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Abstract

Operational risk (OpRisk) emerges as a pivotal non-financial concern with far-reaching implica-

tions for financial institutions. Departing from conventional regulatory tasks encompassing data

collection, capital requirement calculations, and report generation for managerial decisions, OpRisk

functions are now actively pursuing proactive strategies to forestall or alleviate risk impacts. For

instance, artificial intelligence techniques, increasingly integral for managerial insights, are now

employed to extract additional information from data. This study advances the application of text

analysis techniques, a foundational element of Natural Language Processing, to OpRisk event de-

scriptions. The present work introduces a structured workflow for the application of text analysis

techniques to the OpRisk event descriptions to identify managerial clusters (more granular than

regulatory categories) representing the root causes of the underlying OpRisks.

However, these potent approaches exhibit limitations in influencing the impact of future loss

events. In response, this research delves into the augmentation of traditional data sources, explor-

ing alternative channels to identify potential events in their nascent stages and proactively manage

their impact. An innovative facet involves the analysis of relevant tweets from X (formerly Twitter)

for continuous scanning of the changing risk environment, aiming to detect early warnings about

new types of potentially risky events. We demonstrate the seamless integration of these diverse

methodologies into a comprehensive approach to OpRisk management, fostering a more holistic,

forward-looking, and adaptive risk mitigation strategy.

The thesis is organized as follows. Chapter 1 introduces the most discussed concepts, start-

ing from the operational risk, and continuing with the main integrated statistical methodologies,

i.e., text analysis, word embedding, uniform manifold approximation and projections (UMAP)

for dimensionality reduction, and latent Dirichlet allocation (LDA) for topic modelling. Chapter

2 defines a first general workflow for OpRisk event descriptions analysis, identifying the funda-
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mental steps (i.e., text cleaning, vectorization, semantic adjustment, dimensionality reduction, and

clustering) and applying it to a limited and quality assured data set, for which it was feasible to

verify the accuracy through an intense involvement of OpRisk analysts. Chapter 3 generalizes

and extends this workflow in several directions. In particular, the effort required from the OpRisk

analysts is strongly reduced by the application of more efficient methodologies. Among them, we

illustrate the benefits of employing powerful data representation based on dimension reduction,

and of performing clustering fully based on topic modelling techniques. In addition, the analysis

is applied to a much more challenging OpRisk data set, because it is much larger (the number of

descriptions is around 100 times larger, while the number of terms is 5 times larger than the pre-

vious data set) and the descriptions are multi-language (i.e., not all written in English). Moreover,

the analysis is extended to social media data, to be forward-looking and provide OpRisk early

warnings. Chapter 4 concludes the manuscript, summarizing the main contributions and sketching

future research developments.
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Chapter 1

Introduction

This chapter introduces the main concepts discussed in the thesis, starting from the operational risk,

and continuing with the main integrated statistical methodologies, i.e., text analysis, word embed-

ding, Uniform Manifold Approximation and Projections (UMAP) for dimensionality reduction,

and Latent Dirichlet Allocation (LDA) for topic modelling.

1.1 Operational risk

Operational risk (OpRisk) is a crucial aspect of risk management that encompasses the potential for

losses resulting from inadequate or failed internal processes, systems, people, or external events.

Understanding OpRisk is vital for organizations across various sectors to enhance resilience and

ensure sustainable operations (Basel Committee on Banking Supervision, 2010).

OpRisk stands as a critical component within the broader landscape of risk management, en-

compassing a spectrum of potential threats that can impact an organization’s ability to achieve its

objectives. Unlike market and credit risks, which are often associated with financial instruments,

OpRisk extends beyond financial considerations to encompass a diverse range of factors that can

disrupt normal business operations (Lam, 2003).
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1.1.1 Definition of OpRisk

OpRisk is commonly defined as the risk of loss resulting from inadequate or failed internal pro-

cesses, systems, people, or external events. These risks are inherent in the day-to-day operations

of an organization and can manifest in various forms, including human error, technology failures,

fraud, legal and compliance issues, and external events such as natural disasters or geopolitical

events (Power, 2005).

1.1.2 Main drivers of OpRisk

Understanding the drivers that contribute to OpRisk is crucial for organizations to proactively man-

age and mitigate potential threats (Carreño, 2013). The main drivers of OpRisk can be categorized

as follows:

• People: human factors play a significant role in OpRisk. This includes errors or omissions

by employees, inadequate training, and workforce-related issues. Understanding the human

element is essential for developing effective risk mitigation strategies.

• Processes: inadequate or failed internal processes can lead to operational failures. This in-

cludes deficiencies in workflow, control systems, and operational procedures. Organizations

need to continuously assess and enhance their processes to minimize the risk of disruptions.

• Systems: technological advancements have introduced new opportunities and challenges.

OpRisk can arise from system failures, cyber threats, and technological deficiencies. The

increasing reliance on complex systems necessitates robust risk management practices in the

realm of technology.

• External Events: OpRisk is also influenced by external events that are beyond an organiza-

tion’s control. Natural disasters, political instability, and economic downturns are examples

of external factors that can disrupt operations. Building resilience to such events is a key

aspect of OpRisk management.
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1.1.3 OpRisk management importance in operational resilience

Effectively managing OpRisk is crucial for maintaining the stability and sustainability of organ-

izations. Operational disruptions can result in financial losses, reputational damage, and legal

consequences. A robust OpRisk management framework enables organizations to identify, assess,

and mitigate potential risks, thereby enhancing overall resilience (Fraser and Simkins, 2002).

According to European Banking Authority (2022), OpRisk has become increasingly relevant in

the past years. With the pandemic, digitalization and the use of ICT by banks and their customers

further accelerated and became indispensable. The digital transformation continued unabatedly,

even after many containment measures related to the pandemic were relaxed.

The reliance of banks on digital and remote solutions to perform their daily operations, de-

liver their services to customers, and conduct business has resulted in augmented exposure and

vulnerability to increasingly sophisticated cyberattacks and frauds. The scope and relevance of

OpRisk further broadened along with technological advances, and underlines the importance of

ensuring operational resilience. Moreover, banks are facing increased operational challenges since

geopolitical tensions are playing an increasing role in the technological and digital space, with

impacts felt across geographies. The Russian war of aggression against Ukraine has led to further

heightened cyber risks, including threats to information security and business continuity, while

sanctions implemented at an EU and global level in response may give rise to further legal risks.

Based on their answers to the Risk Assessment Questionnaire (RAQ, European Banking Au-

thority, 2022), banks and analysts agree that cyber risk and data security are by far the most prom-

inent OpRisk drivers. Conduct and legal risks are the second most important driver of OpRisk in

both banks’ and analysts’ views, while risk of fraud continues to increase in banks’ perceptions.

1.1.4 Regulatory context of OpRisk in the financial sector

In the early days of banking regulation, the focus was primarily on capital adequacy and credit risk,

whereas OpRisk was often overlooked. The Basel Committee on Banking Supervision introduced

the first international capital standards for banks, known as Basel I (Basel Committee on Banking

Supervision, 1988). However, it did not explicitly address OpRisk. Banks were required to hold

capital based initially on credit risk and then market risk (Basel Committee on Banking Super-
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vision, 1996), neglecting the broader spectrum of risks, including operational ones. As financial

markets evolved and technological advancements increased the complexity of banking operations,

incidents of operational failures gained prominence. High-profile events, such as the collapse

of Barings Bank in 1995 due to unauthorized trading, highlighted the need to explicitly address

OpRisk (Bodur, 2012).

Basel II marked a significant step forward by acknowledging the importance of OpRisk (Basel

Committee on Banking Supervision, 2004). It introduced the Advanced Measurement Approach

(AMA) as one of the methods for calculating regulatory capital for OpRisk. Banks were required

to develop their models for measuring and managing OpRisk, subject to supervisory approval.

International financial institutions typically calculate capital requirements for OpRisk via the ad-

vanced measurement approach (AMA). Basel II was declined into the European Union jurisdic-

tion through the Capital Requirement Regulations (CRR, European Parliament and Council of the

European Union, 2013). The AMA is based on statistical models that are internally defined by

institutions and comply with qualitative and quantitative requirements. While the qualitative re-

quirements refer to managerial aspects (e.g., set up an independent OpRisk management function

in the financial institution, submit regular reporting to the top management on OpRisk exposures

and loss experience), the quantitative ones focus on modeling aspects. In particular, the regulations

define which data sources must be used to measure OpRisk:

• internal loss data (i.e., loss data of OpRisk events occurred to the financial institution);

• external loss data (i.e., loss data of relevant OpRisk events occurred to other financial insti-

tutions, collected from mass media or specific consortiums, e.g., ORX);

• scenario analysis (i.e., loss data of fictitious OpRisk events that could affect the financial

institution with high impact and low probability); and

• business environmental and internal control factors (usually, implemented as key risk in-

dicators, i.e., quantitative measures that are monthly or quarterly observed to monitor the

evolution of the exposure to OpRisk, e.g., the time of availability for an IT system, measured

in percentage for each month).

Another significant requirement specifies that the OpRisk capital requirement has to be calculated
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at the 99.9% confidence level, with a holding period of one year. This means that the financial

institution may experience an annual loss higher than the capital requirement once every 1000

years, on average. The most-adopted implementation of AMA models is the loss distribution

approach (Frachot et al. 2001, 2007), where the objective is to estimate the probability distribution

of the annual loss amount for OpRisk.

Other possible methods to calculate the OpRisk capital requirement are not based on statistical

models but are defined as simple deterministic functions of the “relevant indicator” (RI), which is

calculated as the algebraic sum of profit and loss account items of the financial institution (i.e., net

interest income, income from shares and other variable/fixed-yield securities, net commissions/fees

income, net profit or net loss on financial operations, and other operating income). These methods

are:

• the Basic Indicator Approach (BIA), where the capital requirement is equal to the 15% of

the last 3-year average relevant indicator.

• the Standardized Approach (TSA), which is calculated as BIA, but applying 12-15-18%

coefficients to the relevant indicator segments related to different business lines (i.e., 12% for

retail banking, retail brokerage, and asset management; 15% for commercial banking, and

agency services; 18% for corporate finance, trading and sales, and payment and settlement)

based on the riskiness of each activity supposed by regulators.

Considering that BIA and TSA tend to be overly conservative in terms of calculated OpRisk capital

requirement, and considering their lack of risk sensitivity (not incorporating any risk driver), the

international financial institutions and the significant domestic ones were highly incentivized to

adopt the AMA approach. The need to implement AMA models required the financial institutions

to employ resources with strong quantitative skills.

Another quantitative requirement asks institutions to be able to map their historical internal

loss data into the business lines used for TSA, and into the event types reported in Table 1.1, and

to regularly provide these data to competent authorities through the Common Reporting (CoRep)

templates.
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Table 1.1: Loss event types as described in the CRR.

The 2008 financial crisis exposed weaknesses in risk management practices. In response, Basel

III was introduced, with a renewed emphasis on strengthening the regulatory framework (Basel

Committee on Banking Supervision, 2010). While Basel III primarily focused on addressing issues

related to credit and market risk, it continued to recognize the significance of OpRisk. Perceiving

the need for a more standardized approach to OpRisk, the Basel Committee, between 2011 and

2016, started reviewing the simpler approaches (Basel Committee on Banking Supervision, 2014),

defining the Standardized Measurement Approach (SMA, Basel Committee on Banking Super-

vision, 2016), and then delivering the new Standardized Approach in the Basel III Final Reform

(Basel Committee on Banking Supervision, 2017) also known as Basel IV.

During the same period, the Basel Committee realized that the inherent complexity of the

AMA and the lack of comparability, arising from a wide range of internal modelling practices,
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have exacerbated the variability of capital requirement calculation, thus eroding the confidence in

these measures. The Committee has therefore determined the withdrawal of internal modelling

approaches and other current methods (AMA, TSA, and BIA) for OpRisk regulatory capital from

the Basel Framework, substituting them with the new Standardized Approach. The latter is based

on two components:

• Business Indicator Component (BIC), which is based on the Business Indicator (BI). The BI

is similar to the Relevant Indicator (used for TSA and BIA), but more conservative since,

e.g., instead of net commissions/fees income (i.e., the difference between commissions/fees

income and commissions/fees expense), BI considers the maximum between commission-

s/fees income and commissions/fees expense; and, instead of the other operating income, BI

considers the maximum between other operating income and other operating expense. The

BIC is obtained from BI applying the coefficients reported in Table 1.2.

Table 1.2: BI ranges and marginal coefficients.

Bucket BI range (in ebn) BI marginal coefficients
1 BI ≤ 1 12%
2 1 < BI ≤ 30 15%
3 BI > 30 18%

For example, given a BI = e35bn, then

BIC = (1×12%)+(30−1)×15%+(35−30)×18% = e5.37bn.

• Loss Component (LC), which is given by the average annual OpRisk loss, based on the last

10 years’ data, multiplied by 15.

The LC is used to calculate the Internal Loss Multiplier (ILM) as follows:

ILM = log

(
exp(1)−1+

(
LC
BIC

)0.8
)
.

The ILM is used to smooth the impact of OpRisk losses since the OpRisk capital requirement
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(ORC), under the new Standardized Approach, is given by the product between BIC and ILM:

ORC = BIC× ILM.

Initially, the new Standardized Approach had to enter into force from January 2022, but for several

reasons (e.g., the Covid-19 pandemic crisis, and the need to rule out the Reform in local juris-

dictions) this starting date was postponed to January 2025. The Basel III Final Reform left some

flexibility for the application of the new Standardized Approach in local jurisdictions. In particular,

there is the national discretion to set the ILM equal to 1, and then the ORC equal to BIC. However,

the OpRisk loss data, composing the ILM, have still to be collected and reported. According to the

final text of the new CRR (European Parliament and Council of the European Union, 2023), to be

officially released in the first semester of 2024, this option will be applied in the EU jurisdiction.

In the meantime, the current framework (based on AMA, TSA, and BIA methods) is still

adopted and, for this reason, the European Commission decided to supplement their CRR with

Regulatory Technical Standards (RTS) of the specification of the assessment methodology under

which competent authorities permit institutions to use AMA for OpRisk (European Parliament

and Council of the European Union, 2018). This regulation required that financial institutions

using AMA adapted their internal modelling approach to show that they are enough robust and

conservative. For example, in the case of the Monte Carlo method used to approximate the annual

OpRisk loss distributions, it is required to measure the magnitude of the related sample error, where

a possible methodology has been proposed by Greselin et al. (2019).

1.1.5 OpRisk managerial models

In the last year, to comply with European Parliament and Council of the European Union (2018)

(in EU jurisdiction), the quantitative resources, employed in the OpRisk departments of financial

institutions, completed their main efforts to improve AMA approaches. Therefore, considering

that the new Standardized Approach approach does not require statistical modelling skills, quant-

itative resources moved part of their focus on the development of statistical models to be used for

managerial (i.e., meaning not strictly regulatory) purposes. Carrivick and Westphal (2019) state

that the application of advanced analytics, including machine learning and artificial intelligence,
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will be a core part of any future strategy for the management of operational and non-financial risk.

Among the case studies, they cite text mining for data augmentation, where the firm can use Nat-

ural Language Processing (NLP) for the tagging of losses to infer root causes from already existing

free text descriptions.

Leo et al. (2019) report several machine learning applications in the OpRisk management con-

text mainly focused, aside from cyber security cases, on problems related to fraud and suspicious

transactions detection:

• Khrestina et al. (2017) propose a prototype for the generation of a report that allows for the

detection of suspicious transactions. The prototype uses a logistical regression algorithm.

They have also included a survey of six software solutions that are currently implemented

at various banks for the automation of suspicious transaction detection and monitoring pro-

cesses, but it is unclear whether these products apply machine learning techniques.

• In money laundering, criminals route money through various transactions, layering them

with legitimate transactions to conceal the true source of the funds. The funds typically ori-

ginate from criminal or illegal activities and can be further used in other illegal activities

including the financing of terrorism. There has been extensive research on detecting finan-

cial crimes using traditional statistical methods, and more recently, using machine learning

techniques. Clustering algorithms identify customers with similar behavioral patterns and

can help to find groups of people working together to commit money laundering (Sudjianto

et al., 2010).

• A major challenge for banks, given the large volume of transactions per day and the non-

uniform nature of many, is to be able to sort through all the transactions and identify those

that are suspicious. Financial institutions utilize anti-money laundering systems to filter and

classify transactions based on degrees of suspiciousness. Structured processes and intelligent

systems are required to enable the detection of these money laundering transactions (Kannan

and Somasundaram, 2017).

• Credit card fraud is significantly increasing annually, costing consumers and the industry

billions of dollars. To manage the increasing fraud risk and minimize losses, banks have
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fraud detection systems in place. The systems are oriented towards increasing the detection

rate while minimizing the false positive rate. Models are estimated based on samples of

fraudulent and legitimate transactions in supervised detection methods, while in unsuper-

vised detection methods, outliers or unusual transactions are identified as potential cases of

fraud. Some reported challenges in credit card fraud detection are the non-availability of real

data sets, unbalanced data sets, the size of the data sets, and the dynamic behavior of fraud-

sters. Bayesian algorithms, K-Nearest Neighbor (KNN), Support Vector Machines (SVM),

and Bagging ensemble classifiers have been varyingly used in fraud detection systems. A

comparative evaluation showed that the Bagging ensemble classifier based on decision tree

algorithms works well, as it is independent of attribute values, and is also able to handle

class imbalance (Zareapoor and Shamsolmoali, 2015).

• False alarms, namely transactions labeled as fraudulent being instead legitimate, are signific-

ant, causing concerns for customers and delaying the detection of actual fraudulent transac-

tions. Large Canadian banks rely heavily on NN scores, ranging from 1 to 999, with 1 being

the lowest chance of a fraudulent transaction, determined by neural network algorithms. Re-

portedly, 20% of transactions with a NN score greater than or equal to 990 are fraudulent,

causing fraud analysts to inefficiently spend time investigating legitimate transactions. A

meta-classifier (a multiple algorithm learning technique) applied to a post-neural network

was shown to provide quantifiable savings improvements with a larger percentage of fraud-

ulent transactions being caught (Pun and Lawryshyn, 2012).

• There are a few papers on fraud risk detection in credit cards and online banking. They

concern credit card fraud detection in domains not specifically related to bank risk manage-

ment or the banking industry. One would note that the algorithms they refer to were SVM,

KNN, Naı̈ve Bayes Classifier, and Bagging ensemble classifier based on a decision tree (Dal

Pozzolo and Bontempi, 2015; Vaidya and Mohod, 2014).

• Sharma and Choudhury (2021) used unsupervised learning approaches, such as self-organizing

maps (SOM), to detect fraudulent acts in areas like credit cards, money laundering, and fin-

ancial statements.
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More in general, a systematic review of the role of data analytics within OpRisk management,

referred to financial services and energy sectors, can be found in Cornwell et al. (2023).

1.2 Text analysis

The explosive growth of digital content in recent years has led to an unprecedented volume of un-

structured data. Text analysis, also known as text mining or Natural Language Processing (NLP),

has emerged as a powerful set of techniques to transform unstructured textual data into structured

and actionable information. As we navigate through the digital age, the ability to analyze and

derive insights from textual data becomes increasingly vital for businesses, researchers, and poli-

cymakers.

Text analysis is instrumental in extracting valuable information from various sources, including

social media, news articles, academic papers, and more. Businesses, researchers, and policymakers

can leverage text analysis to gain a competitive edge, make informed decisions, and monitor trends.

The significance of text analysis lies in its ability to convert large volumes of unstructured textual

data into structured information, providing a basis for data-driven decision-making.

At its core, text analysis involves the use of computational techniques to process, analyze, and

interpret textual data. This includes tasks such as text preprocessing, sentiment analysis, named

entity recognition, and topic modeling. By breaking down textual content into meaningful compon-

ents, text analysis enables the extraction of patterns, trends, and insights that may not be apparent

through manual examination.

1.2.1 Text cleaning

Text cleaning is a crucial step in the text analysis pipeline. It involves removing noise and irrelevant

information from the text, such as HTML tags, special characters, digits, and punctuation. Text

cleaning ensures that the subsequent analysis is based on meaningful content.

Stop-words are common words that are often removed during text analysis because they do

not carry significant meaning. Examples include “the”, “and”, “is”, etc. Removing stop-words

helps focus the analysis on more meaningful terms. Several natural language processing libraries

provide predefined stop-word lists for multiple languages.
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N-grams are contiguous sequences of n words from a given sample of text or speech. They are

used to capture the local structure and context of language. For example, bigrams (2-grams) rep-

resent pairs of consecutive words, and trigrams (3-grams) represent triplets of consecutive words.

1.2.2 Methodologies in text analysis

Text analysis encompasses a variety of methodologies, ranging from traditional statistical ap-

proaches to modern machine learning techniques. The choice of methodology depends on the

specific goals of the analysis and the nature of the textual data.

Statistical methods, such as frequency analysis, are fundamental in text analysis. These tech-

niques involve counting the occurrences of words or phrases to identify patterns and trends. While

simple, statistical approaches can provide valuable insights, especially when dealing with large

data sets (Aggarwal, 2012).

Machine learning plays a pivotal role in text analysis, offering advanced methods for tasks like

sentiment analysis, classification, and clustering. Supervised learning models, such as support vec-

tor machines and neural networks, can be trained on labeled data sets, while unsupervised learning

models, like k-means clustering, can discover patterns without predefined categories (Jurafsky and

Martin, 2019).

The bag-of-words model is a simple yet powerful representation of text. It represents a docu-

ment as an unordered set of words, ignoring grammar and word order but keeping track of word

frequency. Each word becomes a feature, and the document is represented as a vector of word

frequencies, leading to the representation of a document-by-term matrix. This model forms the

foundation for many text analysis tasks, including document classification and clustering.

TF-IDF is a statistical measure used to evaluate the importance of a word in a document rel-

ative to a collection of documents (corpus). It takes into account both the frequency of the word

in the document (Term Frequency) and the rarity of the word in the corpus (Inverse Document

Frequency). The resulting TF-IDF score helps identify words that are significant to a specific doc-

ument but not common across the entire corpus. The TF-IDF score for a term t in a document d is

calculated as follows:

TF-IDF(t,d) = TF(t,d)× IDF(t)
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where TF(t,d) is the Term Frequency of term t in document d, and IDF(t) is the Inverse Document

Frequency of term t across the entire corpus.

The idea behind IDF is to assign higher weights to terms that are less common in the entire

corpus, indicating their potential significance. The IDF of a term t is calculated using the formula:

IDF(t) = log
(

N
DF(t)

)

where N is the total number of documents in the corpus, and DF(t) is the document frequency of

term t, representing the number of documents in the corpus that contain term t.

The use of the logarithm in the IDF formula helps mitigate the impact of extremely common

terms by downscaling their IDF values. This ensures that terms with lower document frequency

receive higher IDF scores, indicating their uniqueness and potential importance.

Cosine similarity is a metric used to measure the similarity between two vectors. In the con-

text of text analysis, such vectors often are defined as the TF or the TF-IDF representations of

documents. Cosine similarity calculates the cosine of the angle between the vectors, providing

a measure that ranges from 0 (completely dissimilar) to 1 (identical). This metric is commonly

used in document similarity analysis, clustering, and information retrieval. The cosine similarity

between two vectors A and B is calculated as follows:

Cosine Similarity(A,B) =
A ·B

∥A∥ · ∥B∥

where A ·B is the dot product of vectors A and B, and ∥A∥ and ∥B∥ are the Euclidean norms of

vectors A and B, respectively.

1.2.3 Applications of text analysis

Text analysis finds applications across diverse domains, revolutionizing the way organizations and

researchers interact with textual data.

In the business realm, text analysis aids in market research, customer feedback analysis, and

competitive intelligence. By analyzing customer reviews, social media mentions, and news art-

icles, businesses can make data-driven decisions to improve products, services, and overall cus-
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tomer satisfaction (Feldman and Sanger, 2006).

In healthcare, text analysis facilitates the extraction of valuable information from medical re-

cords, research papers, and clinical notes. This can improve patient outcomes, enable early disease

detection, and support medical research by identifying patterns in large volumes of biomedical

literature (Friedman et al., 1998).

Social media platforms generate vast amounts of textual data, providing insights into public

opinion, trends, and sentiment. Text analysis on social media content helps marketers, policy-

makers, and researchers to understand the public sentiment, track emerging issues, and engage

with their audience effectively (Gupta and Gupta, 2018).

1.3 Word embedding

The representation of words in a way that captures their semantic meaning and relationships is a

fundamental challenge in NLP and machine learning. Traditional approaches often relied on sparse

and high-dimensional representations, such as a document-by-term matrix, where each word is

represented by a vector with a size equal to the vocabulary. While simple, these representations

cannot capture semantic similarities and relationships between words.

Word embeddings, on the other hand, provide a dense and continuous representation of words

in a lower-dimensional space, where the geometric distances between vectors reflect semantic

relationships. This paradigm shift has significantly improved the performance of NLP models,

enabling them to better understand context, relationships, and nuances in language.

The motivation behind word embeddings lies in the limitations of traditional representations

and the desire to capture the meaning of words in a more nuanced manner. Sparse representations,

such as bag-of-words, treat each word as an isolated entity without considering its context or

semantic connections to other words. In contrast, word embeddings aim to embed words in a

continuous vector space, preserving semantic relationships and contextual information.

Word embeddings have proven to be highly effective in various NLP tasks, including machine

translation, sentiment analysis, and named entity recognition. By representing words in a continu-

ous space, embeddings enable models to generalize better and capture subtle nuances in language,

leading to improved performance on a wide range of tasks.
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1.3.1 Word embedding models

Several word embedding models have been developed, each with its own approach and strengths.

In this section, we will explore some of the prominent models, namely Word2Vec, GloVe, BERT,

and fastText.

Word2Vec

Word2Vec, developed by Mikolov et al. (2013), is a widely used word embedding model that aims

to learn continuous vector representations for words by predicting the context in which words

occur. It introduces two architectures, Continuous Bag of Words (CBOW) and Skip-gram, both

utilizing shallow neural networks to learn word embeddings:

• The CBOW model predicts the target word given its context. It takes the context words as

input and predicts the target word in the center. The training objective is to maximize the

likelihood of predicting the target word.

• The Skip-gram model, in contrast, predicts the context words (surrounding words) given the

target word. It takes a single word as input and predicts the context words within a certain

window. Like CBOW, the training objective is to maximize the likelihood of predicting the

context words.

Word2Vec has demonstrated excellent performance on various NLP tasks and is known for its

efficiency in learning high-quality word embeddings from large corpora.

GloVe (Global Vectors for word representation)

GloVe, introduced by Pennington et al. (2014), is a word embedding model that focuses on cap-

turing global relationships between words by considering the entire corpus during training. It

constructs a global word-word co-occurrence matrix and then factorizes it to obtain word embed-

dings.

The training objective of GloVe is to learn word vectors such that their dot product equals

the logarithm of the words’ probability of co-occurrence. GloVe embeddings are known for their

ability to capture semantic relationships and exhibit excellent performance on word analogy tasks.
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BERT (Bidirectional Encoder Representations from Transformers)

BERT, introduced by Devlin et al. (2019), represents a breakthrough in word embeddings by lever-

aging bidirectional context. Unlike traditional models that consider only left or right context, BERT

utilizes a transformer architecture to capture contextual information from both directions.

BERT is pre-trained on large amounts of text data in an unsupervised manner and has achieved

state-of-the-art results on various NLP benchmarks. It has become a cornerstone for many down-

stream NLP tasks, serving as a feature extractor or fine-tuning base. Training BERT requires a sig-

nificant computational effort. For this reason, an efficient strategy can be to start from pre-trained

BERT, and then fine-tune it using a subject-specific data set.

FastText

FastText, proposed by Bojanowski et al. (2017), extends traditional word embeddings by con-

sidering subword information. Instead of representing words as a whole, fastText breaks them

down into smaller subword units called n-grams. This allows fastText to capture morphological

information and handle out-of-vocabulary words.

FastText has proven effective for languages with rich morphology and performs well on tasks

such as text classification and language modeling.

1.3.2 Applications of word embeddings

Word embeddings have found widespread applications across various NLP tasks, revolutionizing

the way machines understand and process human language. Some notable applications include:

• Machine Translation: word embeddings improve the quality of machine translation by cap-

turing semantic relationships between words in different languages.

• Sentiment Analysis: models trained on word embeddings exhibit better sentiment analysis

performance by understanding the contextual meaning of words in a sentence.

• Named Entity Recognition (NER): word embeddings assist in recognizing named entities by

providing richer semantic information about words in context.
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• Text Summarization: embeddings help models understand the importance of words in a

document, facilitating more accurate text summarization.

The ability of word embeddings to capture contextual and semantic information makes them in-

dispensable for a wide range of NLP applications.

1.3.3 Challenges and future directions

Despite their success, word embeddings are not without challenges. One significant challenge

is the handling of polysemy, i.e., words with multiple meanings. Additionally, embeddings may

capture biases present in training data, leading to biased representations.

Future research directions in word embeddings include addressing these biases, improving

the interpretability of embeddings, and exploring methods to handle rare or unseen words more

effectively. Additionally, research efforts continue to push the boundaries of pre-training models

like BERT and optimize their efficiency for various downstream tasks.

1.4 Uniform Manifold Approximation and Projection (UMAP)

In the era of big data, the need to understand and interpret high-dimensional data sets is pervasive

across various fields, including machine learning, biology, and data visualization. Dimensionality

reduction techniques play a crucial role in simplifying complex data while preserving its inherent

structure. Uniform Manifold Approximation and Projection (UMAP), introduced by McInnes et

al. (2018), is a relatively recent addition to the suite of dimensionality reduction methods that has

gained attention for its ability to address some limitations of traditional techniques.

The motivation behind dimensionality reduction techniques stems from the curse of dimension-

ality, a phenomenon where high-dimensional data become sparse, and distances between points

become less meaningful. Traditional methods like Principal Component Analysis (PCA) and t-

Distributed Stochastic Neighbor Embedding (t-SNE) have been widely used, but each has its lim-

itations. PCA is linear and may not capture non-linear structures, while t-SNE can struggle with

preserving global structure and is computationally expensive.

UMAP is motivated by the desire to overcome these limitations. It seeks to provide a flexible
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and efficient approach to dimensionality reduction that can handle both local and global structure

in the data.

1.4.1 Mathematical foundations of UMAP

The mathematical foundations of UMAP delve into the complexity of constructing a low-dimensional

representation that faithfully captures both local and global structures in high-dimensional data. At

its core, UMAP combines topological and metric considerations to create a mapping that preserves

pairwise similarities between data points.

Let X represent the high-dimensional data, and Y the corresponding low-dimensional repres-

entation. UMAP aims to learn a mapping f : X → Y such that the pairwise similarities between

data points are maintained. The optimization problem involves minimizing a cost function that

quantifies the discrepancy between the fuzzy topological structure in the high-dimensional space

and the low-dimensional space.

Topological Considerations

UMAP introduces a fuzzy topological structure to capture relationships between data points. It

defines a set of neighborhoods for each data point in both the high-dimensional and low-dimensional

spaces. The notion of neighborhood is essential for preserving the local structure of the data.

In the high-dimensional space, the fuzzy set FX
i represents the neighborhood of data point xi.

Similarly, in the low-dimensional space, the fuzzy set FY
i corresponds to the neighborhood of its

counterpart yi. The goal is to ensure that the relationships between neighborhoods in both spaces

are maintained.

Metric Considerations

UMAP leverages metric considerations to align the pairwise similarities between data points in the

high-dimensional and low-dimensional spaces. The focus is on optimizing the low-dimensional

representation to minimize the mismatch between the fuzzy topological structures.

The cross-entropy between the fuzzy sets FX
i and FY

i quantifies this mismatch. The cross-
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entropy is defined as:

Ci =−∑
j

pX
i, j log(qY

i, j)

where pX
i, j and qY

i, j are probabilities associated with the pairwise similarities in the high-dimensional

and low-dimensional spaces, respectively. The probabilities are computed based on the distances

between data points in their respective spaces.

Optimization Procedure

The optimization procedure involves adjusting the low-dimensional representation Y iteratively to

minimize the cross-entropy. This is typically achieved using stochastic gradient descent methods,

where the gradients are computed with respect to the embedding coordinates yi.

The embedding coordinates are updated based on the negative gradient of the cross-entropy:

yi,new = yi,old −η
∂Ci

∂yi

Here, η represents the learning rate, controlling the step size in the optimization process.

Global Structure Preservation

UMAP’s unique contribution lies in its ability to balance local and global structure preservation.

While many dimensionality reduction techniques focus solely on local relationships, UMAP’s cost

function incorporates global considerations. This ensures that the resulting low-dimensional rep-

resentation captures not only the fine-grained details but also the broader patterns and structures in

the data.

Embedding Stability

UMAP introduces the concept of “embedding stability” to address the sensitivity of the algorithm

to hyperparameters and initialization. Embedding stability assesses the consistency of the embed-

ding across multiple runs with slightly perturbed inputs. A stable embedding is more likely to be a

reliable representation of the underlying data structure (McInnes et al., 2018).
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1.4.2 Comparison with Other Dimensionality Reduction Techniques

To appreciate the strengths and weaknesses of UMAP, it is useful to compare it with other widely

used dimensionality reduction techniques, such as PCA and t-SNE:

• Linear vs. Non-linear: PCA is a linear dimensionality reduction technique that identifies the

axes along which the data varies the most. While PCA is efficient and well-suited for linear

structures, it may not capture non-linear relationships in the data. UMAP, in contrast, is

designed to handle non-linear structures, making it a more flexible choice for complex data

sets.

• Local vs. Global Structure: t-SNE is known for its ability to capture local structures in the

data. However, it tends to struggle with preserving global structures, and its computational

cost can be prohibitive for large data sets. UMAP addresses these issues by combining global

and local considerations, providing a more balanced approach to dimensionality reduction.

In addition to its algorithmic advantages, UMAP is often praised for its computational efficiency.

The scalability of UMAP makes it applicable to large data sets, which can be challenging for t-

SNE. This practical consideration contributes to the popularity of UMAP in real-world scenarios

where processing large amounts of data is common.

1.4.3 Limitations of UMAP and best practices

While UMAP offers numerous advantages for diverse applications, it is essential to consider certain

factors and follow best practices:

• Data preprocessing: appropriate data preprocessing is crucial for the success of UMAP.

Standardizing or normalizing input features before applying UMAP ensures that variables

with different scales do not disproportionately influence the results. Additionally, addressing

missing data and handling outliers contributes to the robustness of the algorithm (McInnes

et al., 2018).

• Parameter sensitivity: UMAP comes with several hyperparameters, such as the number of

neighbors, minimum distance, and metric choices. Sensitivity to parameter settings is com-

mon, and users should experiment with different configurations to find the most suitable
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values for the specific data set and objectives. Visualizing the UMAP representations with

varying parameters can offer valuable insights into the stability and robustness of the results.

• Interpretability: while UMAP excels in capturing complex relationships, interpreting the

exact meaning of dimensions in low-dimensional space can be challenging. Users should

approach UMAP as a tool for visualization and feature extraction rather than as a black-box

model. It is crucial to complement UMAP results with domain knowledge and an under-

standing of the specific context in which it is applied.

1.4.4 Applications of UMAP

The versatility of UMAP has led to its adoption across various domains, providing valuable insights

and solutions to a wide array of data analysis challenges. In this section, we explore some notable

applications of UMAP and its impact on different fields.

Bioinformatics and single-cell RNA sequencing

UMAP has found significant applications in the field of bioinformatics, particularly in the analysis

of single-cell RNA sequencing (scRNA-seq) data. The complexity of scRNA-seq data sets, with

numerous genes and cells, makes them ideal candidates for dimensionality reduction techniques.

UMAP’s ability to capture both local and global structures allows researchers to visualize and

interpret the intricate transcriptional landscapes of individual cells (Becht et al., 2019). Its effect-

iveness in identifying cell types, states, and transitions within heterogeneous cell populations has

contributed to advancing our understanding of cellular diversity and dynamics.

Machine learning and feature extraction

In the context of machine learning, UMAP can serve as a powerful tool for feature extraction.

High-dimensional data sets often pose challenges in terms of redundant or irrelevant features.

UMAP can be employed to distill the essential information, resulting in a low-dimensional rep-

resentation that enhances model performance. The application of UMAP as a preprocessing step

improves model generalization, particularly in scenarios with high-dimensional data prone to over-

fitting. Supervised UMAP, where the algorithm is trained on labeled data, further enhances its
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utility for classification tasks (McInnes et al., 2018).

Clustering and anomaly detection

The low-dimensional representations generated by UMAP are well-suited for clustering and an-

omaly detection tasks. UMAP can reveal the underlying structure in the data, making it easier to

identify distinct groups or outliers. Clustering algorithms applied to UMAP-transformed data can

unveil natural partitions, while anomaly detection models can benefit from the clear separation of

normal and anomalous instances. This application extends UMAP’s utility beyond visualization to

tasks that require the identification of patterns and anomalies in the data (Ramos et al., 2020).

Neural network embeddings

In the field of deep learning, UMAP has found applications as an embedding layer within neural

network architectures. The low-dimensional embeddings generated by UMAP can serve as inform-

ative inputs to subsequent layers in a neural network. This approach leverages UMAP’s ability to

capture meaningful representations and has been shown to enhance the performance of neural

networks, particularly in tasks with complex, non-linear relationships. UMAP embeddings can

contribute to improved training efficiency and model interpretability in deep learning applications

(McInnes et al., 2018).

1.5 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA), introduced by Blei et al. (2003), is a widely used generative

probabilistic model for topic modeling, a crucial task in natural language processing and informa-

tion retrieval. LDA has emerged as a prominent technique for unsupervised topic modeling. This

powerful probabilistic model provides a framework for discovering hidden thematic structures

within a collection of documents. LDA has found applications in several fields such as informa-

tion retrieval, social media analysis, and content recommendation.

The motivation behind LDA arises from the challenge of making sense of vast amounts of

unstructured text data. As the volume of textual information on the internet continues to grow

exponentially, the ability to automatically identify and categorize topics within documents becomes
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crucial. LDA offers a principled and scalable approach to discover the latent thematic structures

that govern the generation of documents.

LDA is one of the main methodologies for topic modeling. Topics, in the context of LDA,

represent latent thematic patterns that are assumed to generate the observed documents. Each

document is viewed as a mixture of topics, and each topic is characterized by a distribution over

words. The intuition is that documents exhibit multiple topics, and each topic contributes to the

generation of words in a document with a certain probability.

1.5.1 Generative process of LDA

The generative process of LDA provides a conceptual framework for understanding how docu-

ments are probabilistically generated. It involves a series of steps that mimic the way an author

might compose a document. The generative process assumes that each document in the corpus is

created through the following steps:

1. For each document: Choose a distribution over topics.

2. For each word in the document:

(a) Choose a topic from the distribution over topics.

(b) Choose a word from the topic’s distribution over words.

These assumptions capture the idea that documents are mixtures of topics, and each topic is a

distribution over words. The generative process reflects the inherent variability in document com-

position and the diversity of topics covered in a corpus.

The generative process can be mathematically formalized using probabilistic graphical models.

Let’s denote the observed variables as W (words), and the hidden or latent variables as Z (topics),

θ (document-topic distribution), and β (topic-word distribution). The joint distribution of the

observed and latent variables can be expressed as:

P(W,Z,θ ,β |α,η) =
D

∏
d=1

(
P(θd|α)

Nd

∏
n=1

P(wd,n|βzd,n,η)

)
.
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Here, D is the number of documents, Nd is the number of words in document d, α and η are

hyperparameters, and βzd,n represents the distribution over words for topic zd,n.

LDA uses the Markov chain Monte Carlo (MCMC) to decode the generative process. Specific-

ally, given a set of documents and a previously defined number of topics K, MCMC estimates the

distributions corresponding to each topic as well as the mixture probabilities for any document on

topics. In Figure 1.1, the dark node W represents words, which is the only observed variable in the

model. The light node Z represents the topic, which hides inside the document.

Figure 1.1: Graphical representation of LDA.

The topic distribution under each document is a Multinomial distribution Mult(θ) with its

Dirichlet distribution conjugate prior Dir(α). The word distribution under each topic is a Multino-

mial distribution Mult(β ) with its conjugate prior Dir(η). To generate the nth word in the certain

document, first, we select a topic z from document-topic distribution Mult(θ), then we select a

word under this topic w|z from topic-word distribution Mult(β ). This is the generative process:

1. Draw θm ∼ Dir(α)

2. For each topic k ∈ {1, . . . ,K}

• Draw βk ∼ Dir(η)

3. For each word wn in document m,n ∈ {1, . . . ,N}

• Draw topic zn ∼ Mult(θm)

• Draw word wn|zn ∼ Mult(βk)

An interesting problem concerns the definition of the correct number of topics. Several strategies

can be used to solve that problem. They can be based on assessing goodness-of-fit through already
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noted measures, such as perplexity. Otherwise, the assessment is done through a subjective evalu-

ation of the researchers by visualizing the plotted clustering results or checking the highest prob-

ability words of the topics.

1.5.2 Challenges and considerations

While LDA has proven to be a powerful tool for topic modeling, it is not without challenges and

needs some further considerations:

• Model complexity: the assumption of a fixed number of topics in LDA can be limiting in

practice. Real-world corpora may exhibit dynamic and evolving themes that are not well-

captured by a static topic model. Extensions such as Dynamic Topic Models (DTM) have

been proposed to address this limitation (Blei and Lafferty, 2007).

• Interpretability: although LDA provides a principled way to discover topics, interpreting

these topics can be subjective. Assigning human-interpretable labels to topics is a challen-

ging task, and the quality of topic interpretation may vary based on the data set and the

number of topics (Chang et al., 2009).

• Computational efficiency: inference in LDA can be computationally demanding, especially

for large data sets. Variational Inference and Gibbs Sampling, while effective, may require

significant computational resources. Approximate methods and parallelization techniques

are often employed to enhance efficiency (Newman et al., 2010).

1.5.3 Applications of LDA

LDA has found applications across a spectrum of domains, showcasing its versatility in uncovering

latent thematic structures. There are notable applications of LDA in different fields:

• Text classification and document retrieval: LDA’s ability to capture the underlying topics in

a document makes it valuable for tasks such as text classification and document retrieval.

By representing documents as distributions over topics, LDA embeddings can be used to

measure document similarity and enhance the performance of information retrieval systems

(Blei and Lafferty, 2009).
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• Social media analysis: the abundance of user-generated content on social media platforms

presents a rich source of data for analysis. LDA has been employed to extract topics from

social media posts, enabling insights into trending discussions, sentiment analysis, and iden-

tification of influential themes (Hong and Davison, 2010).

• Content recommendation: in content recommendation systems, understanding the latent top-

ics within user preferences is crucial. LDA has been utilized to model user preferences based

on their interactions with content. By identifying topics associated with users, personalized

recommendations can be generated (Wang et al., 2011).

• Biomedical informatics: in the biomedical domain, LDA has been applied to analyze large

collections of scientific literature and identify key topics within research articles. This facil-

itates literature review, trend analysis, and knowledge discovery in fields such as genomics

and clinical research (Cohen et al., 2004).

• Market research and customer feedback: LDA finds applications in market research by ana-

lyzing customer feedback, reviews, and survey responses. By extracting topics from textual

data, businesses can gain insights into customer preferences, identify areas for improvement,

and tailor products or services accordingly (Griffiths and Steyvers, 2004).
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Chapter 2

A text analysis of

Operational Risk loss descriptions

Based on:

Di Vincenzo D., Greselin F., Piacenza F., & Zitikis R. (2023).

A text analysis of operational risk loss descriptions.

Journal of Operational Risk, 18(3), 63–90.

https://doi.org/10.21314/JOP.2023.003

Di Vincenzo D., Greselin F., Piacenza F., & Zitikis R. (2022).

A text analysis of operational risk loss descriptions.

Tenth International Hybrid Conference on MATHEMATICAL AND STATISTICAL METHODS

FOR ACTUARIAL SCIENCES AND FINANCE - MAF2022 - Book of Abstracts, 80–80.

https://drive.google.com/file/d/1ZHWO4CnXp1U4Mw6u5RlRGzaXCIzIC6Ze/view

2.1 Introduction

The operational risk (or OpRisk) is defined as the risk of loss resulting from inadequate or failed

internal processes, people and systems, or from external events, and also includes the legal risk

(European Parliament and Council of the European Union, 2013). International financial institu-

tions typically manage this risk inside specific OpRisk management functions, which perform the
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activities prescribed by the regulations, such as:

• Data collection (e.g., recording loss data, performing scenario analyses and tracking risk

indicators)

• Capital requirement calculations using Advanced Measurement Approach (AMA) internal

models

• Reporting of loss data

To perform the above-mentioned activities, financial institutions have to define and implement

databases to collect and store the necessary information. In the case of loss events due to OpRisk,

at least the following attributes are collected:

• Loss amounts

• Dates (occurrence, discovery and accounting)

• Affected organizational units

• Basel loss event types (Internal Fraud; External Fraud; Employment Practices and Work-

place Safety; Clients, Products & Business Practices; Damage to Physical Assets; Business

Disruption and System Failures; Execution, Delivery & Process Management)

• Event descriptions

The OpRisk databases contain the above-mentioned structured data, which are used for regulatory

activities. However, during the last years, the OpRisk functions have been increasingly required to

move beyond their regulatory tasks, providing a more effective contribution in order to pro-actively

manage the risk, and prevent or mitigate its impact. This development gives new importance to

OpRisk databases, and in particular to OpRisk event descriptions, which are usually defined as free

text fields. The possibility to make all the information in these databases, including event descrip-

tions, more fully available to the OpRisk analysts represents a valuable opportunity to improve the

knowledge about loss events and to design the most adequate mitigation strategies.

The present work is among the first ones that have addressed the application of text analysis

techniques to the OpRisk event descriptions. Text analysis, together with speech recognition and
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Figure 2.1: Workflow for OpRisk descriptions analysis.

automatic translation, is one of the main tasks of Natural Language Processing (NLP), which is a

branch of Artificial Intelligence (AI). In particular, to the best of our knowledge, for the first time in

literature, the present work defines a general structured workflow that can be applied to the OpRisk

descriptions to analyze them for several purposes. This overarching framework complements the

one already applied to quantitative data.

The proposed workflow includes the following steps (as represented in Figure 2.1):

1. Description cleaning (e.g., splitting of different languages, removing stop-words, reducing

words to their lemmas).

2. Text vectorization (building a document-by-term matrix, where each element is properly

weighted).

3. Semantic adjustment (enriching the document-by-term matrix, considering the semantic sim-

ilarity among words).

4. Dimensionality reduction (building a 2D representation of the data, where each point is an

event description, and similar ones are represented as clusters of points).

5. Cluster selection (tagging of points within each cluster by OpRisk analysts).

6. Cluster validation (application of clustering and topic modelling techniques to validate and

support the clustering performed by the analysts).

The remainder of the chapter is structured as follows. Section 2.2 gives a literature review of

text analysis applied to OpRisk. Section 2.3 describes in detail the steps of the proposed work-

flow. Section 2.4 reports an application of the proposed workflow to descriptions of the Common

40



Reporting (CoRep) OpRisk data set of the UniCredit banking group (all data elaborations and ana-

lyses in this section are performed using software R (R Core Team, 2023)). Finally, Section 2.5

summarizes the main achievements and results of this work, discussing also possible extensions in

several directions.

2.2 Literature review

For the frameworks and methods of analysis applied to quantitative OpRisk data and the related

challenges, we refer the reader to, for example, the work of Soprano et al. (2010), Cope et al.

(2009), Lambrigger et al. (2007), Shevchenko and Wüthrich (2006), Danesi et al. (2016), and

Bazzarello et al. (2006).

Turning to qualitative data, the existing literature proposes only a few solutions for the analysis

of textual data related to OpRisk loss event descriptions.

Pakhchanyan et al. (2022) apply machine learning techniques to OpRisk descriptions in order

to automatically classify events into Basel event types. Note that, while they adopt supervised

methods to classify OpRisk events into pre-defined regulatory categories, they do not propose

solutions to identify new managerial (more granular) clusters that can be used to understand the

root causes of the underlying risks. The classification of OpRisk events is also discussed by Zhou et

al. (2021), who propose semi-supervised methods in order to include unlabeled data in the training

stage.

Wang et al. (2018, 2022) investigate the main OpRisk factors by applying the Latent Dirichlet

Allocation (LDA), but without reporting many details on the applied descriptions cleaning and text

vectorization.

Data Study Group team (2019) provide a preliminary proof-of-concept for the potential useful-

ness of statistical and NLP approaches in OpRisk modelling, applying LDA and long short-term

memory neural networks (LSTM).

Carrivick and Westphal (2019) suggest that text analysis methodologies can be useful to gain

deeper insights into the OpRisk data, although without proposing detailed approaches.

A recent literature review on the application of text analysis in the financial sector (Bach et

al., 2019) reveals that the main research focus is on stocks price prediction, financial fraud de-
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tection and market forecast. In the literature, there are several proposals to manage fraud risk

(which is a part of OpRisk) by making use of text analysis. For example, Holton (2009) proposes

a methodology to detect financial frauds by identifying and classifying emails with disgruntled

communications.

2.3 Workflow for OpRisk descriptions analysis

2.3.1 Descriptions cleaning

Descriptions are prepared for analysis using some cleaning procedures. The set of all descriptions

(or documents) to be analyzed is called “corpus”. Procedures to clean texts include the following

ones:

• Data anonymization: applying routines to retrieve and delete (or substitute with conventional

tags) any personal information and dates from texts, for compliance with GDPR (European

Parliament and Council of the European Union, 2016) and for analytical purposes (Franco-

poulo and Schaub, 2020).

• Splitting of different languages: applying routines to recognize and separate parts of text

written in different languages (Jauhiainen et al., 2019).

• Ignoring cases, which can be done by case-folding each letter into lowercase.

• Removing punctuations and digits.

• Removing frequent words that do not contain much information (also called stop-words),

such as articles, pronouns, conjunctions, and words like “of”, “about”, “that”, etc. Lists

of stop-words are readily available for the main languages. In particular, for the application

described in Section 2.4, the stop-word list, related to the English language, has been derived

from meta::cpan (2021).

• Using regular expressions to detect special characters (e.g., “ù”, “ä”, “|”, etc.) and remove

them.
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• Reducing words to their lemmas (e.g., “pay” from “paying”, “client” from “clients”), sub-

stituting each word with the corresponding canonical form. The lemmatization reduces the

number of distinct words in a text corpus and increases the frequency of occurrence for some

of them.

2.3.2 Text vectorization with the Bag-of-Words approach

In the Bag-of-Words (BoW) approach (Harris, 1954), the data set is transformed into a matrix,

where:

• row i represents the i-th document, di;

• column j represents the j-th term, w j, of the transformed data set; and

• in cell (i, j) of the document-by-term matrix, we store the Term Frequency (TF), TF(di,w j),

of the term w j in the document di (i.e., the number of times w j appears in di) (Luhn, 1957).

An example of BoW representation is given in Figure 2.2.

Figure 2.2: Example of Bag-of-Words representation (without stop-words removal).

Another common approach to text vectorization in text analysis is known as “Term Frequency

– Inverse Document Frequency” (TF-IDF) method. The Inverse Document Frequency is a scoring

of how rare a word is across documents (Spärck Jones, 1972):

IDF(w j) = log
n
n j
,

where n is the number of documents in the corpus, and n j is the number of documents in which

word w j appears. In the TF-IDF method (Bollacker et al., 1998), the value of word w j in document
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di is given by

TF-IDF(di,w j) = TF(di,w j)× IDF(w j),

where i = 1, . . . ,n and j = 1, . . . ,m, and m is the dictionary size.

The similarity between documents can be calculated using the “cosine similarity” (Singhal,

2001). Considering the documents ds and dt (s, t ∈ {1, . . . ,n}), represented by

xs = (TF-IDF(w1,ds), . . . ,TF-IDF(wm,ds)) ,

xt = (TF-IDF(w1,dt), . . . ,TF-IDF(wm,dt)) ,

their cosine similarity is given by the cosine of the angle between the two vectors representing the

two descriptions:

CS(ds,dt) =
xs ·xt

∥xs∥∥xt∥
∈ [0,1].

2.3.3 Semantic adjustment

The TF and TF-IDF approaches alone are not able to capture semantic information, such as the

semantic similarity between synonyms. In fact, even if two documents are almost identical in

terms of meaning, the similarity between them on the basis of TF or TF-IDF could be low due to

scarce word matching. In the following example, we compare two descriptions:

1. “The customer lost his credit card” and

2. “The client mislaid her credit card”

The TF matrix is reported in Table 2.1 (stop-word “the” has been removed).

Table 2.1: TF document matrix.

44



Cosine similarity between the descriptions can be calculated as

CS(d1,d2) =
x1 ·x2

∥x1∥∥x2∥
=

(1,0,1,0,1,0,1,1) · (0,1,0,1,0,1,1,1)√
5
√

5
=

2
5
= 0.4.

Even though the documents are almost identical, CS is low due to the poor word overlap. The

columns “customer”, “lost” and “his” should be correlated respectively with the value of columns

“client”, “mislaid” and “her”, since they represent the same concepts. To consider semantic simil-

arity, an adjustment can be applied to the document-by-term matrix using word embedding tech-

niques, such as word2vec (Mikolov et al., 2013).

The Word2vec is built on a neural network-based algorithm to represent words in a vector

space, so that different words that share a common concept are “close” as measured by cosine sim-

ilarity. The cosine similarity between words therefore represents a measure of semantic similarity

between them.

For example, assume that the word-similarity matrix, shown in Table 2.2, is obtained by apply-

ing word2vec.

Table 2.2: Word similarity matrix.

The word similarity matrix allows each “zero” element of the document-by-term matrix to be

updated with the value of the most similar word included in the same row of the matrix, scaled by

the respective word similarity score (Shanavas et al., 2021).

The resulting semantic-aware document-by-term matrix is reported in Table 2.3.
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Table 2.3: Semantic-aware document-by-term matrix.

The cosine similarity between the two documents can now be recalculated on the basis of the

semantic-aware document-by-term matrix:

CS(d1∗ ,d2∗) =
(1,0.8,1,0.9,1,0.9,1,1) · (0.8,1,0.9,1,0.9,1,1,1)√

7.26
√

7.26
= 0.992.

The similarity score between the two documents, considering the semantic adjustment, increases

from 0.4 to around 0.99, reflecting the actual similarity between them.

2.3.4 Dimensionality reduction

After introducing a semantic measure of similarity to extract information from texts, the next step

of the proposed workflow is to identify clusters of similar descriptions. A convenient approach is

to make use of dimensionality reduction methods, used to map document vectors from the word

space to a space whose reduced dimensionality is user-defined. The Latent Semantic Analysis

(LSA) (Dumais et al., 1988) is based on the Singular Value Decomposition (SVD) in which the

document-by-term matrix A (see Figure 2.3) is reduced to a set of orthogonal factors from which

the original matrix can be approximated. Multidimensional projection techniques such as Least

Square Projection (LSP) (Paulovich et al., 2008) can also be adopted to preserve neighborhood

relations.

Figure 2.3: Singular value decomposition (SVD) representation.
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Since the similarity between documents can still be measured in the reduced space represented

by the matrix U (see Figure 2.3), text objects can be ranked by their similarity. For example, by

identifying a point in the space (representing an event description), the text objects in its neighbor-

hood can be identified.

2.3.5 Cluster selection

Dimensionality reduction is used to build a 2D representation of the data, where each point is an

event description and similar ones are represented as a cluster of points (Eler et al., 2018). Using

the 2D representation, the analysts can explore a large volume of documents, identifying clusters

of similar documents as groups of points close to each other, allowing them to understand their

content and assign tags, as “credit card forgery”, as reported in the example of Figure 2.4. For

example, we suppose that most of the blue points can be tagged by the analysts as “credit card

forgery”.

Figure 2.4: A graphical representation showing document similarities in the 2D space: each point
represents a document, and each color represents a document cluster.

2.3.6 Cluster validation

Once the analysts have tagged the events belonging to the identified clusters, it is possible to apply

statistical clustering and topic modelling techniques to validate their decisions. These techniques
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can be also applied to support analysts’ activity when there is a huge amount of data to be tagged.

Several methods can be adopted for this task. We have identified the following approaches as being

the most used and popular ones:

• k-means clustering (Macqueen, 1967), where the data are partitioned into k groups, such that

the sum of the squared Euclidean distances between the points and centers of the assigned

clusters is minimized. The algorithm, starting from k initial centers, iterates until conver-

gence by recalculating the centers of clusters and reassigning the points to the clusters on

the basis of distances. Since the initial k centers are randomly selected, it is a good practice

to rerun the algorithm with several initializations in order to select the best clustering among

the results. k-means is implemented in the function kmeans of the R programming language.

The quality of the obtained clustering can be assessed using the silhouette plots (Rousseeuw,

1987). For each data point, a silhouette value is calculated (and plotted), measuring how sim-

ilar it is to its own cluster (cohesion) compared to the other clusters (separation). This value

belongs to the range [−1,+1], where a high value indicates that the point is well matched

to its cluster and poorly matched to other clusters. If most points have high values, then the

obtained clustering is appropriate. The average value, called the silhouette index, is usually

adopted as a synthetic index of clustering quality.

• Spherical k-means clustering, which is based on cosine distance (i.e., 1 minus the cosine

similarity) instead of the Euclidean distance. Note that this method is equivalent to scaling

data to unit length, and then using standard k-means. This method is suggested to mitigate

the effect of different document lengths (Dhillon and Modha, 2001), and it is implemented

in the R package skmeans (Hornik et al., 2012).

• Clustering via Gaussian finite mixture models implemented in the R package mclust (Scrucca

et al., 2016).

• Trimmed k-means clustering implemented in the R package tclust (Fritz et al., 2012). In

particular, the trimmed k-means clustering is obtained by the function tclust, setting 1 as

the eigenvalue restriction factor (i.e., the ratio of the maximum eigenvalue to the minimum

one).
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• Mixtures of Unigrams described by Nigam et al. (2000) and implemented by the function

mou EM in the R package DeepMOU (D’Ippolito et al., 2021). Parameter estimation is per-

formed by means of the Expectation-Maximization (EM) algorithm.

• Deep Mixtures of Unigrams presented by Viroli and Anderlucci (2021) and implemented by

the function deep mou gibbs in the R package DeepMOU. Parameter estimation is performed

by means of Gibbs sampling.

• Dirichlet-Multinomial Mixtures model described by Anderlucci and Viroli (2020) and im-

plemented by the function dir mult GD in the R package DeepMOU. Parameter estimation is

performed by means of a Gradient Descend algorithm.

• Latent Dirichlet Allocation (LDA) is a generative statistical model that explains a set of

observations through unobserved groups. It is an example of a topic model, where observa-

tions (e.g., words) are collected into documents. It assumes that the words in a document are

drawn from k topics, and that each topic is characterized by a probability distribution over

the available words. Each document is supposed to contain a certain number of topics. The

application of LDA in the context of text mining is described by Blei et al. (2003). LDA

is implemented by the function FitLdaModel in the R package textmineR (Jones, 2021).

Parameter estimation is performed by means of Gibbs sampling.

The consistency between the cluster selection, performed as described in Section 2.3.5, and the

results of the aforementioned approaches can be assessed through the accuracy measure, which is

calculated as follows for a classification method:

Accuracy =
Number of correctly classified data

Total number of data
.

Several other measures can be used to assess the performances of classification methods (e.g.,

precision, recall, the F1 score), but accuracy appears to be the most intuitive and sufficiently general

to be applied to the aforementioned approaches.
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2.4 Application to OpRisk data

The objective of this application is to analyze the descriptions of the CoRep OpRisk data set from

the UniCredit banking group using all the approaches described in the previous sections. CoRep

refers to Common Reporting, which is the set of all data that the financial institutions have to

periodically report to their Supervisory Authorities (e.g., European Central Bank). Among the

CoRep reports, there is the C17.02 template, which reports information (including the description)

on OpRisk events leading to gross loss amounts higher than or equal to e 100,000 (gross means

without considering any recovery). The analyzed data set is composed of the OpRisk data which

are relevant for the C17.02 template, which was introduced in 2018. Each record of this data set

represents an OpRisk event, and the main fields report the following data:

• Event ID: the ID of the OpRisk event.

• Date of Accounting: the first accounting date of the event.

• Event Type: the Basel Event Type level 1 classification of the event.

• Gross Loss: the total gross loss amount of the event (i.e., the sum of economic impacts

related to the event: losses, provisions, and releases of provisions) in euros.

• Description: a text field reporting an English anonymized description, having a maximum of

250 characters.

This application concerns the part of CoRep OpRisk data set related to the OpRisk events having

event type “Clients, Products & Business Practices” and first accounting date between 2018 and

2021. This selection leads to a data set composed of 644 events with relevant descriptions.

The analysis is performed using the R packages quanteda (Benoit et al., 2018), word2vec

(Wijffels, 2021), and the ones mentioned in Section 2.3.6.

First of all, the descriptions are cleaned as described in Section 2.3.1. There is no need for

language splitting and data anonymization, since such descriptions are all entered in English lan-

guage and without any personal information. The stop-word list, already specified in Section 2.3,

has been obtained through the R package stopword (Benoit et al., 2021).
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Since the analyzed descriptions are short texts (having max 250 characters), we apply the TF

weighting schema without any IDF scaling, as motivated by the finding of Anderlucci et al. (2019)

in their application to similarly structured data. We point out that the main purpose of the IDF

scaling is to reduce the weight of terms that are used in many documents under the hypothesis that

if a word is used in many descriptions, then it is not informative, and then it is not useful to dis-

criminate different clusters of data. However, most of the non-informative terms have been already

excluded by removing the stop-words from the text corpus. Therefore, by applying IDF scaling to

short texts, we would risk reducing the weights of some informative words that characterize the

clusters. This aspect is verified in the next steps of the analysis.

We obtain a document-by-term matrix having 644 rows (i.e., the number of descriptions) and

1037 columns (i.e., the length of the dictionary consisting of all the unique words included in the

cleaned descriptions).

We apply LSA to the document-by-term matrix to obtain a 2D representation, reported in

Figure 2.5, where the axes V 1 and V 2 represent the first two LSA dimensions.
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Figure 2.5: 2D representation of the document-by-term matrix

The next step is to generate the semantic-aware document-by-term matrix using the approach

described in Section 2.3.3. We use a pre-trained word embedding obtained by the word2vec ap-
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proach (available at NLPL word embeddings repository (2017), selecting ID=40, i.e., ”English

CoNLL17 corpus”). This allows us to obtain the word similarity matrix by calculating the cosine

similarity between all the pairs of words included in the dictionary of the data set. The word sim-

ilarity matrix is then used to adjust the document-by-term matrix, as described in Section 2.3.3.

Similarly to Shanavas et al. (2021), we use a similarity matrix that only contains similarity val-

ues higher than 0.8 in order to keep the semantic adjustment free of noise (i.e., medium-to-low

similarity due more to randomness than similar meaning). Some rationales for the selection of

threshold 0.8 are reported in the next steps of the analysis. After applying LSA, we obtain the 2D

representation of the semantic-aware document-by-term matrix in Figure 2.6.
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Figure 2.6: 2D representation of the semantic-aware document-by-term matrix.

This plot supports the activity of the analysts who, in our application, after examining which

points lie closer to each other, decide to tag two clusters of events (clusters 1 and 2 in Figure 2.7)

and to also designate a cluster of residual events (cluster 3 in Figure 2.7). There are two groups of

semantically related words, identified by the analysts, that are contained in all descriptions within

clusters 1 and 2, respectively. Based on these common-meaning words, it emerges that the two

identified clusters (representing two different root causes for OpRisk) and the residual cluster can

be described as follows:
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1. Disputes related to irregularities in interest rate calculations (composed of 384 events)

2. Disputes related to mortgages in foreign currency (composed of 48 events)

3. Other events (composed of 212 events)
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Figure 2.7: 2D representation of the semantic-aware document-by-term matrix with the identified
clusters, with similarity threshold 0.8: cluster 1 represents “disputes related to irregularities in the
interest rate calculations”, cluster 2 identifies “disputes related to mortgages in foreign currency”,
and other events are in cluster 3.

As can be seen by comparing Figure 2.5 with Figures 2.6 and 2.7, the semantic-aware document-

by-term matrix allows to include into the clusters also descriptions expressing similar concepts,

even when they do not include the same significant words identifying the clusters.

To further motivate the exclusion of IDF scaling, Figure 2.8 graphs the 2D representation of the

semantic-aware TF-IDF matrix (i.e., the TF-IDF matrix including the semantic adjustment based

on similarity threshold 0.8) with clusters previously identified by the analysts.
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Figure 2.8: 2D representation of the semantic-aware TF-IDF matrix with the identified clusters:
cluster 1 represents “disputes related to irregularities in the interest rate calculations”, cluster 2
identifies “disputes related to mortgages in foreign currency”, and other events are in cluster 3.

In Figure 2.8 there appears a significant overlap between clusters 1 and 3. In fact, since events

related to cluster 1 are identified by a few words that are included in all its descriptions, the IDF

scaling significantly reduces the weights of such terms, moving most of the related points very

close to the chart origin (i.e., very close to the point (V 1 = 0,V 2 = 0) in the chart). This repres-

entation would make it very hard for the analysts to distinguish between cluster 1 (disputes related

to irregularities in the interest rate calculations) and the residual cluster.

To motivate the selection of similarity threshold 0.8, we also report the charts obtained with

similarity thresholds 0.7 (in Figure 2.9) and 0.9 (in Figure 2.10).
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Figure 2.10: 2D representation of the semantic-aware document-by-term matrix with the identified
clusters, considering similarity threshold 0.9.
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Figure 2.9: 2D representation of the semantic-aware document-by-term matrix with the identified
clusters, considering similarity threshold 0.7.

We can see from Figures 2.9 and 2.10 that considering threshold 0.7 completely alters the initial

configuration, whereas considering 0.9 leaves the configuration very similar to the non-semantic-
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aware one (Figure 2.5). Therefore, we can consider the similarity threshold 0.8 (or, at least, the

values within a small neighborhood of 0.8) as the best trade-off between including too much noise

(i.e., threshold 0.7) and not including any appreciable semantic adjustment (i.e., threshold 0.9).

Taking into account the knowledge of the analysts, who identified three clusters (i.e., the two

clusters based on common root cause events and the cluster of residual data), we run a k-means

clustering with k = 3. Moreover, 1000 random starting points are used to avoid being sensitive to

a specific starting point selection. Results are reported in Figure 2.11.
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Figure 2.11: k-means clustering with k = 3 and 1000 starting points.

The good quality of the k-means clustering is confirmed by the silhouette plot, in which the

average silhouette index is 0.71 (Figure 2.12).
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Figure 2.12: Silhouette plot of the k-means clustering.

The k-means clustering assigns 361 and 51 events to clusters 1 and 2, respectively. As there are

26 misclassified events out of 644 with respect to the analysts’ selection, we obtain an accuracy of

around 96% for the k-means clustering.

Other methods described in Section 2.3.6 are also applied to the data. The accuracies of all

considered approaches are reported in Table 2.4, along with their ranking from most to least accur-

ate.

Table 2.4: Accuracy indexes.

Rank Method Accuracy (%)
1 k-means 95.96
2 Gaussian finite mixture models 95.19
3 Trimmed k-means 95.03
4 Latent Dirichlet Allocation 85.40
5 Dirichlet-Multinomial Mixtures 76.05
6 Mixtures of Unigrams 70.92
7 Deep Mixtures of Unigrams 69.98
8 Spherical k-means 61.02

From the reported results, we observe that:
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• The highest accuracy (i.e., 96%) is shown by k-means clustering, applying 1000 different

starting points, To additionally motivate the exclusion of IDF scaling, we also apply the

k-means method to the semantic-aware TF-IDF matrix, recalculating the first two LSA di-

mensions. In this case, the accuracy drops to 68%. This significant decrease with respect to

the results obtained without the IDF scaling is consistent with Figure 2.8 (showing substan-

tial overlapping between clusters 1 and 3).

To also provide further justification for the similarity threshold 0.8, we calculate all the

accuracy values that we would obtain by applying k-means to the first two LSA dimensions

recalculated on the semantic-aware document-by-term matrix based on similarity thresholds

between 0.7 and 0.9 (with step 0.05).

Table 2.5: Accuracy indexes for similarity thresholds.

Threshold Accuracy (%)
0.70 89.29
0.75 95.81
0.80 95.96
0.85 90.99
0.90 90.68

The results, reported in Table 2.5, confirm that the similarity threshold 0.8 is the best setting

also in terms of accuracy.

• Spherical k-means (i.e., the k-means based on the cosine distance) ranked last (i.e., 61%). It

is applied with 10,000 starting points, although this does not substantially improve accuracy.

The poor performance of spherical k-means could be due to the similar lengths of analyzed

descriptions. In this case, the normalization of the vectors representing the descriptions does

not seem to be effective in discriminating the correct clusters. Intuitively, comparing Figures

2.11 and 2.13, it can be noted that the similarity among data is much more due to their

Euclidean distance than to the angles between the vectors representing each pair of points.
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Figure 2.13: Spherical k-means clustering.

• Gaussian finite mixture models provide a slightly lower accuracy than k-means (i.e., 95%).

This level of accuracy has been achieved by considering a spherical family with variable

volume (i.e., each cluster can include a different number of observations) and equal shape

(i.e., each cluster has approximately the same variance so that the distribution is spherical).

This setting leads to a configuration similar to the one obtained by the k-means clustering

and, consequently, to a similar accuracy level. The obtained clustering is reported in Figure

2.14.
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Figure 2.14: Clustering via Gaussian finite mixture models.

• The method of trimmed k-means provides similar accuracy (i.e., 95%) to the Gaussian finite

mixture models, again applying 1000 different starting points. Different settings have been

tested for this method, and the best one (in terms of accuracy) resulted in a proportion of

α = 0.02 trimmed observations (Figure 2.15, where the black circles represent the trimmed

data, which are not assigned to any cluster).
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Figure 2.15: Trimmed k-means clustering with α = 0.02.

To motivate the choice α = 0.02, we calculated the accuracy for values of α between 0.01

and 0.1.

Table 2.6: Accuracy indexes.

α Accuracy (%)
0.01 91.30
0.02 95.03
0.05 92.39
0.1 77.80

The results, reported in Table 2.6, confirm that the highest accuracy value is obtained for

α = 0.02.

• Mixtures of Unigrams, Deep Mixtures of Unigrams, and Dirichlet-Multinomial Mixtures

are applied directly to the document-by-term matrix, adjusted for the semantic similarity,

composed of 644 documents and 1037 terms. In fact, it is not possible to apply these meth-

odologies to the LSA-based 2D representation, since the LSA can generate negative values,

and the three methodologies require as input a matrix composed of positive values. Mixtures
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of Unigrams and Dirichlet-Multinomial Mixtures have been applied using a multi-starting

strategy to prevent the local maxima issue, where, for each iteration, the initial assignment

to the clusters has been randomly defined. Among all performed iterations, the one hav-

ing the lowest Bayesian information criterion (BIC) index has been selected, assuring that

we have approximately obtained a global maximum value for parameter estimation. The

implementation details are as follows:

– For Mixtures of Unigrams, 1000 iterations (i.e., 10 times the default setting of the

function mou EM) and a tolerance of 10−7 (equal to the default setting) have been ap-

plied. For the multi-starting strategy, 100 different random starting points have been

considered.

– For Deep Mixtures of Unigrams, based on Gibbs sampling, 1000 iterations have been

used with a burn-in of 500. For the top layer, three clusters have been considered,

whereas two clusters have been considered for the hidden bottom layer, since this set-

ting provided the highest accuracy in the simulation studies performed by Viroli and

Anderlucci (2021).

– For Dirichlet-Multinomial Mixtures, 100 iterations have been set, combined with 100

different random starting points for the multi-starting strategy. It is worth mentioning

that Dirichlet-Multinomial Mixtures are much more computationally intensive than the

Mixtures of Unigrams and the Deep Mixtures of Unigrams, with calculations taking

several hours.

These three methods, implemented in the R package DeepMOU, show accuracies between

70% and 76%. For these approaches, better performances can perhaps be obtained by trying

different settings and, in particular, increasing the iterations at the price of higher computa-

tional costs.

• For the same reason as for the previous methods, the LDA has also been directly applied

to the document-by-term matrix, adjusted for semantic similarity. The applied LDA setting

considers three topics (since the analysts identified two clusters, besides the residual data),

and 10,000 iterations with a burn-in of 5000. The prior parameters for topics over documents
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and for words over topics have been set to α = 0.1 and β = 0.05 (i.e., the default values of

the function FitLdaModel). To obtain the clustering, we assign each description to the topic

showing the highest probability. The LDA shows an accuracy of around 85%, which could

be likely improved by trying different settings, such as increasing the number of iterations

and fine-tuning the values for prior parameters α and β . However, note that setting α to 50

divided by the number of topics (i.e., 50/3 for this application), as suggested by Grün and

Hornik (2011), does not increase the accuracy.

2.5 Concluding remarks

To the best of our knowledge, the present work is among the first ones that have addressed the

application of text analysis techniques to OpRisk event descriptions and is the first one that has

provided a structured general workflow for such analyses. Furthermore, we have complemented

the established frameworks of currently applied statistical methods for quantitative data, hence

contributing to the construction of a holistic OpRisk management framework. Indeed, our ultimate

goal is to provide an analytical and measurement framework that considers OpRisk information in

its entirety in order to acquire a common language and a unified understanding of risk.

We have applied several statistical approaches and models to analyze and cluster OpRisk event

descriptions using text analysis techniques, in order to identify the main root causes of such a

risk. We have enriched the standard text analysis techniques by considering a semantic adjustment

capable of dealing with similar concepts expressed by different words. The semantic adjustment

can be based on word embedding methods, such as word2vec. We have used clustering and topic-

modelling techniques (e.g., k-means, and LDA) to validate and support the clustering performed

by the analysts. Conversely, the information provided by analysts (such as the number of clusters

to be considered) can serve as useful guidance for statistical methods.

We focused on the UniCredit CoRep data set when applying the described text analysis meth-

ods and several clustering approaches, thus providing a useful comparison that highlights their

advantages and limitations. Our results have allowed us to identify two homogeneous clusters of

events within the event type “Clients, Products & Business Practices” concerning “disputes re-

lated to irregularities in the interest rate calculations”, “disputes related to mortgages in foreign
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currency”, and a residual cluster containing other events within the same event type. Such results

have been validated by statistical indices. Notably, the indexes were consistent with the judgments

and knowledge of skilled analysts in the field. The k-means clustering method provided the highest

accuracy relative to the clusters identified by the analysts. However, further analysis of more ex-

tended data sets should be performed before drawing conclusions on the best methodologies for

these purposes. The proposed framework constitutes a starting point for analyzing OpRisk event

descriptions. It could be improved and extended by focusing on several aspects:

• Including the procedure, described in Section 2.3.5, in an analytical loop. At each iteration,

event descriptions belonging to the identified clusters can be labeled and then removed from

the data set. A tag deduction activity can be performed to infer tags of new events from

tagged events with similar descriptions by using, e.g., a k-nearest neighbors approach.

• Systematically applying clustering and topic modelling techniques to partially automate the

identification of the clusters on large data sets.

• Employing techniques to drive the selection of the number of relevant clusters or topics (e.g.,

identifying the number of clusters that maximizes the average silhouette index).

• Adopting multidimensional projection techniques, such as Least Square Projection (LSP)

(Paulovich et al., 2008), or self-organizing maps (SOM) (Pacella et al., 2016), to preserve

neighborhood relations and improve cluster identification.

• Adopting other word embedding techniques, such as GloVe (Pennington et al., 2014) or

BERT (Kaliyar, 2020) and training them on large OpRisk data sets.
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Chapter 3

An approach for detecting emerging

Operational Risks from textual data

Based on:

Di Vincenzo D., Greselin F., Piacenza F., & Zitikis R. (2024).

An approach for detecting emerging Operational Risks from textual data.

Forthcoming.

Di Vincenzo D., Greselin F., Piacenza F., & Zitikis R. (2024).

A tweet data analysis for detecting emerging Operational Risks.

Submitted to 11th International Conference MATHEMATICAL AND STATISTICAL METHODS

FOR ACTUARIAL SCIENCES AND FINANCE - MAF2024 and the related book edited by Springer.

https://sites.google.com/unisa.it/maf-2024/home-page

https://sites.google.com/unisa.it/maf-2024/conference-publications?authuser=0

3.1 Introduction

The operational risk (or OpRisk) is related to the risk of losses resulting from events such as

frauds, sanctions, physical damage, IT issues, cyberattacks, and errors (refer to European Parlia-

ment and Council of the European Union, 2013 for the official definition). International financial

institutions have OpRisk management functions, performing regulatory activities, such as loss data
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collection, capital requirement calculations, and reporting. To perform loss data collection, finan-

cial institutions have databases to collect and store the necessary information for each OpRisk

event, such as loss amounts, reference dates, Basel loss event type (selected among Internal Fraud;

External Fraud; Employment Practices and Workplace Safety; Clients, Products & Business Prac-

tices; Damage to Physical Assets; Business Disruption and System Failures; Execution, Delivery

and Process Management), and event description (for example, refer to Soprano et al., 2010). The

present work addresses the application of text analysis techniques to the OpRisk event descriptions

and other data sources, such as web data, proposing a fully integrated workflow. Text analysis

is one of the main tasks of Natural Language Processing (NLP), which is a branch of Artificial

Intelligence (AI).

The proposed workflow includes the following steps for OpRisk event descriptions:

1. Description cleaning (e.g., identifying English-written descriptions, removing stop-words,

reducing words to their lemmas).

2. Text vectorization (building a document-by-term matrix).

3. Semantic adjustment (enriching the document-by-term matrix, considering the semantic sim-

ilarity among words).

4. Dimensionality reduction (building a 2D representation of the data, where each point is an

event description, and similar ones are represented as clusters of points).

5. Cluster selection (points are automatically clustered, according to the evidence that emerges

from the 2D representation).

For web data, and in particular tweets, the same steps are considered, and integrated by two final

steps:

6. Observe the trend of OpRisk related topics.

7. Detect emerging OpRisk related topics.

The entire integrated workflow is represented in Figure 3.1. In this work, Section 3.2 gives a liter-

ature review of the text analysis applied to OpRisk. Sections 3.3 and 3.4 describe data sets related
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Figure 3.1: Workflow for OpRisk description and tweet analyses.

to OpRisk event descriptions and tweets, mentioning their sources and structures. Section 3.5 de-

scribes in detail the steps of the proposed workflow for OpRisk event descriptions. Section 3.6

describes the steps of the proposed workflow for web data sources. Section 3.7 reports an applica-

tion of the proposed workflow to the descriptions of the CoRep OpRisk data set for the UniCredit

banking group, while Section 3.8 describes an application on tweets. All the data elaborations

and analyses have been performed using the software R (R Core Team, 2023). Finally, Section

3.9 summarizes the main achievements and results of this work, discussing possible extensions in

several directions.

3.2 Literature review

Some approaches for the analysis of textual data related to OpRisk loss event descriptions are

available in the literature.

Pakhchanyan et al. (2022) apply machine learning techniques to OpRisk descriptions, to auto-

matically classify events into Basel event types. The classification of OpRisk events is also dis-
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cussed by Zhou et al. (2021), who propose semi-supervised methods to include unlabeled data in

the training stage.

Wang et al. (2018) and Wang et al. (2022) investigate the main OpRisk factors, applying the

Latent Dirichlet Allocation (LDA).

Data Study Group team (2019) provide a preliminary proof-of-concept for the potential useful-

ness of statistical and NLP approaches in OpRisk modelling, applying LDA and long short-term

memory neural networks (LSTM).

Carrivick and Westphal (2019) suggest that text analysis methodologies can be useful to gain

deeper insights into the OpRisk data.

Ji et al. (2023) use BILSTM-CRF, i.e., a text mining method that combines long short-term

memory (LSTM) and conditional random field (CRF), for safety record analysis.

Di Vincenzo et al. (2023) define a structured workflow to perform text analysis of OpRisk

event descriptions, comparing several clustering and topic modelling methods to be applied within

each Basel event type to detect their main root causes. The approach has been applied to a clean

selection of OpRisk data.

In general, natural language processing (NLP) is often used to gain insights from unstructured

risk data (Leidner and Schilder, 2010). Applications include identifying key risks (e.g., Chu et al.,

2020) and data pre-processing to extract relevant factors from free-text reports (e.g., Pence et al.,

2020). Arumugam et al. (2016) perform descriptive analytics with k-means clustering on risk

phrases extracted from reports of offset wells, using NLP to streamline well drilling planning and

execution.

To the best of our knowledge, however, no attempt has been made, up to now, to integrate

different data sources (i.e., not OpRisk-specific) to retrieve information that could be used as early

warnings by the financial institutions.

3.3 OpRisk data

By OpRisk data analysis we mean the analysis of data on the OpRisks owned by the financial

institution (e.g. UniCredit). We can differentiate the data sources among the following types:

• Internal data, i.e, the OpRisk events registered by the financial institution. For each OpRisk
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event of the internal data, we have two versions of the descriptions, i.e., short and long

descriptions:

– the CoRep description (CoRep stands for Common Reporting, i.e, the set of data that

the financial institutions have to periodically report to their Supervisory Authorities),

with maximum length of 250 characters and is typically written in English (surely

written in English if the loss amount is higher than or equal to the threshold e 100,000

and collected since 2018);

– the chronological description with variable length (without a cap) and written in differ-

ent languages (the same description can include parts written in different languages).

The maximum observed chronological description length is around 4000 characters.

• External data, i.e, the OpRisk events registered by other financial institutions. It is possible

to access these data by joining the ORX association (Operational Risk eXchange, which is

the largest OpRisk management association in the financial services sector, ORX, 2023) and,

in particular, accessing the ORX News Service (ORX News, 2023) to get the descriptions

of the publicly reported OpRisk events from around the world. For each event of the ORX

News, we have two versions of the descriptions, i.e., short and long descriptions:

– a brief description, named “Headline”, which never exceeds 200 characters;

– the full content of the news, named “Digest Text”, with variable (typically high) length.

The maximum observed Digest Text length is around 24,000 characters.

• Scenario analysis, i.e, fictitious OpRisk events that could impact the financial institution. For

each scenario, a storyline describing the potential event is produced by OpRisk analysts. For

the scenario analysis, only a storyline is typically available, where, e.g, in UniCredit, the

length ranges between 100 and 4000 characters.

3.3.1 The ORX taxonomy

In recent years, the landscape of OpRisks has seen a drastic evolution with new entries into the risk

vocabulary, e.g., cyber risk and conduct risk. Considering that the Basel loss event type taxonomy
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was defined around 20 years ago (Basel Committee on Banking Supervision 2004), some of these

recently emerging themes are not explicitly captured or addressed in it. Therefore, several financial

institutions have either adapted the Basel event types, or developed internal taxonomies, leading to

some divergence among organisations. For this reason, ORX, in collaboration with Oliver Wyman

and their members, has developed a new reference OpRisk taxonomy (“the ORX taxonomy”) to

be used as a new standard to categorize OpRisks (ORX and Oliver Wyman, 2020; ORX and Oliver

Wyman, 2023). The ORX taxonomy, composed of Level 1 and Level 2, is represented in Figure

3.1. The presented work makes extensive use of the ORX taxonomy for several purposes.
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Table 3.1: ORX taxonomy.
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3.4 Tweets data

X (formerly known as Twitter) has been selected as a relevant web data source to capture early

warnings on potential OpRisk events, for three main reasons:

• Each tweet has a maximum length of 280 characters, making tweets comparable with the

CoRep descriptions of UniCredit OpRisk data.

• It was feasible (until July 12th, 2023) to access and store the tweets using a specific API

freely available for the development of research activities (after Twitter approval).

• Considering the widespread use of Twitter, it is likely that some tweets are promptly written,

when some relevant event occurs (having or not an OpRisk nature).

Early warning systems are extensively used in finance (a bibliometric analysis can be found in

Klopotan et al. (2018), while Zhang et al. (2019) studied them for stock market crises). Further-

more, tweet analysis is often used for predictive purposes (Cano-Marin et al., 2023; Iacopini and

Santagiustina, 2021; Costola et al., 2021).

Two different R scripts based on the package rtweet (Kearney, 2019) have been written to ac-

cess and store tweets, and then scheduled to automatically run using the R package taskscheduleR

(Wijffels and Belmans, 2023):

• Script to extract tweets related to specific keywords, mainly based on the ORX taxonomy,

scheduled to run every hour. The extraction was performed using the function search tweets.

The list of the keywords, grouped by generic OpRisk topic (obtained aggregating some Level

1 categories of ORX taxonomy), is reported in Table 3.2.

• Script to extract tweets related to specific accounts, selected among the main ones reporting

financial news (e.g., Financial Times, Bloomberg, Reuters), scheduled to automatically run

every day. The extraction was performed using the function get timeline. The list of

accounts is reported in Table 3.3.

The different frequencies of extraction are motivated by the number of tweets expected for each

type of search, and considering that each extraction cannot exceed around 100,000 tweets. We

empirically observed this limitation, even if we are not aware of any specific reference motivating
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Table 3.2: Tweet keywords.

Topic Keywords
Fraud fraud, rubbery, theft
Physical security damage, injury, terrorism
Execution error, model error, implementation error
Technology hardware failure, software failure, IT failure, business continuity
Conduct and Legal sanction, breach, compliance, regulators, fines
Financial Crime bribery, corruption, money laundering
Third Party third party, outsourcing
Information Security cyber
General operational risk

Table 3.3: Tweet accounts.

Source Accounts
News agencies @FinancialNews, @CBSNews, @cnnbrk, @FoxNews
BBC news @BBCWorld, @BBCNews, @bbcworldservice, @BBCBreaking
Financial Times @FinancialTimes, @FT, @ftlive
Bloomberg @business, @Bloomberg, @markets, @BloombergTV

@BloombergUK, @opinion, @BloombergLive
Reuters @Reuters”, @ReutersWorld
Risk.net @RiskDotNet, @RiskNet REG, @RiskNet RM, @RiskNet COM

@RiskNet AM, @RiskNet DER, @RiskQuantum
UK newspapers @guardian, @Independent, @DailyMirror, @TheEconomist
US newspapers @nytimes, @washingtonpost, @WSJ

it. The extraction of tweets requires specific criteria (e.g., only English tweets, discarding re-

tweets, and deleting hashtags and web links). Extracting by keywords leads to including also

tweets from personal accounts, but it is useful to obtain much more relevant tweets, and even

earlier than the financial accounts for particular events (e.g., damages for earthquake or extreme

weather conditions). Considering that the free API was dismissed on July 12th, 2023 (when Twitter

became X), the available data sets are:

• From May 5th to July 12th for keyword related tweets.

• From May 11th to July 11th for account related tweets.
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3.5 Workflow for OpRisk data analysis

This section describes the workflow applied to OpRisk event descriptions.

3.5.1 Descriptions cleaning

Descriptions have to be prepared for the analysis using some cleaning procedures. The set of all

descriptions (or documents) to be analyzed is called a “corpus”. Procedures to clean texts include

the following ones:

• Data anonymization: to retrieve and delete (or substitute with conventional tags) any per-

sonal information and dates from texts, for compliance with GDPR (European Parliament

and Council of the European Union, 2016) and for analytical purposes (Francopoulo and

Schaub, 2020). Data anonymization is already guaranteed in the OpRisk data by the rules of

the data collection (in all OpRisk event descriptions, ORX News, and scenario analysis).

• Languages detection: OpRisk event descriptions can be written in different languages. The

same description may include parts written in different languages, and therefore we should

split each description into several parts to detect the language of each part. The split can

be performed considering specific characters as separators (e.g., “.” or “;”), or the carriage

return. Afterwards, we can apply different strategies:

1. We can select only the events having at least one part of the description written in

English. All other events will be excluded from the analysis. This strategy is relatively

simple and it guarantees an adequate quality of English descriptions, but it generally

decreases the sample size.

2. The parts of the descriptions detected as not written in English can be translated to

English using an automated tool (e.g., an API for Google Translate). This approach

guarantees that we use the full data set in the analysis, but the quality of the English

descriptions would be heavily affected by the accuracy of the translator tool. Moreover,

there are currently no tools that are freely available to be applied to a significant amount

of data. As far as we know, there is no available literature for this approach.
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3. We can split the parts of descriptions, written in different languages, among different

data sets. For each data set related to the main languages (e.g. English, Italian, Ger-

man), we can apply the next steps of the analysis. This approach is consistent with the

available literature, where it is usually suggested to apply text analysis techniques to

data sets in a single language.

CoRep descriptions of the internal data should be, theoretically, written in English. For

events with loss amounts lower thane 100,000, or booking dates earlier than 2018, different

languages could appear. Descriptions reported for external data and scenario analysis are all

written in English. With this evidence and the fact that, based on our research, there is no

free automated tool to translate sentences into accurate English, we decided to adopt the first

strategy among the three described above. Descriptions having at least a sentence written in

English have been identified, using the function detect language of the R package cld2

(Ooms, 2022), which is an R wrapper on Compact Language Detector 2 (CLD2, Riesa and

Giuliani, 2013), and then the English parts have been selected. CLD2 is a Naı̈ve Bayesian

classifier that probabilistically detects over 80 languages. The ORX taxonomy, which is

currently composed of two levels (as described in Section 3.3.1 and Figure 3.1), has been

considered in language detection, creating a third level (Figures 3.4, 3.5, and 3.6). To include

some items in the third level that were not directly linked to anyone in the second level, some

additional items (starting with “Other”) have been included in the second level. If a sentence

contains a character string corresponding to a Level 3 Risk of the ORX taxonomy, then it is

forced to be detected as to be expressed in English.

• Ignoring cases, which can be done by case-folding each letter into lowercase.

• Removing punctuations and digits.

• Removing frequent words called stop-words, that do not contain much information, like

articles, pronouns, conjunctions, and words like “of”, “about”, “that”, etc. Lists of stop-

words are readily available for the main languages. In particular, for the application to be

described in Section 3.7, the stop-word list, related to the English language, has been derived

from meta::cpan (2021).
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Table 3.4: ORX taxonomy Level 3 (part 1)
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Table 3.5: ORX taxonomy Level 3 (part 2)
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Table 3.6: ORX taxonomy Level 3 (part 3)
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• Using regular expressions to detect special characters (e.g., “ù”, “ä”, “|”, etc.) and remove

them.

• Reducing words to their lemmas (e.g., “pay” from “paying”, “client” from “clients”), sub-

stituting each word with the corresponding canonical form. The lemmatization reduces the

number of distinct words in a text corpus and increases the frequency of occurrence for

some of them. The lemmatization can be preferred to stemming since the latter usually

returns trimmed words, which are not always easy to understand (e.g. “anatocism” would

be converted to “anatoc”), whereas the former always returns complete words (Khyani and

Siddhartha, 2021).

• n-gramming, which means considering a sequence of two or more words as a unique token

since they have a specific meaning together (e.g., “internal fraud”). The n-grams from the

ORX taxonomy have been selected considering all the items in the Level 3 Risk of Fig-

ures 3.4, 3.5, and 3.6. For example, every time that the string “network failure” is observed

within a description, the two words are substituted by the unique token “network failure”.

The methodology described by Frigau et al. (2021), based on the identification of word

sequences appearing much more often than expected, has been applied to unveil relevant

bigrams and trigrams. If two words have the probabilities p1 and p2 to occur, then the ex-

pected probability of the two words to co-occur together, under the independence hypothesis,

is p1 p2. For words having a specific meaning together (e.g., “internal fraud”, “network fail-

ure”, etc.), it is plausible that they are significantly dependent and then co-occur with a much

higher probability than p1 p2. Therefore, the relevant bigrams and trigrams are identified as

the ones that satisfy both of the following conditions:

1. There are at least 5 co-occurrences in the corpus.

2. The standard binomial test, applied to the probability that the observed proportion of

co-occurrences exceeds the expected value under independence, has a p-value lower

than 0.005.

This lower-than-usual significance level is based on the following rationales:

– The independence hypothesis is not fully satisfied for English writing, which could
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lead to selecting several n-grams that are not relevant. Such significance level favors

the selection of n-grams that are meaningful as phrases.

– Although if it is not explicitly stated by Frigau et al. (2021), the low significance level

could have been chosen to compensate for the fact that test multiplicity has not been

considered within this approach. Applying the method that includes multiplicity, a

statistical test is performed on each n-tuple (for n-grams) of consecutive words, where

one adopts a more standard significance level, e.g. 0.05, and then adjusts it to take

the multiplicity into account, using, e.g., Bonferroni correction or the more accurate

Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).

The n-grams with n > 3 have not been considered within this methodology since the most

relevant ones are already included in the ORX taxonomy, and to also avoid a further increase

of the computational burden.

• Removing all the terms (i.e., tokens) having a total frequency lower than five, considering

all the descriptions.

3.5.2 Text vectorization - Bag-of-Words (BoW)

According to the BoW approach (Harris, 1954), the data set is transformed into a document-by-

term matrix, where each row represents a document (e.g., an event description), each column

represents a term (e.g., a word or an n-gram), and each cell represents the Term Frequency (TF),

i.e., the number of times each term appears in each document (Luhn 1957). Di Vincenzo et al.

(2023) describe in detail the application of the BoW approach in the OpRisk context.

A common approach used in text analysis is known as the “Term Frequency – Inverse Docu-

ment Frequency” (TF-IDF) method, where each element of the document-by-term is multiplied by

the Inverse Document Frequency (Spärck Jones, 1972), which is a scoring of how rare a word is

across the documents. Since the analyzed descriptions are short texts (having max 250 characters

for OpRisk event descriptions), we do not apply the IDF scaling, as motivated by Anderlucci et al.

(2019) for their application on similarly structured data. Moreover, as pointed out by Di Vincenzo

et al. (2023), the main purpose of the IDF scaling is to reduce the weight of terms that are more

often used in many documents. IDF assumes that if a word is used in many descriptions, then it

80



is not informative, and neither useful to discriminate different clusters of data. However, most of

the non-informative terms have been already excluded by removing the stop-words from the text

corpus. Therefore, by applying the IDF scaling to short texts, we risk reducing the weights of some

informative words that could characterize the clusters.

The similarity between documents can be evaluated using the “cosine similarity” (Singhal,

2001). Considering the documents ds and dt , s, t ∈ {1, . . . ,n}, represented by the m-length vectors

xs = (T F(w1,ds), . . . ,T F(wm,ds)) and xt = (T F(w1,dt), . . . ,T F(wm,dt)) ,

where each component represents the TF of a word of the dictionary (the dictionary size being m),

their cosine similarity is given by the cosine of the angle between the two vectors representing the

two descriptions:

CS(ds,dt) =
xs ·xt

∥xs∥∥xt∥
∈ [0,1].

In the following example, two documents are composed of two different words with a TF matrix

reported in Figure 3.7 and then represented by the vectors in Figure 3.2.

Table 3.7: TF matrix of the documents d1 and d2.

The cosine similarity between the documents d1 and d2 is then obtained as follows:

CS(d1,d2) = cos(θ) =
x1 ·x2

∥x1∥∥x2∥
=

(3,1) · (1,2)√
32 +12

√
12 +22

=
5√

10
√

5
=

1√
2
∼= 0.71.

3.5.3 Semantic adjustment

The BoW approach alone cannot capture the semantic similarity between synonyms: even if two

documents are almost identical in terms of meaning, their similarity, based on TF, could be low

due to scarce word matching. This issue in the OpRisk context has been extensively discussed by
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Figure 3.2: Vectors representation of the documents d1 and d2.

Di Vincenzo et al. (2023).

To consider semantic similarity, an adjustment can be applied to the document-by-term matrix

using word embedding techniques, a class of methods allowing to represent words in a vector

space so that different words that share a common concept are “close” as measured by the cosine

similarity.

One of the most classical and firstly defined word embedding is word2vec (Mikolov et al.,

2013), composed of two different methods based on neural networks (Figure 3.3):

• Continuous Bag-of-Words model (CBOW), which creates a sliding window around the cur-

rent word, to predict it from “context”, i.e., the surrounding words. After training, the vectors

representing the words are obtained.

• Skip-gram model, instead of predicting one word each time, uses one word to predict all

surrounding words (“context”). In general, Skip-gram is much slower than CBOW, but it is

considered to be more accurate with infrequent words.
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Figure 3.3: Word2vec model architectures (Mikolov et al., 2013): the CBOW architecture predicts
the current word based on the context, and the Skip-gram predicts the surrounding words given the
current word.

Some alternative word embedding methods are:

• GloVe (Global Vectors, Pennington et al., 2014) is a log-bilinear regression model for unsu-

pervised learning of word representations.

• BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019) where

each word has a different vector representation according to the different context.

• FastText (Bojanowski et al., 2017) which is trained on syllabication, instead of words.

Therefore, fastText can also represent words that are not present in the dictionary of the

training set.

After choosing the word embedding to be used, we can opt for:

• Pre-trained word embeddings, trained on a data set and available on the web. There are

several pre-trained word embedding approaches (e.g., word2vec, fastText, GloVe) trained

on different corpora (e.g., Wikipedia dumps, CoNLL17, Google News). It would be use-

ful to compare different word embedding approaches to select the most compliant with the
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purposes of the analysis. For example, we may want to consider a set of highly significant

words in the OpRisk context and check whether the most similar terms according to the co-

sine similarity are appropriate ones. Examples of pre-trained word embeddings are available

at the NLPL word embeddings repository (2017). In the case of pre-trained word embed-

dings, specific terms of the analyzed field may not be available (e.g., “anatocism”) due to the

peculiarity of the OpRisk dictionaries.

• Training word embeddings on the available data set. When we have a large data set, it would

be convenient to use it to train the word embeddings. In this case, we obtain field-specific

word embeddings, where the specific terms are also included. Since we generated the word

embeddings, it is even more important to assess their accuracy. The same method, explained

above to compare different pre-trained embedding methods, can be applied to assess the

quality of the newly trained word embeddings.

Further methods for word embedding evaluation are described by Wang et al. (2019) and Giabelli

et al. (2022). As introduced in Bakarov (2018), there are two main categories for evaluation

methods:

• Extrinsic evaluators consider different word embedding methods (or different settings of the

same method) as inputs for downstream tasks and measure changes in performance metrics

specific to that task (e.g., accuracy for supervised tasks, or perplexity for unsupervised ones).

It is worth mentioning that such evaluators are required to repeat the downstream tasks,

i.e., the overall calculation procedures for each different word embedding, multiplying the

computational burden by the number of tested methods.

• Intrinsic evaluators test the quality of word embeddings independently of the considered

tasks. These evaluators are based on experiments in which word embedding methods are

compared with human judgments on word relations. Predefined sets of words are often used

to get human assessments, and then these assessments are compared with word embeddings.

The main issue for these evaluators is that the available sets of words mainly include generic

terms without containing the ones related to specific tasks (such as the case of the OpRisk

event descriptions analysis).
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Once a word embedding (pre-trained or not) has been selected, the cosine similarity between the

vectors representing the terms can be used as a measure of semantic similarity between the terms

themselves. It is possible to calculate a word-similarity matrix, which includes the cosine similarity

between all the possible couples of terms within the dictionary.

The word similarity matrix allows updating the value of each “zero” of document-by-term

matrix with the value of the most similar word included in the same row of the matrix and scaled

by the respective word similarity score (Shanavas et al., 2021).

Similarly to Shanavas et al. (2021), we use a similarity matrix that only contains similarity val-

ues higher than 0.8 to avoid including noise (i.e., medium-low similarity due more to randomness

than similar meaning) in the semantic adjustment. Some rationales for the selection of threshold

0.8 are discussed by Di Vincenzo et al. (2023).

3.5.4 Dimensionality reduction

After obtaining a document-by-term matrix that considers the semantic similarity between terms,

some tools are needed to uncover the possible clusters with related root causes. Therefore, it is use-

ful to represent the data set in a chart by reducing it to two (or maximum to three) dimensions. In

this context, dimensionality reduction methods are used to map document vectors from the word

space to a space whose number of dimensions is user-defined. For example, Di Vincenzo et al.

(2023) made use of the Latent Semantic Analysis (LSA) (Dumais et al., 1988) to reduce the data

to two dimensions and represent them graphically. The most classical technique for dimension-

ality reductions is the Principal Components Analysis (PCA) (Pearson, 1901; Hotelling, 1933).

PCA and LSA make use of matrix factorization to reduce the dimensionality, whereas most recent

methods are based on the data neighborhood, such as:

• t-SNE (t-distributed Stochastic Neighbor Embedding) introduced by Hinton and Roweis

(2002), and Van der Maaten and Hinton (2008),

• UMAP (Uniform Manifold Approximation and Projection) proposed by McInnes et al. (2018).

The t-SNE method computes the probability that pairs of data points in the high-dimensional space

are related and then chooses low-dimensional embeddings that produce a similar distribution. The
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Figure 3.4: A sample from the MNIST data set.

UMAP algorithm is similar to t-SNE for visualization quality but preserves more of the global

structure with a lower computational burden. The good performance of UMAP can be appreciated,

for instance, when applied on MNIST, a data set of 28×28 pixel grayscale images of handwritten

digits. A sample of MNIST is represented in Figure 3.4. There are 10 classes of handwritten

digits (0 through 9) of 70,000 total images, 10-digit each being a 784-dimensional vector. The

bidimensional UMAP representation of the MNIST data set in Figure 3.5 shows how this projection

is able to separate the digits in MNIST. The UMAP algorithm takes the following hyperparameters:

• n neighbors, the number of neighbors to consider when approximating the local metric.

The size of local neighborhood (in terms of number of neighboring sample points) used for

manifold approximation. Larger values result in more global views of the manifold, while

smaller values result in more preserved local data structures. In general, values should be in

the range 2 to 100.

• min dist, the desired separation between close points in the embedding. Smaller values

generate a more clustered/clumped embedding where nearby points on the manifold are

drawn closer together, while larger values result in a more even dispersal of points.

The UMAP representation in Figure 3.5 has been obtained setting n neighbors=10 and min dist=0.001.

The impact of varying such hyperparameters can be appreciated in Figure 3.6.
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Figure 3.5: A bidimensional UMAP representation of the MNIST data set.

Figure 3.6: Sensitivity of the UMAP representation applied to the MNIST data set (from McInnes
et al., 2020) to the choice of hyperparameter values min dist and n neighbors.
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UMAP is implemented in the function umap of the R package uwot (Melville, 2023). As

reported in the help of the function umap, in the case of data sets with more than 100 columns,

it is suggested to reduce the dimensions using PCA, before applying the UMAP, to reduce the

computational burden. Moreover, the help of umap reports that 50 dimensions are recommended in

many t-SNE applications, implicitly suggesting this setting for the UMAP ones. For example, in

their applications, Van der Maaten and Hinton (2008) reduce the data set to 30 dimensions, before

applying t-SNE.

Through a 2D UMAP representation, it is possible to examine the data using interactive charts

produced via the R package plotly (Sievert, 2020), which allows to visualize the event description

corresponding to each point in the chart, just moving the cursor over it. In particular, in case a set

of points in the chart appears to form a cluster (as it occurs in Figure 3.5 for points representing

the same digit), we can verify if the points within the cluster (or most of them) are related to a

common root cause (e.g., a particular type of fraud, sanction, cyberattack, etc.).

This qualitative analysis can identify the most evident drivers of the data, but (apart from pecu-

liar cases such as Figure 3.5) it is not sufficient to obtain a complete clustering. In particular, when

we have several thousands of data, we need a method to assign each data point to a single cluster

(i.e., to perform a hard partitioning) and to provide some hints about the content of each cluster.

These needs can be accomplished by using topic modeling techniques (to be described in Section

3.5.5), which are usually applied for unsupervised analyses of textual data.

3.5.5 Cluster selection

OpRisk event descriptions can be clustered using classical clustering techniques (e.g., k-means) or

topic modelling techniques (Di Vincenzo et al., 2023). The main benefit of the latter techniques, if

compared with clustering ones is that they allow for specifying the subjects of the topics to define

clusters. One of the most used topic models is Latent Dirichlet Allocation (LDA), which was intro-

duced by Blei et al. (2003) in the context of textual analysis. LDA provided the highest accuracy,

if compared with other topic models, when applied to a first set of OpRisk event descriptions in

Di Vincenzo et al. (2023).

LDA is a generative statistical model that explains a set of observations through unobserved
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(i.e., latent) groups. It assumes that the words (or tokens) in a document are drawn from K topics,

and a probability distribution over the available words characterizes each topic.

The tokens of the ith document are supposed to be drawn independently from the kth topic with

probability πik. The distributions corresponding to the topics, and the probabilities πi1, . . . ,πiK for

all documents, can be estimated via Monte Carlo Markov Chains (MCMC), implemented through

Gibbs sampling. In the present application, a document corresponds to an OpRisk event descrip-

tion.

• The classical LDA has a prior Poisson distribution over the number of topics that appear

in the corpus but, in practice, the number of topics is fixed to a maximum value to provide

interpretable topics (as explained by Frigau et al., 2021).

• The specification of the generative model starts by assuming a Dirichlet distribution with

parameter α over the N tokens, and making K draws φk from such distribution. The draws

determine the probabilities that each of the K topics assign to each token, so we have K

vectors of length N. The subject of each topic can be inferred from the tokens with a higher

probability within the topic. Graphical representations, such as word clouds, can be used for

this purpose.

• For the ith document, one draws θi from a second Dirichlet distribution with parameter β .

This θi has length K and determines the extent to which document i participates in each of

the K topics. Each document is supposed to contain a certain number of topics with different

corresponding probabilities. Supposing that the identified topics are used to define clusters,

the clustering can be performed by assigning each document to the topic showing the highest

probability within the document.

• To generate tokens in the ith document, one first draws z j from a one-trial multinomial with

parameter θi to pick the topic that generates a token. Suppose it is topic k. Then one draws

from a one-trial multinomial with the parameter φk to determine which token within that

topic is chosen for the document.

Using this generative model, MCMC is applied to obtain estimates of the K topic distributions

and the probability with which each document participates in each topic. As diagnostics, the
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convergence of MCMC can be assessed through a trace plot of the log-likelihood (Chakrabarti et

al., 2023), while the fit can be evaluated based on the interpretability of the topics and quantified

via perplexity (Blei et al., 2003).

The classical LDA allows one to discover topics automatically. However, some topics in the

data set may be already known or guessed, for example, using the UMAP representation mentioned

in Section 3.5.4. Therefore, it is useful to “inform” the LDA that some topics, defined by the

corresponding sets of tokens, are expected to be found in the model results, as in the seeded LDA

(Jagarlamudi et al., 2012). Seeded LDA enforces some topics to have positive probability only for

a restricted set of tokens, i.e., the seed tokens (Frigau et al., 2021). Similarly to LDA, the seeded

LDA can automatically discover new topics, by letting a certain number of topics remain unseeded.

Seeded LSA is here applied to the rounded semantic-aware document-by-term matrix. Rounding

is included because seeded LDA requires count data as input.

To improve the accuracy of this method, we included two additional brand-new features to the

seeded LDA:

• We observed that, in general, two or more documents composed of the same tokens can

show slightly different probability distributions among topics. This is due to the “gener-

ative” nature of the LDA statistical model and could lead to assigning equal documents to

different clusters. To prevent this unwanted configuration, we propose to “average” the topic

probability distributions of documents composed of the same tokens. In practice, if two or

more documents are represented by totally equal rows in the semantic-aware document-by-

term matrix, then their topic distributions are all replaced by their average. For example,

suppose we have two OpRisk event descriptions composed only (after descriptions clean-

ing) of the token “fraud” to which the LDA assigns probabilities to three different top-

ics, e.g., π1 = (0.3,0.4,0.3) and π2 = (0.5,0.3,0.2). Note that even if the two descrip-

tions are equal, the clustering based on the highest probability would assign description 1

to the cluster defined by topic 2, and description 2 to the cluster defined by topic 1. Of

course, this cannot be considered an ideal configuration for the results that we are going

to obtain. Averaging topic probabilities, we would substitute π1 and π2 with their average

π̃1 = π̃2 = (0.4,0.35,0.25). Based on π̃1 and π̃2, both descriptions can be assigned to the

cluster represented by topic 1. Therefore, we can ensure that equal descriptions have the
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same topic probability distribution and, in particular, that they are all assigned to the same

cluster.

• In seeded LDA, the seed tokens specifying a seeded topic do not have a positive probabil-

ity for other seeded topics (unless they have been defined as seed tokens for more topics),

but they can have non-negligible probabilities for some unseeded topics. For this reason,

especially for longer documents, it happens that a document containing one or more seed

tokens presents higher probabilities for unseeded topics. This is an unwanted configuration

for our purposes since we consider the presence of seed tokens as a strong signal that the

document is related to the corresponding seeded topic. For this reason, instead of assigning

each document to the cluster related to the topic with the highest probability, in case a docu-

ment contains one or more seed tokens, we propose constraining this selection to the topics

related to the included seed tokens. This new feature prevents a document, containing seed

words related to seeded topics, is then assigned to a cluster that is related to an unseeded

topic.

Another method to qualitatively assess the results of seeded LDA, apart from the ones already

mentioned above for the LDA, is the representation of the clustered data points in the UMAP

bidimensional chart. Whenever the points representing a distinct cluster in the chart are all assigned

to the same topic and, in the case of a seeded topic, the assigned descriptions all contain the related

seed tokens, this is a clear sign that the results are consistent and adequate. LDA and seeded

LDA are implemented in the R package topicmodels (Grün and Hornik, 2011; Grün and Hornik,

2023).

3.6 Workflow for tweet data analysis

This workflow mirrors the one presented in Section 3.5 for OpRisk event descriptions, including

the adaptations required by tweet data. Therefore, the next sections just focus on the differences

if compared with the previous workflow. Considering the amount of extracted tweets (around

100,000-150,000 per day), we decided to separately analyze each daily data set of tweets. There-

fore, all the steps described within this section are applied to each daily data set of tweets.
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3.6.1 Tweet cleaning

Procedures to clean tweets include the following steps:

• Data anonymization: a pre-defined list of most known names is excluded from tweets. The

list of names was obtained from the R package gender (Mullen, 2021).

• Languages detection: it is possible to directly select the English-written tweets since the

functions search tweets and get timeline (used for tweets extraction, as described in

Section 3.4) allow to specify the argument lang=’en’.

• Hashtags and web links are removed.

• The following steps have been applied as already done for OpRisk event descriptions: ig-

noring cases, removing punctuations and digits, stop-words, and special characters, and re-

ducing words to their lemmas.

• Removing duplicated tweets.

• Considering n-gramming: apart from n-grams from ORX taxonomy and bigrams-trigrams

already identified within OpRisk event descriptions, also bigrams-trigrams identified within

the tweets have been included.

• As already done for OpRisk event descriptions, removing all the terms having a total fre-

quency lower than five, considering all the tweets.

3.6.2 Tweet vectorization (BoW) and semantic adjustment

For OpRisk event descriptions, according to the BoW approach, the tweets data set is transformed

into a document-by-term matrix. Here each row represents a document (i.e., a tweet), each column

represents a term (i.e., a word or an n-gram), and each cell represents the Term Frequency (TF).

Considering the same word embedding selected for OpRisk event descriptions, and the related

word-similarity matrix similarity (with values higher than 0.8), the value of each “zero” of the

document-by-term matrix is updated with the value of the most similar word included in the same

row of the matrix and scaled by the respective word similarity score.
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3.6.3 Dimensionality reduction, cluster selection, topics analysis, and emer-

ging topics detection

As for OpRisk event descriptions, we use UMAP for producing the bidimensional data repres-

entations, and seeded LDA to identify the topic probability distributions and, consequently, the

clustering of the tweets.

Since the tweets are analyzed day by day, it is important (more than checking each specific

daily set of topics) to identify a common list of topics, to be able to compare the number of

tweets clustered in the topics on different days. This setting allows us to observe the tweet daily

frequencies for each topic, and to identify possible peaks in this time series, which can represent

particular OpRisk events affecting the financial system, the industry, or the governments. For each

topic, as an explorative method to detect the possible peaks, we calculate the 95% quantile of the

normal distribution estimated on the time series of tweets, and then we deep dive into all the daily

data sets exceeding that value.

We can define the seeded topics based on the ORX taxonomy, aggregating some similar levels

of the Level 1 Risks, and assigning the corresponding seed tokens accordingly. Considering all

the 16 Level 1 Risks would be a too granular specification, so we made a selection and the list of

seeded topics with the corresponding Level 1 Risks and seed tokens is reported in Table 3.8.

Table 3.8: Tweet topics based on ORX taxonomy with related seed tokens.

Since the tweets can contain several variants of the adopted seed tokens, we aggregated with

each seed all the tokens that contain that seed. For example, “cyber attack” is aggregated to the
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seed “cyber”, while “hacking” is aggregated to the seed “hack”. This action is performed for the

following main reasons:

• it is very difficult to include all the relevant variants of the seed tokens;

• even if we include all the relevant variants, then the weight of each seed token will decrease

within the related topic (so losing the relative weight difference between seed tokens and

non-seed tokens);

• this aggregation reduces the dimensionality, decreasing the number of columns of the document-

by-term matrix.

To detect emerging OpRisk related topics, we consider five unseeded topics in seeded LDA (we

did not find any significantly different evidence varying this number). Observing the related word

clouds, we can detect OpRisk related topics and deep dive into the corresponding tweets to un-

derstand if such topics are relevant as an early warning for the financial institution. Since OpRisk

analysts cannot verify every single tweet, we aim to detect the signal related to many tweets related

to a specific topic, including the most frequent words that are represented by word clouds. For each

day, it is much easier and faster to look at a few word clouds to spot some OpRisk related words

among the most frequent ones, than reading all the tweets or websites reporting financial news.

3.7 Application to OpRisk data

This application analyzes the CoRep descriptions of the OpRisk data set for UniCredit banking

group using the approaches described in the previous sections. The CoRep is the Common Re-

porting, which is the set of all data that all financial institutions have to periodically report to

their Supervisory Authorities (e.g., European Central Bank). Among the CoRep reports, there is

the C17.02 template, which reports information (including the description) on significant OpRisk

events. The analyzed data set is composed of the OpRisk data booked between 2005 and 2022

leading to gross loss amounts higher than or equal to e 1000. Each record of this data set repres-

ents an OpRisk event, where the related CoRep description is a text field reporting an anonymized

description, having a maximum of 250 characters. The obtained data set includes 227,338 OpRisk

events. This data set is separately analyzed for each event type.
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The analysis is performed using the R packages quanteda (Benoit et al., 2018), word2vec

(Wijffels, 2021), and the ones mentioned in Section 3.5.

First of all, the descriptions are cleaned as described in Section 3.5.1. The events with at

least one English-written sentence have been selected, but there is no need for data anonymization

since such descriptions are all entered without any personal information. After these steps, the

data set has been reduced to 65,974 OpRisk events for CoRep descriptions, and 75,772 events for

chronological descriptions. The stop-word list has been obtained through the R package stopword

(Benoit et al., 2021). The n-grams coming from the ORX taxonomy, and the relevant bigrams and

trigrams have been included.

While we use the chronological descriptions in a later stage to train the word embedding, we

consider the CoRep descriptions to obtain the document-by-term matrix. After having deleted

the rows with all zero values, we obtain a document-by-term matrix having 65,032 rows (i.e., the

number of descriptions) and 8,535 columns (i.e., the length of the dictionary consisting of all the

unique tokens included in the cleaned descriptions).

Note that this data set is considerably more challenging if compared to the previous work by

Di Vincenzo et al. (2023) because it is much larger (around 100 times larger in terms of rows, and

5 times larger in terms of columns) and not all the descriptions are written in English.

The next step is to generate the semantic-aware document-by-term matrix using the approach

described in Section 3.5.3. We trained the word embedding word2vec on UniCredit OpRisk

event chronological descriptions, ORX News digest text descriptions (around 10,000 data), and

storylines of the scenario analysis (around 350 data). We trained both CBOW and Skip-gram

models, and assessed them as follows:

• We defined a set of words that are particularly significant in the context of OpRisk in financial

institutions. In particular, we selected “bank”, “client”, “anatocism”, and “legal”.

• For each selected word, based on the estimated embedding, we extracted the five most similar

words, i.e., the terms showing the highest cosine similarity with the selected word.

• For each selected word, we qualitatively checked if these five words are semantically similar

to the selected word itself.

The results are summarized in Tables 3.9 and 3.10. Based on these results, CBOW outperforms

95



Table 3.9: Most similar words based on CBOW.

Term 1 Term 2 Rank
bank central bank 1
bank national bank 2
bank rabobank 3
bank institution 4
bank raiffeisen 5
client client bank 1
client client account 2
client retail client 3
client account holder 4
client client inform 5

anatocism overdraft interest rate 1
anatocism account open start 2
anatocism overdraft fee interest 3
anatocism rapporti 4
anatocism account open close 5

legal litigation 1
legal bring legal 2
legal legal procedure 3
legal statute 4
legal legal action 5
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Table 3.10: Most similar words based on Skip-gram.

Term 1 Term 2 Rank
bank include 1
bank believe 2
bank stanchart 3
bank say 4
bank techcombank 5
client provide 1
client account 2
client less 3
client investment 4
client around 5

anatocism overdraft interest rate 1
anatocism credit sentenza trib 2
anatocism small medium legal 3
anatocism estinto 4
anatocism usury conto corrente 5

legal claim 1
legal allege 2
legal accuse 3
legal state 4
legal action 5
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Skip-gram for the selected words “bank” and “client”, while the two embedding approaches appear

to be approximately equivalent for the selected terms “anatocism” and “legal”. For this reason, we

opted to choose CBOW for the semantic adjustment. The selected word embedding allows us to

obtain the word similarity matrix, and then to adjust the document-by-term matrix, as described in

Section 3.5.3. Similarly to Shanavas et al. (2021) and Di Vincenzo et al. (2023), we use a similarity

matrix that only contains similarity values higher than 0.8 to avoid including noise (i.e., medium-

low similarity due more to randomness than similar meaning) into the semantic adjustment.

We report the results of the event type “Clients, Products & Business Practices”, which includes

38,890 OpRisk events. We apply PCA, reducing the data set to 50 columns, to avoid a subsequent

excessive computational burden for UMAP. The percentage of explained variance by the first 50

principal components is 88.4%, confirming that the decrease in accuracy due to this dimensionality

reduction can be considered negligible. The proportion of explained variance for each one of the

first 50 principal components is represented by the scree plot in Figure 3.7, which confirms that

most of the variance is explained by the first five principal components, meaning that, including

other principal components over the first 50 ones would not bring any material benefit in terms of

explained variance.
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Figure 3.7: Scree plot related to the first 50 principal components for the event type “Clients,
Products & Business Practices”.
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Starting from the data set of the first 50 principal components, we apply UMAP to obtain a 2D

representation, where the axes V 1 and V 2 represent the first two dimensions of UMAP. We report

the UMAP 2D representation of the event type “Clients, Products & Business Practices” in Figure

3.8.
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Figure 3.8: UMAP bidimensional representation of the semantic-aware document-by-term matrix
for the event type “Clients, Products & Business Practices”.

The default hyperparameters of the function umap in the package uwot have been used, i.e., Eu-

clidean metric, n neighbors=15 and min dist=0.01. Varying the hyperparameters n neighbors

from 5 to 100, and min dist from 0.01 to 1, as reported in Figure 3.9, does not provide signific-

antly different evidence. We can observe that, decreasing n neighbors to 5, preserves the local

data structure, compacting the clusters among them, whereas increasing it to 100, resulting in more

global views of the manifold, leads to more separated clusters. Regarding min dist, we can ob-

serve that by increasing it to 1 we have more dispersal points within each cluster. However, no

additional or different clusters are highlighted varying these hyperparameters.

The UMAP 2D representation supports the activity of the analysts, who can identify several

clusters with the main related tokens. Based on the UMAP representation, it emerges that the

following clusters can be identified:

1. CHF Loans Bulk: disputes related to mortgages in Swiss Franch (included in the bulk of the

provisions), identified by the tokens “chf loan”, “legal dispute client”, etc.

2. CHF Loans Other: disputes related to mortgages in Swiss Franch (not included in the bulk
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Figure 3.9: Sensitivity to hyperparameters of UMAP 2D representation.

of the provisions), identified by the tokens “client benefit”, “chf loan”, etc.

3. Anatocism: disputes related to irregularities in the interest rate calculations, identified by the

token “anatocism”

4. Personal Loan Reimbursement: disputes related to personal loans, identified by the token

“branch reimbursement”

5. Derivatives Misselling: disputes related to contracts on derivatives, identified by the token

“derivatives”

6. Client Account: disputes related to issues on current accounts, identified by the token “cli-

ent account”

Taking into account the knowledge of analysts, who identified six clusters with the main related

tokens, we obtained the seeded topics and the seed tokens to be used for seeded LDA. We have

run a seeded LDA with six seeded topics and one unseeded topic (to include the residual events).
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In literature, there are attempts to automate the seed token selection, such as the one performed by

Ferner et al. (2020). However, this approach would be applicable only when there is a single topic

of interest (e.g., the natural disasters in Ferner et al., 2020), and not when there are multiple known

and unknown topics to be analyzed as in our work.

We highlight that seeded LDA is directly run on the (rounded) semantic-aware document-by-

term matrix, and not on a reduced dimensions data set. The UMAP 2D representation is used to

support the activity of the analysts for identifying the clusters and the main related tokens to be

used as seeds in the seeded LDA.

Seeded LDA, based on Gibbs sampling, has been run with 1000 iterations over a burn-in of

500. The convergence is confirmed by the trace plot of the log-likelihood function reported in

Figure 3.10.
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Figure 3.10: Trace plot of the log-likelihood function for the event type “Clients, Products &
Business Practices”.

The obtained perplexity is equal to 124.3 and has been calculated considering the 90% of the

sample as the training set and the remaining 10% as the test set. In general, a lower perplexity

score indicates better generalization performance, and we can observe that the obtained value is

lower than the best values reported by Blei et al. (2003) in their simulation exercises.

The UMAP representation with the clusters identified by the seeded LDA is reported in Figure
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3.11, where the group “EL0400 - CP&BP - Other” represents the residual cluster related to the

unseeded topic.
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Figure 3.11: UMAP 2D representation of the semantic-aware document-by-term matrix with the
clusters identified by the “basic” seeded LDA for the event type “Clients, Products & Business
Practices”.

We can observe in Figure 3.11 that the clusters related to the topics “Anatocism” (i.e., the pink

points) and “CHF Loans Other” (i.e., the orange points) are mixed with several data related to

the residual cluster (i.e., the green points). For instance, the cluster of pink points in the upper-

left part of the UMAP 2D representation is composed of OpRisk events having (after cleaning)

descriptions “anatocism”. Mixed with this cluster, there are several OpRisk events assigned to

the residual cluster but having (after cleaning) the same description “anatocism”. Moreover, the

small cluster of green points, placed at the coordinates (-21.5,0) have (after cleaning) descriptions

such as “anatocism legal”. From a judgmental point of view, the aforementioned cases shall all be

included in the cluster “Anatocism”. To obtain this meaningful result, we consider the averaging

of topic probability distributions and the constraint on seed tokens described in Section 3.5.5. We

obtain the results reported in Figure 3.12, where the aforementioned cases are no longer present.

We can observe in Figure 3.12 that the clusters related to the topics “Anatocism” (i.e., the pink

points) and “CHF Loans Other” (i.e., the orange points) are homogeneous and no longer mixed to
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the green points related to the residual cluster.
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Figure 3.12: UMAP 2D representation of the semantic-aware document-by-term matrix with the
clusters identified by the seeded LDA considering the averaging of topic probability distributions
and the constraint on seed tokens for the event type “Clients, Products & Business Practices”.

Therefore, by applying seeded LDA with the two brand-new features, we obtain a strong agree-

ment of clusters obtained with this methodology compared to the UMAP 2D representation of the

clusters. Other event type results are reported in Appendix A.

3.8 Application to tweet data

This application analyses the tweet data that have been extracted as explained in Section 3.4 and

have been processed as illustrated in Section 3.6. The time series related to the number of daily

tweets is reported in Figure 3.13. We noted that there are six days reporting a number of tweets

much lower than the average. Regarding the first day (i.e., May 5th), the lower number of tweets

is because we started extracting them at around 9:00 PM, meaning that only around four hours of

data were available. For the other five days (i.e., May 21th and 27th, June 7th and 18th, and July 9th),

the paucity of data was due to some sporadic downtime in the Twitter API service or the Virtual

Machine used to extract the tweets. Note that these days are not considered for the calculation of

103



May 7
2023

May 21 Jun 4 Jun 18 Jul 2
0

20k

40k

60k

80k

100k

120k

140k

160k

Day

N
um

be
r 

of
 t

w
ee

ts

Figure 3.13: Number of daily tweets from May 5th to July 12th 2023.

the 95% quantile of the normal distribution to detect possible peaks in the time series.

We applied seeded LDA to each daily data set, considering the seeded topics and the related

seed tokens reported in Figure 3.8. We decided to include five unseeded topics to make room for the

identification of unforeseen and possibly relevant OpRisk topics. For each day, we clustered each

tweet based on the topic with the highest probability (considering the constraint on seed tokens

described in Section 3.5.5) and obtained, for each topic, the time series of the number of daily

tweets reported in Figure 3.14 (averaging the topic probability distributions, among tweets having

the same tokens, was not strictly necessary because duplicated tweets were already deleted during

the cleaning step). Observing the trend of the tweets by topics, it emerges that there are peaks for

“06 Financial Crime” for days May 14th, and June 9th and 14th, as it is even more evident in Figure

3.15, which reports only this topic. The most significant peak is related to the June 9th, which re-

ports around 10,000-15,000 more tweets than on other days. Therefore, we can analyze the UMAP

2D representation including the tweets of that day, reported in Figure 3.16 (calculated starting from

the data set of the first 50 principal components). Deep diving into the interactive version of Figure

3.16, we realized that several tweets in the clusters related to “06 Financial Crime” (i.e. the pink

ones) are referred to as an alleged bribe accepted by Joe Biden (the current US President) from a

Ukrainian energy company (Burisma) between 2015 and 2016, when he was Vice President (refer,
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Figure 3.14: Number of daily tweets by cluster from May 5th to July 12th 2023.
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Figure 3.15: Number of daily tweets for 06 Financial Crime from May 5th to July 12th 2023, where
the orange line represents the 95% quantile of the normal distribution estimated on the time series.
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Figure 3.16: UMAP 2D representation of tweets related to June 9th 2023.

for example, to Livemint, 2023).

It is also useful to check if the significant loadings in the PCA 2D representation (i.e., the

loadings that are not very close to the origin) are composed of meaningful terms. We observe

that all the significant loadings in Figure 3.17 are represented by meaningful terms for OpRisk

purposes. Had this not been the case, one should have removed such terms from the analysis as

stop-words. In particular, we can observe, among the significant loadings, the terms “bribe” and

“corrupt”, which are consistent with the mentioned alleged Biden bribery case.

We performed a check on June 9th tweets to verify that the peak is referred to this news. We

selected the tweets that contained {“bribe” OR “corrupt”} AND {“biden” OR “burisma”}, and

we obtained 12,690 data, confirming our hypothesis. However, this information is not relevant as

a possible early warning for a financial institution since it has mainly political implications and

refers to an event that occurred 7-8 years ago. Deep diving other peaks on days May 14th and

June 14th, related to “06 Financial Crime”, did not highlight any other particular OpRisk event,

meaning that these peaks were related to a multitude of several aspects and not due to a few main

OpRisk topics.

As a further analysis, we observe that the topic “08 Information Security” also presents a peak,
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Figure 3.17: Loadings in PCA 2D representation of tweets related to June 9th 2023.

as highlighted in Figure 3.18. The observed peak is related to June 15th and June 16th, which

reports around 1000 more tweets than on other days. Therefore, we can analyze the UMAP 2D

representation including the tweets of those days, reported in Figures 3.19 and 3.20. Deeply

analyzing the interactive version of Figures 3.19 and 3.20, it can be observed that several tweets

in the clusters related to “08 Information Security” (i.e. the light green ones) are related to a

cyberattack on US government agencies (refer, for example, to CNN, 2023). It is also useful to

check if the significant loadings in the PCA 2D representation are composed of meaningful terms.

We observe that all the significant loadings in Figures 3.21 and 3.22 are represented by meaningful

terms for OpRisk purposes. In particular, among the significant loadings, we can observe the term

“scam”, which could in some cases be consistent with cyber risk events.

We checked the June 15th-16th tweets to verify that the peak is referred to this news. We selec-

ted the tweets that contained {“cyber” OR “attack” OR “hack”} AND {“govern” OR “agencies”

OR “america” OR “us” OR “u.s.”}, and we obtained 1961 data, confirming our conjecture. This

information is much more relevant than the previous one as a possible early warning for a financial

institution, since it is related to a global cyberattack perpetrated by Russian cybercriminals occur-

ring during those days. It potentially could have evolved into a cyber pandemic crisis affecting the

financial system. Therefore, it would have been very useful for financial institutions to have been

informed as soon as possible, to set up the proper prevention initiatives.
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Figure 3.18: Number of daily tweets for 08 Information Security from May 5th to July 12th 2023,
where the orange line represents the 95% quantile of the normal distribution estimated on the time
series.
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Figure 3.19: UMAP 2D representation of tweets related to June 15th 2023.
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Figure 3.20: UMAP 2D representation of tweets related to June 16th 2023.
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Figure 3.21: Loadings in PCA 2D representation of tweets related to June 15th 2023.
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Figure 3.22: Loadings in PCA 2D representation of tweets related to June 16th 2023.

To detect emerging new OpRisk topics, it is useful to analyze the word clouds related to the five

unseeded topics for each daily result. As an example, inspecting the word cloud of the 4th unseeded

topic related to June 15th, it appears (in the lower part) the token “severe thunderstorm warm”,

that can be seen in Figure 3.23. These warnings were related to problematic weather conditions in

the United States, in particular in the Southeast regions (refer, for example, to National Weather

Service, 2023, Wikipedia, 2023, and Youtube, 2023). This early warning could have been relevant

for financial institutions having branches in the affected regions, allowing them to set up initiatives

to prevent or at least mitigate the damages to employees and buildings.

3.9 Concluding remarks

An OpRisk management framework is an approach to mitigating the risks associated with or-

ganizational operations. It involves identifying, assessing, monitoring, and controlling risks that

could result in adverse outcomes that affect organization’s ability to meet its goals and objectives.

OpRisk encompasses a wide range of potential threats, including natural disasters, human mis-

takes, inadequate procedures or technologies, cyberattacks, financial losses due to fraud or theft,

and sanctions imposed for regulatory violations. To successfully manage these risks, organizations

must have a comprehensive approach that incorporates all aspects of business operations.
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Figure 3.23: Word cloud for the 4th unseeded topic of tweets related to June 15th 2023.
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This study represents a significant advancement in the application of text analysis techniques

to OpRisk event descriptions. Notably, it pioneers the development of a comprehensive work-

flow that seamlessly integrates such analysis with data from diverse non-OpRisk-specific sources,

particularly web data. The overarching objective is to establish an analytical and measurement

framework able to assimilate OpRisk information from various origins, classifying it into topics

based on the ORX taxonomy, and detecting emerging topics for early warning. By identifying sur-

ging issues, the approach helps to timely inform decision-makers and allows emerging problems

to be addressed before they bring about large-scale adverse impacts. Employing recent statistical

approaches and models, we utilized UMAP for data representation in a reduced space and seeded

LDA for clustering in the analysis of OpRisk event descriptions. Our refinement of standard text

analysis techniques for OpRisk descriptions involved the incorporation of n-grams based on the

contemporary ORX taxonomy, as well as relevant bigrams and trigrams determined by their fre-

quency of occurrence. The focus of our investigation centered on the extended UniCredit CoRep

data set, where the application of the described text analysis methods and clustering techniques

proved insightful. A notable illustration is the identification of six root causes within the event

type ”Clients, Products & Business Practices,” demonstrating high agreement between clusters

defined by seeded LDA and the UMAP representation.

Extending our analysis to approximately two months of daily tweets, we uncovered instances

causing peaks in OpRisk related topics. Remarkably, a peak in tweets related to cyberattacks

emerged as a potential early warning for financial institutions. Additionally, the detection of an

emerging OpRisk topic concerning severe thunderstorms in Southeast U.S. regions suggests pree-

mptive actions for potential damages.

While our proposed framework lays a robust foundation for OpRisk event analysis and the

incorporation of web data, further enhancements and extensions are conceivable. Future research

directions include:

• Training other word embedding techniques, such as GloVe, BERT, or fastText on large

OpRisk data sets.

• Identifying relevant n-grams, with n > 3, considering explicitly the multiplicity of the ap-

plied statistical tests.
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• Incorporating web data sources, other than tweets, on a wider time window.

• Considering more advanced techniques to detect significant peaks and trends in the daily

number of tweets for each OpRisk related topic.

In essence, the successful application of our methodology underscores its potential for transform-

ing how financial institutions approach OpRisk management, offering a comprehensive and adapt-

ive tool for anticipating and mitigating potential risks.
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Chapter 4

Conclusion and future work

In recent years, financial institutions have increasingly embraced advanced OpRisk analytics, sur-

passing regulatory mandates to bolster managerial decision-making, as elucidated in Chapter 1.

The latest strides in artificial intelligence, spanning natural language programming and machine

learning, have facilitated the integration of text analysis into OpRisk textual data. To be prepared

for Basel II requirements, major financial institutions commenced the meticulous collection and

storage of OpRisk loss event data during the first years of this century. Presently, these institu-

tions possess OpRisk data sets spanning 15-20 years, encompassing not only attributes essential

for regulatory quantitative analysis (such as loss amount, date, event type, and business line) but

also rich free-text data, including detailed OpRisk event descriptions. Consequently, a natural

progression has been the application of text analysis techniques to delve deeper into these event

descriptions. However, our study revealed a notable absence in the existing literature regarding a

well-structured workflow for conducting such analyses, establishing a definitive best practice amid

the myriad options available, and outlining the key steps that warrant consideration. Addressing

this gap, our primary objective in this manuscript has been to define a robust workflow, elucidate

essential steps, and offer best practices for conducting text analysis on OpRisk event descriptions.

Pursuing these goals, we have not only refined prevailing statistical methods for quantitative data

but also made substantive contributions to shaping a holistic OpRisk management framework.

In Chapter 2, we defined a first kernel for the workflow, applying various statistical models

to analyze and cluster OpRisk event descriptions, using text analysis techniques to identify their

main root causes. Moreover, we have enriched the standard text analysis by including a semantic
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adjustment to deal with different words expressing similar concepts. We have considered several

clustering and topic modeling techniques and evaluated their accuracy to the clustering performed

by the analysts. We found that, when applied to the UniCredit CoRep dataset with accounting

dates from 2018 to 2021 and a minimum loss threshold of C100,000 for the event type “Clients,

Products & Business Practices”, k-means and LDA emerged as the most effective clustering and

topic modeling techniques. This application successfully revealed two homogeneous clusters of

events.

In Chapter 3, we have extended and improved the workflow leading it to an advanced level of

maturity. The text analysis of OpRisk event descriptions has been enriched with several crucial fea-

tures, such as language detection (to select only one language within multi-language descriptions),

relevant n-grams recognition (based on ORX taxonomy, and the bigrams and trigrams frequency of

occurrence), semantic adjustment based on a word embedding trained on OpRisk data (to include

specific subject terms, not usually present in pre-trained word embeddings), UMAP, i.e., one of

the most advanced techniques for dimensionality reduction (as a fundamental tool to support data

exploration by OpRisk analysts to identify main root causes), and seeded LDA (to automatically

cluster OpRisk descriptions among the root causes identified by analysts, and detect other OpRisk

topics). Moreover, we improved the accuracy of seeded LDA, applied to OpRisk descriptions,

including two additional brand-new features, i.e., averaging the topic probability distributions of

identical vectorized descriptions, and constraining the clusters’ assignment of a description to one

the seeded topics, in case the related seed tokens were present in it.

It is worth mentioning that the improved workflow, compared to the one described in Chapter

2, can be applied to much more challenging and larger data sets. In particular, it was applied to the

UniCredit CoRep data set with accounting dates 2005-2022 and a minimum loss threshold of C

1000 for all event types. For the event type “Clients, Products & Business Practices”, the improved

workflow led to the identification of six relevant root causes with a very high level of agreement

between the 2D UMAP representation and the seeded LDA results.

Furthermore, the workflow was extended even beyond the initial goals, integrating the data

from the social media X (formerly known as Twitter) within a harmonized framework. The final

goal has not been limited to providing financial institutions with standardized tools and best prac-

tices to deep-dive the main root cause within their data which has already occurred (i.e., referred
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to backward-looking view). It was also (and especially) to detect increasing and emerging OpRisk

topics (i.e., referred to as forward-looking view), in order to provide OpRisk early warnings. Once

the financial institutions are alerted with an early warning, they can set up proper actions to prevent

or mitigate such OpRisk issues. Analyzing approximately two months of daily tweets, we detected

instances causing peaks in OpRisk-related topics. As a significant example, a peak in tweets related

to cyberattacks was identified as a potential early warning for financial institutions. Additionally,

the detection of an emerging OpRisk topic concerning severe thunderstorms in Southeast U.S. re-

gions could lead financial institutions to perform actions to prevent or strongly reduce potential

damages.

Despite that the proposed workflow can be considered a strong advancement in the analysis of

OpRisk event descriptions and related web data, we recognize there is still room for improvements

and extensions regarding several aspects. Future developments can include:

• Training other word embedding techniques, such as GloVe (Pennington et al., 2014), or

fastText (Bojanowski et al.,2017), or fine-tuning a pre-trained word embedding, such as

BERT (Devlin et al., 2019), on OpRisk data sets, using several methods to assess their ad-

equacy and compare them. This would represent an extension of the currently proposed

method, where CBOW and Skip-gram were trained and compared using mainly qualitative

drivers.

• Identifying relevant n-grams, with n > 3, considering explicitly the multiplicity of the ap-

plied statistical tests, instead of applying it as a unique binomial test with a lower significance

level, using, e.g., Bonferroni correction or the more accurate Benjamini-Hochberg proced-

ure (Benjamini and Hochberg, 1995). This would allow this methodology to start from a

more standard significance level (e.g., 5%), adjusting the obtained p-values for the number

of performed statistical tests.

• Incorporating other relevant web data sources for a wider time window to more accurately

detect emerging OpRisk topics. Data could be extracted from other social media, such as

Threads (which is attempting to become a major rival of X (Milmo, 2023)), and news data

providers, such as Bloomberg, Reuters, and Talkwalker.
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• Considering more advanced techniques to detect significant peaks and trends in the daily

number of tweets for each OpRisk-related topic. This element becomes more and more

important once several web sources are analyzed for longer periods. For instance, methods

to detect change points can be used (Chen and Gupta, 2012), which are implemented in the

R package changepoint (Killick and Eckley, 2014; Killick et al., 2022).

• Applying extensions of LDA (once adapted to include term seeds) able to model the topics

dependence (while LDA assumes topics to be independent), such as Correlated Topic Model

(CTM, Blei and Lafferty, 2007) and Structural Topic Model (STM, Roberts et al., 2013).

The latter allows also for the inclusion of topical prevalence covariates (metadata that explain

topical prevalence) and topical content covariates (variables that explain topical content).

• Extending the analysis to Reputational Risk measurement, since severe OpRisk events (es-

pecially, internal frauds) can have a reputational impact, impacting the stock price of the

financial institution (Perry and de Fontnouvelle, 2005). The number of tweets for OpRisk

topics, referring to the financial institution, can be used as additional covariates in the Repu-

tational Risk measurement.

As a concluding consideration, the escalating complexity and digital transformation within the

financial landscape, coupled with the exponential expansion of available information, underscore

the pivotal importance of cultivating a profound understanding of OpRisks and the swift detection

of signals indicating their potential emergence. This imperative not only serves as a present-day

cornerstone for success in financial institutions but also emphasizes the ongoing commitment to

fostering a dynamic risk management framework. In light of these considerations, it becomes

paramount for financial institutions to continually invest in research, technological innovation, and

adaptive strategies, ensuring they not only navigate the current complexities but also remain agile

and resilient in the face of future uncertainties in the OpRisk landscape.
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Appendix A

Other event type results on OpRisk data

This appendix complements the results reported in Chapter 3.7, which were limited to the event

type “Clients, Products & Business Practices”. Here we report the UMAP 2D representations for

other event types with the clusters identified by the seeded LDA, considering the averaging of topic

probability distributions and the constraint on seed tokens.

A.1 Internal fraud

Based on the UMAP representation, it emerges that the following clusters can be identified:

1. Client Account: internal fraud on client accounts, identified by the tokens “client account”,

“account payment”, etc.

2. Unfaithfulness: cases of employees’ unfaithfulness, identified by the tokens “unfaithful-

ness”, “unfaithful employee”, etc.

3. ATM Fraud: internal fraud on ATM devices, identified by the tokens “atm”, “cash box”, etc.

The UMAP representation with the clusters identified by seeded LDA is reported in Figure A.1.
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Figure A.1: UMAP 2D representation of the semantic-aware document-by-term matrix with the
clusters identified by the seeded LDA for the event type “Internal Fraud”.

The cluster “client Account” is well identified in the lower part of the UMAP 2D representation,

while other clusters appear to be a bit mixed.

A.2 External fraud

Based on the UMAP representation, it emerges that the following clusters can be identified:

1. Internet Card Fraud: fraud on credit cards related to internet payments, identified by the

tokens “card transaction steal”, “steal credit card”, etc.

2. Unauthorized Card Transaction EEA: unauthorized card transactions in European Economic

Area (EEA), identified by the tokens “unauthorized card transaction”, “execute eea investigation”,

etc.

3. Card Cloning: cloning of credit cards, identified by the token “card frad cloning”.

The UMAP representation with the clusters identified by seeded LDA is reported in Figure A.2.
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Figure A.2: UMAP 2D representation of the semantic-aware document-by-term matrix with the
clusters identified by the seeded LDA for the event type “External Fraud”.

The clusters “Internet Card Fraud”, “Unauthorized Card Transaction EEA”, and “Card Clon-

ing” are well identified in the UMAP 2D representation, but they appear to be separated into several

smaller clusters (even if they do not seem to be identified by significant distinctive aspects).

A.3 Employment practices and workplace safety

Based on the UMAP representation, it emerges that the following clusters can be identified:

1. Work Injury: reimbursements to injured employees, identified by the tokens “work injury”

and “injury”.

2. Former Employee Litigation: disputes with former employees, identified by the tokens

“former employee litigation”, “legal procedure non-competition”, etc.

3. Demotion: disputes with employees for claimed demotion, identified by the tokens “demo-

tion” and “compensatory”.

The UMAP representation with the clusters identified by seeded LDA is reported in Figure A.3.
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Figure A.3: UMAP 2D representation of the semantic-aware document-by-term matrix with the
clusters identified by the seeded LDA for the event type “Employment Practices and Workplace
Safety”.

The cluster “Work Injury” is well identified in the upper part of the UMAP 2D representation,

while other clusters appear to be a bit mixed.

A.4 Damage to physical assets

Based on the UMAP representation, it emerges that the following clusters can be identified:

1. ATM EE: damages to ATM devices in East Europe (EE), identified by the tokens “atm”,

“vandalism bgn pay”, etc.

2. Car Damage: damages to company cars, identified by the tokens “car damage”, “car accident”,

etc.

The UMAP representation with the clusters identified by seeded LDA is reported in Figure A.4.
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Figure A.4: UMAP 2D representation of the semantic-aware document-by-term matrix with the
clusters identified by the seeded LDA for the event type “Damage to Physical Assets”.

The cluster “Car Damage” is well identified in the UMAP 2D representation (even if separated

into smaller clusters without significant distinctive aspects), while other clusters appear to be a bit

mixed.

A.5 Disruption and system failures

Based on the UMAP representation, it emerges that the following clusters can be identified:

1. Software Bugs: software bugs in the IT applications used by the company, identified by the

tokens “software bug”, “bug”, etc.

2. Loss IT Problem: losses caused by IT issues, identified by the token “loss problem”.

3. Digital Payment Processes: issues in the digital payments, identified by the tokens “card”,

“digital payment procedure”, etc.

The UMAP representation with the clusters identified by seeded LDA is reported in Figure A.5.
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Figure A.5: UMAP 2D representation of the semantic-aware document-by-term matrix with the
clusters identified by the seeded LDA for the event type “Disruption and System Failures”.

The cluster “Loss IT Problem” is well identified in the upper part of the UMAP 2D repres-

entation. The cluster “Software Bugs” is well identified in the left-lower part of the UMAP 2D

representation (apart from some sparse points mixed with the residual cluster on the right), while

other clusters appear to be a bit mixed.

A.6 Execution, delivery and process management

Based on the UMAP representation, it emerges that the following clusters can be identified:

1. Inadequate Data: issues related to the inadequate recording of data, identified by the tokens

“inadequate data concern”, “return inadequate data”, etc.

2. Cash Differences: issues related to cash differences detected by reconciliation, identified by

the token “cash”, “reconcile”, etc.

3. Client Account: errors on client accounts, identified by the token “client account”.
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4. Error False Notification: errors related to false notifications, identified by the token “er-

ror false notification”.

The UMAP representation with the clusters identified by seeded LDA is reported in Figure A.6.

−20 −10 0 10 20

−20

−10

0

10

20

EL0700 - ED&PM - Other
EL0701 - Inadequate Data
EL0702 - Cash Differences
EL0703 - Client Account
EL0704 - Error False Notification

UMAP of EL0700 - Execution, Delivery & Process Management

V1

V
2

Figure A.6: UMAP 2D representation of the semantic-aware document-by-term matrix with the
clusters identified by the seeded LDA for the event type “Execution, Delivery and Process Man-
agement”.

The cluster “Error False Notification” is well identified in the lower part of the UMAP 2D

representation. The clusters “Cash Differences” and ”Client Account” are well identified in the

right-lower part of the UMAP 2D representation (apart from some sparse points mixed with the

residual cluster in the center). The cluster “Inadequate Data” is well identified in the left-upper

UMAP 2D representation (even if separated into smaller clusters without significant distinctive

aspects).

A.7 Perplexity for each event type

The perplexity for each event type, calculated as described in Section 3.7, is reported in Table A.1.
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Table A.1: Perplexity for each event type.

Event type Perplexity
Internal fraud 2539.7888
External fraud 1281.5586
Employment practices and workplace safety 2174.3971
Clients, Products & Business Practices 124.3482
Damage to physical assets 1069.5868
Disruption and system failures 1748.2363
Execution, delivery and process management 6096.6611

The values in Table A.1 confirm the evidence from UMAP 2D representations, where the event

type ”Clients, Products & Business Practices” shows its main clusters to be very well separated in

Figure 3.12 of Section 3.7.
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Appendix B

Code details

This appendix describes the codes written to implement the analyses shown in Chapter 3 (which

constitute a generalization of the analyses performed for Chapter 2). First of all, all the codes have

been written using the R language, version 4.3.1, (R Core Team, 2023) and leveraging on several

R packages available on CRAN (Several authors, 2024). The related files are publicly available on

the author’s GitHub page:

• https://github.com/FabioPiacenza/OpRiskTextAnalysis for R scripts.

• https://github.com/FabioPiacenza/TweetData for input data.

The analyses have been performed through the following R scripts:

• TextAnalysis2.R: this script contains the code to produce analyses and save results for the

UniCredit OpRisk data set.

• ReportTextAnalysis2.R: it loads the results calculated and saved by the previous script, and

produces all the reports and the charts.

• TwitterFromR Scheduler.R: it imports tweets based on specified keywords using the package

rtweet (Kearney, 2019). It was automatically scheduled to run hourly using the package

taskscheduleR (Wijffels and Belmans, 2023).

• TwitterFromR Scheduler2.R: it imports tweets based on specified accounts. It was automat-

ically scheduled to run daily.
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• TwitterAnalysis.R: it produces analyses and saves results for tweet data set on a certain time

range (e.g., a specific day).

• WrapperTwitterAnalysis.R: it recalls the previous script to perform the tweet data analysis

for each day and saves the related results.

• ReportTwitterAnalysis.R: it loads the results calculated and saved by the previous script, and

produces all the reports and the charts.

It is worth mentioning that the first two scripts cannot be re-run based on the files available in

GitHub, considering that the UniCredit data set of OpRisk events cannot be shared for data sensit-

ivity reasons. These codes are available just for a better understanding of the steps of the analysis.

Eventually, they could be applied to another data set with a similar structure. Also the third and the

fourth scripts cannot be re-run since X dismissed the used API on July 12th, 2023. However, the

imported tweets for June 15th and 16th are available on the author’s GitHub page. Based on tweet

data, the codes in the last three scripts can be re-run to reproduce the results shown in Chapter 3

for tweets of June 15th and 16th, 2023. Other imported tweets can be provided upon request. The

next Sections report more details on the used scripts.

B.1 TextAnalysis2.R

The script is structured as follows:

• Load needed packages.

• Import UniCredit OpRisk data set.

• Clean the descriptions (both chronological and CoRep ones), e.g.,

– remove the spaces at the beginning and at the end of each description;

– substitute a sequence of two spaces, or a sequence such as “ - ”, “. ”, “, ”, “; ”, with a

line feed (basically, causing a carriage return), in order to separate sentences;
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• Import the ORX taxonomy to use its 3rd level, together other special words (e.g., “chf”,

“anatocism”, “Covid”), for English language detection (i.e., sentences including the strings

related to 3rd level ORX taxonomy or special words, are forced to be assigned to English).

• Dectect the English sentences (inside both chronological and CoRep descriptions), using the

function detect language of the package cld2 (Riesa and Giuliani, 2013; Ooms, 2022).

• Select the English sentences and discard all others (i.e., select the English sentences within

the descriptions, whereas descriptions without English sentences are discarded).

• Reduce the descriptions to lower case.

• Tokenize the descriptions and apply further cleaning (e.g., remove punctuation, numbers,

symbols, separators, and URLs).

• Perform lemmatization (i.e., reduce each word to its lemma).

• Define a specific dictionary (e.g., all the words starting with “anat” and “anatocism” are

assigned to the word “anatocism”).

• Remove stop-words, e.g., the ones related to the English language have been derived from

meta::cpan (2021), together with other specific ones identified for UniCredit data.

• Select relevant bigrams and trigrams.

• Select relevant n-grams from 3rd level ORX taxonomy.

• Integrate previously selected relevant n-grams, together with other specific ones (e.g., “chf loan”).

• Build the document-by-term matrix, excluding all the terms appearing less than 5 times in

the corpus.

• Train the word embeddings CBOW and Skip-gram on UniCredit chronological descriptions,

ORX News digest texts, and scenario analysis storylines.

• Select the nearest 5 words, based on cosine similarity, for each relevant term (e.g., “bank”,

“client”) to qualitatively assess the previously trained word embeddings.
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• Compute the word similarity matrix based on the selected word embedding (i.e., CBOW).

• Perform the semantic adjustment of the document-by-term matrix (based on CoRep descrip-

tions), using the word pairs with cosine similarity higher than the significant threshold (i.e.,

0.8).

• Calculate the PCA of the semantic-aware document-by-term matrix, selecting the first 50

principal components. Calculate their explained variance, and produce the related scree

plot.

• Produce the plot of the first two principal components, and the plot of contribution of terms to

the first two principal components. These plots are interactive (being produced with package

plot ly) and allow to visualize the description corresponding to each point.

• Calculate the LSA on the first 50 principal components.

• Produce the interactive plot of the first two LSA components, and the interactive plot of

contribution of terms to the first two LSA components.

• Calculate the UMAP on the first 50 principal components. Produce the related interactive

plot.

• The previous five steps, related to PCA, LSA, and UMAP, are performed also for each event

type.

• For each event type, perform the sensitivity analysis of UMAP with respect to the hyper-

parameters n neighbors and min dist.

• For each event type, perform the seeded LDA based on the specified seeds (allowing one

unseeded topic for residual descriptions), produce the related trace plots, and compute the

related perplexity.

• For descriptions identified by identical rows in the semantic-aware document-by-term mat-

rix, average the respective topic probabilities.

• Produce the word cloud for each topic.
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• Assign each description to the cluster related to the topic showing the highest probability,

constraining the assignment to the seeded topic related to the present seed words, if any.

• For each event type, produce the interactive plots for PCA, LSA and UMAP, representing the

assignment to the different clusters with points of different colours. Save the results useful

to reproduce the plots without re-running all the calculations.

B.2 ReportTextAnalysis2.R

The script is structured as follows:

• load needed packages.

• Specify paths for reading input files path, and for writing output files pathFigures.

• Specify the desired charts to be produced (e.g., set plotly pdf=TRUE to produce plotly

charts in pdf).

• Specify if plot titles have to be included or not.

• Select time range of the input files to be considered. This time range is specified to select

the results of TextAnalysis2.R among the ones previously produced.

• Import the UniCredit OpRisk data set.

• PCA of Group data without clusters.

• PCA for each event type without clusters.

• PCA term contributions of Group data.

• PCA term contributions for each event type.

• PCA for each event type with clusters.

• Explained variance of PCA for each event type.

• LSA for each event type without clusters.
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• LSA term contributions for each event type.

• LSA for each event type with clusters.

• UMAP of Group data without clusters.

• UMAP for each event type without clusters.

• UMAP sensitivity to hyperparameters for each event type without clusters.

• UMAP for each event type with clusters.

• Word clouds for each event type by topic.

• Trace plot for each event type.

B.3 TwitterFromR Scheduler.R

The script is structured as follows:

• Load needed packages.

• Specify API key (formerly provided by Twitter).

• Create token for API connection.

• Define the string with keywords.

• Define the file name, based on the date time, to save the imported tweets.

• Load the files of tweet IDs already imported.

• Extract the tweets using the function search tweets.

• Save the imported tweets into the previously defined file.
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B.4 TwitterFromR Scheduler2.R

The script is structured as follows:

• Load needed packages.

• Specify API key (formerly provided by Twitter).

• Create token for API connection.

• Define the accounts related to tweets to be imported.

• Define the file name, based on the date time, to save the imported tweets.

• Load the files of tweet IDs already imported.

• Extract the tweets using the function get timeline.

• Save the imported tweets into the previously defined file.

B.5 TwitterAnalysis.R

The script is structured as follows:

• Load needed packages.

• Select paths for input data.

• specify the time range of tweets to be selected.

• Specify tweets to be selected, i.e., tweets related to keywords, accounts, or both.

• Select relevant input files and import the contained tweets.

• If time range includes more than one day, produce the plot related to number of daily tweets.

• Clean the tweet texts (e.g., convert to basic ASCII to avoid strange characters, convert

everything to lower case, remove user names, links, tabs, punctuation, and duplicated tweets).
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• Tokenize the tweets with further cleaning (e.g., remove numbers, and perform lemmatiza-

tion).

• Import dictionaries already created for UniCredit OpRisk data set, including, e.g., bigrams,

trigrams, and n-grams related to ORX taxonomy.

• Import the stop-words defined for UniCredit data, together with other ones identified on

tweets (based on the analysis of significant PCA term contributions).

• Import proper names from the package genderdata to be excluded from tweets.

• Remove previously mentioned stop-words, proper names, and stop-words related to the Eng-

lish language (meta::cpan, 2021).

• Define relevant bigrams and trigrams for tweets.

• Integrate n-grams from ORX taxonomy, bigrams and trigrams from UniCredit data, and

bigrams and trigrams identified for tweets.

• Define the seed words for seeded LDA.

• Define dictionary to merge the words containing seed into the related seeds (e.g., “cyberat-

tack” into “cyber”).

• Create the document-by-term matrix, excluding terms which appears less than 5 times in the

corpus.

• Apply the semantic adjustment to the document-by-term matrix.

• Calculate the PCA of the semantic-aware document-by-term matrix, selecting the first 50

principal components. Calculate their explained variance, and produce the related scree

plot.

• Produce the plot of the first two principal components, and the plot of contribution of terms to

the first two principal components. These plots are interactive (being produced with package

plot ly) and allow to visualize the tweet text corresponding to each point.
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• Calculate the LSA on the first 50 principal components.

• Produce the interactive plot of the first two LSA components, and the interactive plot of

contribution of terms to the first two LSA components.

• Calculate the UMAP on the first 50 principal components. Produce the related interactive

plot.

• Perform the seeded LDA based on the specified seeds (allowing five unseeded topic to dis-

cover emerging OpRisk related topics), and produce the related trace plots.

• Produce the word cloud for each topic.

• Assign each tweet to the cluster related to the topic showing the highest probability, con-

straining the assignment to the seeded topic related to the present seed words, if any.

• Produce the interactive plots for PCA, LSA and UMAP, representing the assignment to the

different clusters with points of different colours. Save the results useful to reproduce the

plots without re-running all the calculations.

B.6 WrapperTwitterAnalysis.R

The script is structured as follows:

• Specify the path where the script TwitterAnalysis.R is saved.

• Specify the path to save output results.

• Specify the time range for the tweets to be analyzed (e.g., from May 5th to July 12th, 2023).

• Run the loop executing the tweet data analysis (i.e., the script TwitterAnalysis.R) for

each day within the previously specified time range.

B.7 ReportTwitterAnalysis.R

The script is structured as follows:
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• Load needed packages.

• Specify paths for reading input files pathTwitter, and for writing output files pathFigures.

• Specify the desired charts to be produced (e.g., set plotly pdf=TRUE to produce plotly

charts in pdf).

• Specify if plot titles have to be included or not.

• Select time range of the input files to be considered. This time range is specified to select

the results of WrapperTwitterAnalysis.R among the ones previously produced.

• Select the time range of the reference dates (e.g., from May 5th to July 12th, 2023).

• Select relevant input files and import the contained tweets.

• If time range includes more than one day, produce the plot related to number of daily tweets.

• If time range includes more than one day, produce the plot related to number of daily tweets

for each cluster.

• For each topic, calculate the 95% quantile of the estimated normal distribution to identify

peaks that, potentially, could be related to significant OpRisks. The six days reporting a

number of tweets much lower than the average are excluded from the normal distribution

estimation.

• Daily PCA of selected tweets without clusters.

• Daily PCA term contributions of selected tweets without clusters.

• Daily PCA of selected tweets with clusters.

• Daily LSA of selected tweets without clusters.

• Daily LSA term contributions of selected tweets without clusters.

• Daily LSA of selected tweets with clusters.

• Daily UMAP of selected tweets without clusters.
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• Daily UMAP of selected tweets with clusters.

• Daily word clouds by topic.
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Appendix C

Computational aspects

All the calculations, performed in the thesis, were run on a Virtul Machine with processor AMD

EPYC 7H12 64-Core Processor 2.60 GHz (4 processors) with installed RAM 24.0 GB, accessed

through “VMWare Horizon Client”. It is worth mentioning that the most critical part, related

to calculations, was the RAM memory consumption. Several parts of the calculation code have

been optimized to avoid exceeding the available RAM. The next sections report the computa-

tional time of the R scripts described in Appendix B. We do not report computational data on

TwitterFromR Scheduler.R and TwitterFromR Scheduler2.R since they cannot be run any-

more, due to the dismissal of the used API. Computation times have been calculated using the R

package tictoc.

C.1 TextAnalysis2.R

Details on computational time for the main steps of the script TextAnalysis2.R are reported in

Tables C.1, C.2, and C.3.
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Table C.1: Computation time for TextAnalysis2.R in seconds (part 1).

Step Time (s)
Read data 10.8
Extract English descriptions 1306.62
Tokenizing text, and removing stop-words 15.87
Detect and integrate relevant n-grams 30.89
Creation of the document-by-term matrix 0.55
Training of word embedding 290.29
Perform semantic adjustment 3051.7
Include cleaned descriptions (based on tokenization) and select non-zero rows 4.42
PCA of Group 215.41
LSA of Group 6.69
UMAP of Group 210.97
PCA of EL0100 - Internal Fraud 159.44
LSA of EL0100 - Internal Fraud 0.02
UMAP of EL0100 - Internal Fraud 4.09
PCA of EL0200 - External Fraud 160.62
LSA of EL0200 - External Fraud 0.06
UMAP of EL0200 - External Fraud 50.17
PCA of EL0300 - Employment Practices and Workplace Safety 158.51
LSA of EL0300 - Employment Practices and Workplace Safety 0.01
UMAP of EL0300 - Employment Practices and Workplace Safety 6.69
PCA of EL0400 - Clients, Products & Business Practices 180.62
LSA of EL0400 - Clients, Products & Business Practices 0.25
UMAP of EL0400 - Clients, Products & Business Practices 144.75
PCA of EL0500 - Damage to Physical Assets 166.25
LSA of EL0500 - Damage to Physical Assets 0.03
UMAP of EL0500 - Damage to Physical Assets 7.04
PCA of EL0600 - Business Disruption and System Failures 166.04
LSA of EL0600 - Business Disruption and System Failures 0.03
UMAP of EL0600 - Business Disruption and System Failures 11.2
PCA of EL0700 - Execution, Delivery & Process Management 170.24
LSA of EL0700 - Execution, Delivery & Process Management 0.08
UMAP of EL0700 - Execution, Delivery & Process Management 26.64
Save data to reproduce PCA, LSA and UMAP by Event Type 45.27
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Table C.2: Computation time for TextAnalysis2.R in seconds (part 2).

Step Time (s)
Select data and seeds of EL0100 - Internal Fraud 0.08
Estimate seeded LDA of EL0100 - Internal Fraud 7.15
Perplexity of EL0100 - Internal Fraud 1.6
Topics probability of EL0100 - Internal Fraud 0.03
Averaging topic probabilities of EL0100 - Internal Fraud 46.65
Wordcloud of EL0100 - Internal Fraud 12.03
Assign clusters to descriptions of EL0100 - Internal Fraud 0.12
Select data and seeds of EL0200 - External Fraud 0.07
Estimate seeded LDA of EL0200 - External Fraud 10.87
Perplexity of EL0200 - External Fraud 4.98
Topics probability of EL0200 - External Fraud 0.25
Averaging topic probabilities of EL0200 - External Fraud 883.92
Wordcloud of EL0200 - External Fraud 10.03
Assign clusters to descriptions of EL0200 - External Fraud 7
Select data and seeds of EL0300 - Employment Practices and Workplace 0.06
Estimate seeded LDA of EL0300 - Employment Practices and Workplace 7
Perplexity of EL0300 - Employment Practices and Workplace 1.7
Topics probability of EL0300 - Employment Practices and Workplace 0.05
Averaging topic probabilities of EL0300 - Employment Practices and Workplace 94.5
Wordcloud of EL0300 - Employment Practices and Workplace 9.95
Assign clusters to descriptions of EL0300 - Employment Practices and Workplace 0.17
Select data and seeds of EL0400 - Clients, Products & Business Practices 0.11
Estimate seeded LDA of EL0400 - Clients, Products & Business Practices 40.79
Perplexity of EL0400 - Clients, Products & Business Practices 28.39
Topics probability of EL0400 - Clients, Products & Business Practices 1.64
Averaging topic probabilities of EL0400 - Clients, Products & Business Practices 6018.39
Wordcloud of EL0400 - Clients, Products & Business Practices 17.5
Assign clusters to descriptions of EL0400 - Clients, Products & Business Practices 37.99
Select data and seeds of EL0500 - Damage to Physical Assets 0.06
Estimate seeded LDA of EL0500 - Damage to Physical Assets 5.19
Perplexity of EL0500 - Damage to Physical Assets 1.64
Topics probability of EL0500 - Damage to Physical Assets 0.03
Averaging topic probabilities of EL0500 - Damage to Physical Assetsd 97.47
Wordcloud of EL0500 - Damage to Physical Assets 6.14
Assign clusters to descriptions of EL0500 - Damage to Physical Assets 0.18
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Table C.3: Computation time for TextAnalysis2.R in seconds (part 3).

Step Time (s)
Select data and seeds of EL0600 - Business Disruption and System Failures 0.06
Estimate seeded LDA of EL0600 - Business Disruption and System Failures 7.2
Perplexity of EL0600 - Business Disruption and System Failures 1.85
Topics probability of EL0600 - Business Disruption and System Failures 0.05
Averaging topic probabilities of EL0600 - Business Disruption and System Failures 125.73
Wordcloud of EL0600 - Business Disruption and System Failures 7.68
Assign clusters to descriptions of EL0600 - Business Disruption and System Failures 0.71
Select data and seeds of EL0700 - Execution, Delivery & Process Management 0.08
Estimate seeded LDA of EL0700 - Execution, Delivery & Process Management 15.82
Perplexity of EL0700 - Execution, Delivery & Process Management 7.94
Topics probability of EL0700 - Execution, Delivery & Process Management 0.43
Averaging topic probabilities of EL0700 - Execution, Delivery & Process Management 1350.52
Wordcloud of EL0700 - Execution, Delivery & Process Management 11.3
Assign clusters to descriptions of EL0700 - Execution, Delivery & Process Management 10.38
Save all results by Event Type 21.89
Plot PCA by ET with clusters 0.86
Plot LSA by ET with clusters 5.1
Plot UMAP by ET with clusters 4.84
Total 15528.43

The total computational time for the script TextAnalysis2.R is around 4 hours and 20 minutes.

The most computationally intensive parts are related to the semantic adjustment (around 50 minutes),

and the averaging topic probabilities of equal document vectors for event type “Clients, Products

& Business Practices” (around 1 hour and 40 minutes).

C.2 ReportTextAnalysis2.R

Details on computational time for the main steps of the script ReportTextAnalysis2.R are re-

ported in Table C.4.
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Table C.4: Computation time for ReportTextAnalysis2.R in seconds.

Step Time (s)
Read data 0.73
PCA of Group 33.64
PCA of ETs 20.59
PCA features of Group 4.2
PCA features of ETs 15.57
PCA of ETs by cluster 22.07
Explained variance for PCA of ETs 13.03
LSA of Group 27.39
LSA of ETs 26.16
LSA features of Group 3.06
LSA features of ETs 4.83
LSA of ETs by cluster 26.06
UMAP of Group 19.48
UMAP of ETs 20.81
UMAP of ETs by cluster 21.07
Wordcloud of ETs by topic 106.33
Traceplots of ETs 1.88
Total 366.90

The total computational time for the script ReportTextAnalysis2.R is around 6 minutes.

C.3 TwitterAnalysis.R

Details on computational time for the main steps of the script TwitterAnalysis.R are reported

in Table C.5. The calculation has been applied to a single day data set, referred to June 15th, which

is composed of 146,195 tweets.
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Table C.5: Computation time for TwitterAnalysis.R in seconds.

Step Time (s)
Load tweets 39.86
Selection of relevant tweets 1.16
Clean the tweets 11.51
Tokenizing the tweets 11.83
Load dictionaries from OpRisk data 0.15
Exclude stopwords 5.74
Integrate n-grams 174.56
Define seed words 3.49
Document-by-term matrix 0.91
Statistics and wordcloud 2.56
Apply semantic adjustment 2274.31
Include cleaned tweets (based on tokenization) and select non-zero rows 12.59
PCA of tweets 778.7
LSA of tweets 30.06
Clean memory 2.49
UMAP of tweets 222.41
Estimate seeded LDA 313.8
Topics probability 10.55
Wordcloud 55.03
Assign clusters to tweets 4461.48
PCA by cluster 25.91
LSA by cluster 25.27
Save final results 23.56
UMAP by cluster 27.75
Total 8515.68

The total computational time for the script TwitterAnalysis.R is around 2 hours and 20

minutes. The most computationally intensive parts are related to the semantic adjustment (around

38 minutes), and the assignments of tweets to clusters, considering the constraint on seed words

(around 1 hour and 15 minutes).

C.4 WrapperTwitterAnalysis.R

Since the script WrapperTwitterAnalysis.R recall TwitterAnalysis.R for each day of the

time range, i.e., from May 5th to July 12th, the computation time can be approximately estimated as

the one of TwitterAnalysis.R (reported in Appendix C.3 for one day) times the number of days
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within the time range (i.e., 69 days). The resulting approximated computation time is 587,581.92

seconds, equivalent to around 163 hours (i.e., almost 7 days).

C.5 ReportTwitterAnalysis.R

Details on computational time for the main steps of the script ReportTwitterAnalysis.R are

reported in Table C.6. The calculation has been applied to a data set of two days, referred to June

15th and 16th.

Table C.6: Computation time for ReportTwitterAnalysis.R in seconds.

Step Time (s)
Plots of daily tweets by cluster 12.98
Plots of daily tweets for each cluster with peaks detection 9.14
Daily PCA 31.8
Daily PCA features 2.64
Daily PCA by cluster 28.98
Daily LSA 29.12
Daily LSA features 1.57
Daily LSA by cluster 28.22
Daily UMAP 35.23
Daily UMAP by cluster 27.73
Daily wordcloud by topic 37.81
Total 245.22

The total computational time for the script ReportTwitterAnalysis.R is around 4 minutes

for two days. For each day of the time range, i.e., from May 5th to July 12th, the computation time

can be approximately estimated as the one previously obtained times the number of days within

the time range (i.e., 69 days), divided by two. The resulting approximated computation time is

8,460.09 seconds, equivalent to around 2 hours and a half.
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