for the e+e− → 3 jets process without fragmentation can be found.

The short-distance cross sections with one identified parton p = q, g, q̄ for three-jet
production at the leading order are given by:

dσ̂B
q = N3 dΦ3 (p1, p2, p3;Q) A0

3

(
1id.
q , 3g, 2q̄

)
J

(3)
3 ({p1, p2, p3} ; ηp1) , (7.1)

dσ̂B
q̄ = N3 dΦ3 (p1, p2, p3;Q) A0

3

(
1q, 3g, 2id.

q̄

)
J

(3)
3 ({p1, p2, p3} ; ηp2) , (7.2)

dσ̂B
g = N3 dΦ3 (p1, p2, p3;Q) A0

3

(
1q, 3id.

g , 2q̄
)
J

(3)
3 ({p1, p2, p3}; ηp3) , (7.3)

with N3 a normalisation factor and A0
3 the tree-level matrix element squared (which coincides

with the antenna function denoted with the same symbol). For ease of readability, we denote
the identified particle with a superscript (id.), even though it is also indicated explicitly
as argument in the jet function. We consider the NLO corrections to eqs. (7.1)–(7.3) by
assuming the flavour of q as fixed. New quark flavours appearing at NLO are denoted as q′,
by also allowing for the possibility q = q′. At the end we can get the full NLO cross section
for e+e− → 3 jets by summing over all possible tree-level quark flavours.

7.1 Real level

At NLO, we can have three different four-parton final states: qq̄gg, qq̄q′q̄′ (non-identical
quarks) and qq̄qq̄ (identical quarks). The four-parton real radiation contribution to the
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NLO cross section when the quark q is identified is

dσ̂Rq =
{[

N

2
(
A0

4

(
1id.
q , 3g, 4g, 2q̄

)
+A0

4

(
1id.
q , 4g, 3g, 2q̄

))

− 1
2N Ã0

4

(
1id.
q , 3g, 4g, 2q̄

)
+NFB

0
4

(
1id.
q , 3q′ , 4q̄′ , 2q̄

)

− 1
N

(
C0

4

(
1id.
q , 3q, 4q̄, 2q̄

)
+ C0

4

(
2q̄, 4q̄, 3q, 1id.

q

)) ]
J

(4)
3 ({p1, . . . , p4}; ηp1)

+
[
B0

4

(
1q, 3id.

q , 4q̄, 2q̄
)
− 1
N

(
C0

4

(
1q, 3id.

q , 4q̄, 2q̄
)

+ C0
4

(
2q̄, 4q̄, 3id.

q , 1q
))]

× J (4)
3 ({p1, . . . , p4}; ηp3)

}
N4 dΦ4(p1, . . . , p4;Q) , (7.4)

whereas the contribution when q′ is identified is given by

dσ̂Rq′ =
{
B0

4

(
1q, 3id.

q′ , 4q̄′ , 2q̄
)
J

(4)
3 ({p1, . . . , p4} ; ηp3)

}
N4 dΦ4 (p1, . . . , p4;Q) . (7.5)

The contributions when the anti-quark q̄ or q̄′ are identified are similar to (7.4) and (7.5),
respectively. Finally, the contribution with a gluon identified reads

dσ̂Rg =
{ ∑

(i,j)∈P (3,4)

[
N

2
(
A0

4

(
1q, iid.g , jg, 2q̄

)
+A0

4

(
1q, jg, iid.g , 2q̄

))
− 1

2N Ã0
4

(
1q, iid.g , jg, 2q̄

)]

× J (4)
3 ({p1, . . . , p4} ; ηpi)

}
N4 dΦ4 (p1, . . . , p4;Q) . (7.6)

The subtraction terms for the contribution when the quark q is identified reads

dσ̂Sq = dσ̂Sq(q) + dσ̂Sg(q) , (7.7)

where in the subtraction term dσ̂Sq(q) the mapped particle in the reduced matrix element
has the same flavour as the identified particle, whereas in the subtraction term dσ̂Sg(q) the
flavour of the parton in the reduced matrix element is different from the flavour of the
particle in the antenna, called identity changing (IC) term. Explicit expressions for the two
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subtraction terms are

dσ̂Sq(q) =N4 dΦ4(p1, . . . ,p4;Q)

×
{ ∑

(i,j)∈P (3,4)

[
N

2 d0
3

(
1id.
q , ig, jg

)
A0

3

(
1̃q, (̃ij)g,2q̄

)
J

(3)
3 ({1̃q, (̃ij)g,2q̄};ηp1)

+N

2 d0
3 (2q̄, ig, jg)A0

3

(
1id.
q , (̃ji)g, (̃2i)q̄

)
J

(3)
3

({
1q, (̃ji)g, (̃2i)q̄

}
;ηp1

)

− 1
2N A0

3

(
1id.
q , ig,2q̄

)
A0

3

(
1̃q, jg, (̃2i)q̄

)
J

(3)
3

(
{1̃q, jg, (̃2i)q̄};ηp1

)]

+NF

[
E0

3

(
1id.
q ,3q′ ,4q̄′

)
A0

3

(
1̃q, (̃34)g,2q̄

)
J

(3)
3 ({1̃q, (̃34)g,2q̄};ηp1)

+E0
3
(
2q̄,3q′ ,4q̄′

)
A0

3

(
1id.
q , (̃34)g, (̃24)q̄

)
J

(3)
3

({
1q, (̃34)g, (̃24)q̄

}
;ηp1

)]}
,

(7.8)

and

dσ̂Sg(q) = N4 dΦ4 (p1, . . . , p4;Q)

×
[
E0

3

(
1q, 3id.

q , 4q̄
)
A0

3

(
(̃14)q, 3̃g, 2q̄

)
J

(3)
3

({
(̃14)q, 3̃g, 2q̄

}
; ηp3

)]
. (7.9)

In eqs. (7.8)–(7.9) we have denoted the mapped momenta in the reduced matrix element in
two different ways, according to the type of mapping we are applying. Given three particles
i,j and k, when none of them is undergoing fragmentation, we adopt the standard NLO
final-final mapping, indicated as (̃ij) and (̃jk) e.g. in the second line of (7.8); when one of
them is fragmenting, say i, we use the NLO fragmentation mapping of (3.6), indicated as ĩ
and (̃jk) e.g. in the first line of (7.8). The subtraction terms for the contribution when the
quark q′ is purely identity-changing (since there is no q′ at the Born level), and has the
same structure as (7.9):

dσ̂q′ ≡ dσ̂Sg(q′) = N4 dΦ4(p1, . . . , p4;Q)

×
[
E0

3

(
1q, 3id.

q′ , 4q̄′

)
A0

3

(
(̃14)q, 3̃g, 2q̄

)
J

(3)
3

({
(̃14)q, 3̃g, 2q̄

}
; ηp3

)]
.

(7.10)

Notice that, since the antenna function E0
3 contains only the 3 ‖ 4 collinear limit, we are

free to choose as third momentum in the antenna either the particle 1 or 2.
Finally, the subtraction term for the contribution where the gluon is identified is given

by the sum of three contributions

dσ̂Sg = dσ̂Sg(g) + dσ̂Sq(g) + dσ̂Sq̄(g) , (7.11)
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where

dσ̂S
g(g) =N4 dΦ4(p1, . . . ,p4;Q)

×
∑

(i,j)∈P (3,4)

{
N

2 d0
3,g→g

(
1q, jg, i

id.
g

)
A0

3

(
(̃1j)q, ĩg,2q̄

)
J

(3)
3

({
(̃1j)q, ĩg,2q̄

}
;ηpi

)

+N

2 d0
3,g→g

(
2q̄, jg, i

id.
g

)
A0

3

(
1q, ĩg, (̃2j)q̄

)
J

(3)
3

({
1q, ĩg, (̃2j)q̄

}
;ηpi

)

− 1
2N A0

3 (1q, jg,2q̄)A0
3

(
(̃1j)q, i

id.
g , (̃2j)q̄

)
J

(3)
3

({
(̃1j)q, ig, (̃2j)q̄

}
;ηpi

)]}
,

(7.12)

dσ̂S
q(g) =N4 dΦ4(p1, . . . ,p4;Q)

×
∑

(i,j)∈P (3,4)

{
N

2 d0
3,q→g

(
1q, i

id.
g , jg

)
A0

3

(̃
iq, (̃1j)g,2q̄

)
J

(3)
3

({
ĩq, (̃1j)g,2q̄

}
;ηpi

)

− 1
2N d0

3,q→g

(
1q, i

id.
g , jg

)
A0

3

(̃
iq, (̃1j)g,2q̄

)
J

(3)
3

({
ĩq, (̃1j)g,2q̄

}
;ηpi

)]}
,

(7.13)

and

dσ̂S
q̄(g) =N4 dΦ4(p1, . . . ,p4;Q)

×
∑

(i,j)∈P (3,4)

{
N

2 d0
3,q→g

(
2q̄, i

id.
g , jg

)
A0

3

(
1q, (̃2j)g, ĩq̄

)
J

(3)
3

({
1q, (̃2j)g, ĩq̄

}
;ηpi

)

− 1
2N d0

3,q→g

(
2q̄, i

id.
g , jg

)
A0

3

(
1q, (̃2j)g, ĩq̄

)
J

(3)
3

({
1q, (̃2j)g, ĩq̄

}
;ηpi

)]}
.

(7.14)

Note that in eqs. (7.13)–(7.14), in order to remove the quark-gluon collinear divergence in
the photon-like matrix element Ã0

4, we have used the sub-antenna d0
3,q→g(kq, iid.g , jj), which

contains only the collinear limit i ‖ k (see comment after (B.9)).

7.2 Virtual level

The virtual one-loop contribution to γ∗ → qq̄g is

dσ̂V = N3 dΦ3 (p1, . . . , p3;Q) J (3)
3 (p1, p2, p3)

×
(
N
[
A1

3(1q, 3g, 2q̄) +A1
2(s123)A0

3(1q, 3g, 2q̄)
]

− 1
N

[
Ã1

3(1q, 3g, 2q̄) +A1
2(s123)A0

3(1q, 3g, 2q̄)
]

+NF Â
1
3(1q, 3g, 2q̄)

)
, (7.15)

where any of the three particles can be identified, thus generating the three terms dσ̂Vq ,
dσ̂Vq̄ and dσ̂Vg . The infrared behaviour of the virtual matrix elements reads

Poles
(
A1

3 (1q, 3g, 2q̄)
)

= 2
(
I(1)
qg (ε, s13) + I(1)

qg (ε, s23)− I(1)
qq̄ (ε, s123)

)
A0

3 (1, 3, 2) , (7.16)
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Poles
(
Ã1

3 (1q, 3g, 2q̄)
)

= 2
(
I(1)
qq̄ (ε, s12)− I(1)

qq̄ (ε, s123)
)
A0

3 (1, 3, 2) , (7.17)

Poles
(
Â1

3 (1q, 3g, 2q̄)
)

= 2
(
I(1)
qg,F (ε, s13) + I(1)

qg,F (ε, s23)
)
A0

3 (1, 3, 2) , (7.18)

Poles
(
A1

2 (s123)
)

= 2I(1)
qq̄ (ε, s123) , (7.19)

where I(1)
xy are the colour-ordered singularity operators, whose expressions are reported in

eqs. (B.1)–(B.6). The integral of the subtraction term dσ̂S
q reads:∫

1
dσ̂Sq(q) = N3 dΦ3 (p1, . . . , p3;Q) J (3)

3 ({p1, p2, p3} ; ηp1)

×
[
N

(1
2D

0,id.q
3 (s13, z) + 1

2D
0
3 (s23)

)
− 1
N
A0,id.q

3 (s12, z)

+NF

(
E0,id.q

3 (s13, z) + E0
3 (s23)

) ]
A0

3(1id.
q , 3g, 2q̄) , (7.20)∫

1
dσ̂Sg(q) = N3 dΦ3(p1, . . . , p3;Q) J (3)

3 ({p1, p2, p3}; ηp3)

×E0,id.q′

3 (s13, z)A0
3(1q, 3id.

g , 2q̄) , (7.21)

where in (7.20) we need the integral of the inclusive sub-antenna d0
3, which is given by

one-half the integral D0
3 of the full inclusive antenna D0

3. The integral of the subtraction
term dσ̂S

g reads:∫
1

dσ̂Sg(g) = N3 dΦ3 (p1, . . . , p3;Q) J (3)
3 ({p1, p2, p3} ; ηp3)

×
{
N
[(
D0,id.g

3,g→g (s13, z) +D0,id.g
3,g→g (s23, z)

)]
− 1
N

[
A0

3 (s12)
]}
A0

3

(
1q, 3id.

g , 2q̄
)
,

(7.22)∫
1

dσ̂Sq(g) = N3 dΦ3 (p1, . . . , p3;Q) J (3)
3 ({p1, p2, p3} ; ηp1)

×
{
N
[
D0,id.g

3,q→g (s13, z)
]
− 1
N

[
D0,id.g

3,q→g (s13, z)
]}
A0

3

(
1id.
q , 3g, 2q̄

)
. (7.23)

The integral of dσ̂Sq̄(g) is given by (7.23) with 1↔ 2. Finally the integral of dσ̂Sg(q′) is∫
1

dσ̂Sg(q′) =
∫

1
dσ̂Sg(q) . (7.24)

Given the pole structure of the fully integrated antenna functions [43],

Poles
(
D0

3

(
q2
))

= −4I(1)
qg

(
ε, q2

)
, (7.25)

Poles
(
A0

3

(
q2
))

= −2I(1)
qq̄

(
ε, q2

)
, (7.26)

Poles
(
E0

3

(
q2
))

= −4I(1)
qg,F (ε, q2) , (7.27)

and the explicit expressions of the integrated fragmentation antenna functions X 0,id.p
3

provided in appendix B, we see that most of the poles cancel, except the ones proportional
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to splitting functions, which are removed by means of the mass factorisation counterterms,
such that

Poles
(

dσ̂Vg +
∫

1
dσ̂Sg + dσ̂MF

g

)
= 0 , (7.28)

Poles
(

dσ̂Vq +
∫

1
dσ̂Sq + dσ̂MF

q

)
= 0 , (7.29)

Poles
(∫

1
dσ̂Sq′ + dσ̂MF

q′

)
= 0 , (7.30)

thus yielding an infrared-finite result. Moreover, note that there is a one-to-one correspon-
dence between

∫
dσ̂i(j) and Γ(1)

j←i inside dσ̂MF
j , in the sense that the poles proportional to

splitting kernels in the former are explicitly removed by the latter. In particular, the integral
of IC subtraction terms such as dσ̂Sg(q′) does not have a corresponding virtual contributions
and its infrared poles are removed entirely by the mass factorisation term.

It is instructive to look explicitly at the poles of (7.28), before adding the mass
factorisation term:

Poles
(

dσ̂Vg +
∫

1
dσ̂Sg

)

= N3

∫
dz N

{[
(s13)−ε + (s23)−ε

] (
− 1

2εp
(0)
gg (z)

)
dσ̂B

g (ηz)

+ (s13)−ε
(
− 1

2εp
(0)
gq (z)

)
dσ̂B

q (ηz) + (s23)−ε
(
− 1

2εp
(0)
gq (z)

)
dσ̂B

q̄ (ηz)
}

− 1
N

{
(s13)−ε

(
− 1

2εp
(0)
gq (z)

)
dσ̂B

q (ηz) + (s23)−ε
(
− 1

2εp
(0)
gq (z)

)
dσ̂B

q̄ (ηz)
}

+NF

{[
< (−s13)−ε + < (−s23)−ε

] 1
6εdσ̂B

g (ηz)
}

(7.31)

The last line contains the pole coming from Â1
3, whose singularity structure (7.18) is given

by twice the infrared operator I(1)
qg,F (B.5). Since there is no term coming from the integral

of dσ̂Sg proportional to NF , such a pole is entirely canceled by Γ(1)
gg,F . Note that the ε-poles

in (7.31) appear together with different invariants raised to the (−ε) power i.e. differing by
O(ε), thus allowing for a cancellation of the poles, by leaving the usual logarithms of ratio
of scales as leftover when ε→ 0.

8 Conclusions

In this paper, we have described how identified final-state hadrons can be incorporated in
the antenna subtraction formalism for NNLO calculations, which required the introduction
of fragmentation antenna functions. These functions retain the information on a final-state
parton momentum fraction, in contrast to previously considered antenna functions that
were inclusive in the final state parton momenta.
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In the description of the formalism, we focused on identified hadron production processes
in generic hadronic final states in e+e− annihilation. This restriction is largely for notational
simplicity. The structure of the formalism, which amounts to the introduction of new
subtraction terms for all unresolved configurations that involve the parton that subsequently
fragments into the identified hadron, carries over to electron-hadron and hadron-hadron
collisions, as already demonstrated for identified photons [51] at hadron colliders.

We have outlined the structure of the subtraction terms that are newly required for
unresolved configurations involving an identified final-state parton. In e+e− annihilation,
these are constructed from antenna functions with both radiator partons in the final state
(final-final kinematics). We introduced suitable phase space factorisations and mappings
at NLO and NNLO, which retained the dependence on the momentum fraction z of the
fragmenting parton. The relevant antenna functions have been integrated over the factorised
phase space by leaving z unintegrated, in order to combine with mass factorisation terms at
the virtual, real-virtual and double-virtual level. Since the antenna functions are related to
physical matrix elements [55–57], we have been able to check our integrated results against
known expressions in the literature for single-inclusive coefficient functions in vector boson
and Higgs decay.

The integrated antenna functions are inclusive over unresolved radiation, but in the
context of a subtraction scheme they can be used as local subtraction terms for more
exclusive calculations. For instance, a NNLO calculation of the hadron-in-jet fragmentation
process in three-jet final states in e+e− annihilation, whose NLO subtraction structure
has been detailed in section 7, could be envisaged. Experimental data differential in
xE = Eh/Ejet, where Eh is the energy of the hadron h and Ejet is the energy of the jet to
which it is assigned, have been published, see e.g. [35]. In the latter paper, the experimental
data are compared with NLO calculations, and they fail to describe the full set of results;
a re-analysis of such e+e− data at NNLO accuracy would thus be warranted. Moreover,
the hadron-in-jet data have been proven to provide valuable constraints on fragmentation
functions [36, 37].

The fragmentation antenna functions in final-final kinematics derived here will also
appear in the construction of subtraction terms for processes with identified hadrons in
deep-inelastic scattering or at hadron colliders. In these cases, one (but not two) of the hard
radiators can be in the initial state. The resulting fragmentation antenna functions in initial-
final kinematics were already derived in parts in the context of photon fragmentation up to
NNLO [51], their completion for all parton combinations will be addressed in future work.
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A Time-like mass factorisation kernels

Before factorisation of final-state mass singularities, the physical cross section is written as
the convolution of a bare fragmentation function with the short-distance cross section still
containing final-state collinear divergences: symbolically,

dσ̂ = DB
i ⊗ dσ̂Bi . (A.1)

The bare fragmentation function is related to the physical mass-factorised fragmentation
function by means of

DB
i

(
z, µ2

a

)
=
∑
j

Dj (z)⊗ Γj←i
(
z, µ2

a

)
, (A.2)

where Γj←i are the mass factorisation kernels, with a bold letter to indicate that they
carry colour factors, and µ2

a is the fragmentation scale. The replacement DB
i → Di in (A.1)

generates the mass factorisation terms which are added to the short-distance cross section.
Symbolically, we then have:

DB
i ⊗ dσ̂Bi = Di

(
µ2
a

)
⊗ dσ̂i

(
µ2
a

)
, (A.3)

where now on the right hand side each term retains a dependence on µ2
a, and

dσ̂i
(
z, µ2

a

)
=
(

dσ̂i (z) +
(
αs
2π

)
dσ̂MF,NLO

i

(
z, µ2

a

)
+
(
αs
2π

)2
dσ̂MF,NNLO

i

(
z, µ2

a

))
.

(A.4)
The mass factorisation terms are obtained after an expansion of (A.2), and they read

dσ̂MF,NLO
i = −C (ε)

(
µ2
a

)−ε∑
j

Γ(1)
i←j ⊗ dσ̂LO

j , (A.5)

and

dσ̂MF,NNLO
i = −C (ε)2

(
µ2
a

)−2ε
∑

j

Γ(2)
i←j ⊗ dσ̂LO

j +
∑
j

Γ(1)
i←j ⊗ dσ̂NLO

j

 . (A.6)

The mass factorisation kernels are given by:

Γ(1)
i←j = −1

ε
P(0)
ij , (A.7)

and
Γ(2)
i←j = − 1

2εP
(1)
ij + β0

2ε2 P(0)
ij + 1

2ε2
[
P(0)
ik ⊗P(0)

kj

]
, (A.8)

where P(0) and P(1) are the leading order [6] and next-to-leading order [13, 76, 77] time-like
splitting functions, respectively, whose expression can be found in many places, see e.g. [78].
Time-like splitting functions coincide with the space-like splitting functions at leading order,
but they differ at higher orders.
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Due to the intrinsic colour decomposition of the antenna functions, we need to decompose
the splitting kernels into the N and NF factors, in order to define colour stripped kernels to
be used in the mass factorisation term, along the lines of appendix A of [44]. The one-loop
mass factorisation kernels in the time-like region are the same as the ones in the space-like
region and are given by:

Γ(1)
q←q(z) =

(
N2 − 1
N

)
Γ(1)
qq (z) =

(
N2 − 1
N

) [
− 1

2ε p
(0)
qq (z)

]
, (A.9)

Γ(1)
g←q(z) =

(
N2 − 1
N

)
Γ(1)
gq (z) =

(
N2 − 1
N

) [
− 1

2ε p
(0)
gq (z)

]
, (A.10)

Γ(1)
q←g(z) = Γ(1)

qg (z) = − 1
2ε p

(0)
qg (z) , (A.11)

Γ(1)
g←g(z) = N Γ(1)

gg (z) +NF Γ(1)
gg,F (z) = N

[
−1
ε
p(0)
gg

]
+NF

[
−1
ε
p

(0)
gg,F

]
, (A.12)

where we have exploited CF = (N2 − 1)/(2N) and TR = 1/2. The set of p(0)
ij reads:

p(0)
qq (z) = 3

2δ(1− z) + 2D0(1− z)− 1− z , (A.13)

p(0)
gq (z) = 2

z
− 2 + z , (A.14)

p(0)
qg (z) = 1− 2z + 2z2 , (A.15)

p(0)
gg (z) = 11

6 δ(1− z) + 2D0(1− z) + 2
z
− 4 + 2z − 2z2 , (A.16)

p
(0)
gg,F (z) = −1

3δ(1− z) . (A.17)

The two-loop mass factorisation kernels can be easily assembled according to (A.8); this
is a rather straightforward procedure, so we do not report here the resulting (lengthy)
explicit expressions.

B Integrated NLO fragmentation antenna functions

We report here the integrated form of theX0
3 antenna functions, differential in the momentum

fraction z, as defined in (5.2). We recall the reader that the unintegrated X0
3 antenna

functions can be found in [43]. The discussion is similar to appendix B.2 of [51]. However,
note that compared to [51], we do not have a reference particle and the definition of z is
different (compare (5.2) with (3.10) of [51]): this results in different integrated antenna
functions.
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It is convenient to introduce the NLO colour-ordered singularity operators [43], which
appear in the explicit expressions of the integrated antenna functions:

I(1)
qq̄ (ε, sqq̄) = − eεγ

2Γ(1− ε)

[ 1
ε2

+ 3
2ε

]
<(−sqq̄)−ε , (B.1)

I(1)
qg (ε, sqg) = − eεγ

2Γ(1− ε)

[ 1
ε2

+ 5
3ε

]
<(−sqg)−ε , (B.2)

I(1)
gg (ε, sgg) = − eεγ

2Γ(1− ε)

[ 1
ε2

+ 11
6ε

]
<(−sgg)−ε , (B.3)

I(1)
qq̄,F (ε, sqq̄) = 0 , (B.4)

I(1)
qg,F (ε, sqg) = eεγ

2Γ(1− ε)
1
6ε<(−sqg)−ε , (B.5)

I(1)
gg,F (ε, sgg) = eεγ

2Γ(1− ε)
1
3ε<(−sgg)−ε . (B.6)

The integrated NLO fragmentation antenna functions are reported here up to finite
terms in ε. When they are used in the context of a NNLO calculation, e.g. in the integrated
form of products of tree-level three-parton antenna functions, the knowledge of terms
proportional to ε and ε2 is also required, in order to combine with the poles proportional
to 1/ε and 1/ε2 and result in a finite contribution. Explicit expressions for the integrated
X 0,id.p

3 antenna functions up to O(ε2) are provided as supplementary material attached to
this paper.

At NLO, there is one quark-quark antenna function, A0
3(1q, 2g, 3q̄), symmetric under

exchange of the quark pair. When the quark or anti-quark is identified, we obtain

A0,id.q
3

(
q2, z

)
= −2I(1)

qq̄

(
ε, q2

)
δ (1− z) +

(
q2
)−ε [

− 1
2εp

(0)
qq (z)

+δ(1− z)
(

7
4 + π2

3

)
− 3

4D0(1− z) +D1(1− z)

+ log(z)
(

1 + z2

1− z

)
− 1

2 log(1− z) (1 + z) + 5
4 −

3
4z
]

+O(ε) ,

(B.7)

whereas when the gluon is identified we get

A0,id.g
3

(
q2, z

)
=
(
q2
)−ε [

− 1
ε
p(0)
gq (z) + log(z)

(4
z

+ 2z − 4
)

− log(1− z)
(
−2
z
− z + 2

)]
+O(ε) . (B.8)

In (B.8), there is no infrared singularity operator associated to the qq̄ vertex (as in (B.7)),
because the gluon has to be resolved in order to be identified.

There are two quark-gluon antenna functions, D0
3(1q, 2g, 3g) and E0

3(1q, 2q′ , 3q̄′). The
D0

3 antenna function can be written as a sum of two sub-antenna functions [58]:

D0
3(1q, 2g, 3g) = d0

3,q→g(1q, 2g, 3g) + d0
3,g→g(1q, 3g, 2g) , (B.9)
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where the sub-antenna d0
3,q→g(1, 2, 3) contains the collinear 1 ‖ 2 limit, but not the collinear

1 ‖ 3 limit nor the soft 3 limit; it is very handy in subtracting one single collinear limit — see
for instance its usage in the NLO subtraction terms of section 7. Instead, the sub-antenna
d0

3,g→g(1, 3, 2) is singular in s13 and s23, but not in s12. When we identify the quark, we
integrate the full antenna D0

3, to find

D0,id.q
3

(
q2, z

)
= −4I(1)

qg

(
ε, q2

)
δ(1− z) + (q2)−ε

[
− 1
ε
p(0)
qq (z) + δ(1− z)

(
67
18 + 2π2

3

)

−11
6 D0(1− z) + 2D1(1− z) + log(z)

(
−2 + 4

1− z − 2z
)

− log(1− z)(1 + z) + 17
6 + 5

6z + 1
3z

2
]

+O(ε) . (B.10)

Instead, when we identify the gluon, we integrate the sub-antenna functions introduced
in (B.9). In both cases, we identify the gluon 2. If we integrate d0

3,q→g we obtain

D0,id.g
3,q→g

(
q2, z

)
=
(
q2
)−ε [

− 1
2εp

(0)
gq (z) + log(z)

(
−2 + 2

z
+ z

)
− log(1− z)

(
1− 1

z
− 1

2z
)
− z + 3

4z
2
]

+O(ε) , (B.11)

whereas if we integrate d0
3,g→g we get

D0,id.g
3,g→g

(
q2, z

)
= −2I(1)

qg

(
ε, q2

)
δ(1− z) +

(
q2
)−ε [

− 1
2εp

(0)
gg (z) + δ(1− z)

(
7
4 + π2

3

)

−3
4D0(1− z) +D1(1− z) + log(z)

(
−4 + 2

z
+ 2

1− z + 2z − 2z2
)

− log(1− z)
(

2− 1
z
− z + z2

)
+ 3

4 + 9
4z
]

+O(ε) . (B.12)

The pattern emerging from (B.11) and (B.12) is interesting. Eq. (B.11) contains only
a single pole proportional to the splitting kernel p(0)

gq , related to the q → qg branching.
Eq. (B.12), instead, has a richer structure, with the presence of the infrared singularity
operator I(1)

qg (encoding the virtual correction to a qg vertex) and the splitting kernel p(0)
gg

(encoding the outgoing gluon splitting into a pair of gluons).
The other quark-gluon antenna function, E0

3(1q, 2q′ , 3q̄′), is symmetric under the ex-
change of q′ and q̄′. When we identify the primary quark q, we find

E0,id.q
3

(
q2, z

)
= −4I(1)

qg,F

(
ε, q2

)
δ(1− z) +

(
q2
)−ε [

− 5
9δ(1− z)

+1
3D0(1− z)− 1

3 −
1
3z + 1

6z
2
]

+O(ε) ; (B.13)

when we identify the secondary quark q′ or q̄′, we get

E0,id.q′

3

(
q2, z

)
=
(
q2
)−ε [

− 1
2εp

(0)
qg (z) + log(z)

(
1− 2z + 2z2

)
− log(1− z)

(
−1

2 + z − z2
)

+ 3
2z − 2z2

]
+O(ε) . (B.14)
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In (B.13), we note the presence of the I(1)
qg,F infrared operator, but the absence of a pole

proportional to a splitting kernel, since there are no collinear limits between quarks of
different flavour. Instead, when we identify a secondary quark, we do not have any infrared
operator, since the secondary quark flavour is absent at the virtual level, but we have p(0)

qg ,
encoding the splitting g → q′q̄′.

Finally, we have the gluon-gluon antenna function with all gluons F 0
3 (1g, 2g, 3g), whose

integral reads

F0,id.g
3 (q2, z) = −4I(1)

gg

(
ε, q2

)
δ(1− z) +

(
q2
)−ε [

− 1
ε
p(0)
gg (z) + δ(1− z)

(
67
18 + 2π2

3

)

−11
6 D0(1− z) + 2D1(1− z) + log(z)

(
−8 + 4

z
+ 4

1− z + 4z − 4z2
)

− log(1− z)
(

4− 2
z
− 2z + 2z2

)
+ 11

6 + 11
6 z + 11

6 z
2
]

+O(ε) ,

(B.15)

and the gluon-gluon antenna function with a quark pair G0
3(1g, 2q′ , 3q̄′), symmetric under

exchange of the quark line: when we identify the gluon, we obtain

G0,id.g
3

(
q2, z

)
= −2I(1)

gg,F

(
ε, q2

)
δ(1− z) + (q2)−ε

[
− 5

9δ(1− z)

+1
3D0(1− z)− 1

3 −
1
3z −

1
3z

2
]

+O(ε) , (B.16)

whereas when we identify a quark we get

G0,id.q
3

(
q2, z

)
=
(
q2
)−ε [

− 1
2εp

(0)
qg (z) + log(z)

(
1− 2z + 2z2

)
− log(1− z)

(
−1

2 + z − z2
)

+ z − 7
4z

2
]

+O(ε) . (B.17)
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