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Abstract: Early work by Muller and McClintock discovered that the physical ends of linear chro-
mosomes, named telomeres, possess an inherent ability to escape unwarranted fusions. Since then,
extensive research has shown that this special feature relies on specialized proteins and structural
properties that confer identity to the chromosome ends, thus allowing cells to distinguish them from
intrachromosomal DNA double-strand breaks. Due to the inability of conventional DNA replication
to fully replicate the chromosome ends and the downregulation of telomerase in most somatic human
tissues, telomeres shorten as cells divide and lose this protective capacity. Telomere attrition causes
the activation of the DNA damage checkpoint that leads to a cell-cycle arrest and the entering of cells
into a nondividing state, called replicative senescence, that acts as a barrier against tumorigenesis.
However, downregulation of the checkpoint overcomes this barrier and leads to further genomic
instability that, if coupled with re-stabilization of telomeres, can drive tumorigenesis. This review
focuses on the key experiments that have been performed in the model organism Saccharomyces
cerevisiae to uncover the mechanisms that protect the chromosome ends from eliciting a DNA damage
response, the conservation of these pathways in mammals, as well as the consequences of their loss
in human cancer.
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1. History of the Discovery of Telomeres and Telomerase

The concept of telomere was born in the first half of the twentieth century, when Her-
mann J. Muller, working with the fruit fly Drosophila melanogaster, found that X-rays could
generate broken chromosomes that can fuse to each other leading to inversions, deletions,
and/or translocations (Figure 1). However, these structural alterations never involved the
chromosome termini. This finding led him to propose the existence of a “terminal gene”
that “must have a special function, that of sealing the ends of the chromosome, so to speak,
and that for some reason, a chromosome cannot persist indefinitely without having its
ends thus sealed” [1]. Muller called this gene “telomere”, from the Greek felos “end” and
meros “part”.

The idea that the telomere conferred identity to the natural ends of a chromosome, such
that a cell could distinguish them from the ends of intrachromosomal double-strand breaks
(DSBs), was confirmed soon thereafter by Barbara McClintock, during her cytological
studies on irradiated maize chromosomes. She found that a broken chromosome frequently
fused with another broken end to produce a dicentric chromosome that would break at
the next mitosis, when the two centromeres are pulled apart toward opposite poles of the
mitotic spindle. Such broken ends can fuse with other broken ends, starting the so-called
“breakage-fusion-bridge cycle” [2]. However, she did not detect fusions involving telomeres,
suggesting that one function of the telomere was to protect the natural chromosome ends
from fusing to each other.
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Figure 1. Timeline of the major discoveries in the telomere field.

Following the discovery that telomeres should have special properties, a critical ex-
periment to study telomere function was performed in Saccharomyces cerevisiae by Sandell
and Zakian, who placed the recognition site of the HO endonuclease 20 kb away from the
dispensable left telomere of chromosome VII, such that the telomere can be lost upon HO
expression [3]. After elimination of the telomeric DNA, they found that cells underwent
an arrest of cell-cycle progression due to activation of the DNA damage checkpoint, indi-
cating that telomeres were essential to prevent the natural chromosome ends from being
recognized as DSBs by the checkpoint machinery.

The sequence of telomeric DNA was first identified by Blackburn and Gall in the
ciliated protozoan Tetrahymena thermophila. They found that the ends of macronuclear
ribosomal DNA (rDNA) molecules in this organism consisted of a variable number of 5'-
CCCCAA-3' repeats [4]. Sequencing of the telomeric DNA from other eukaryotic organisms
revealed that as in T. thermophila, the ends of chromosomes were constituted by a block of
tandemly repeated simple sequences, whose number varied depending on the organism.
Furthermore, the composition of telomeric DNA was asymmetric, with the DNA strand
running in the 5 to 3’ direction rich of guanine and longer than the complementary
strand [5].

The fact that telomeres from the same organism could be of different lengths suggested
that telomeric DNA was not templated by the parental chromosome. This hypothesis was
strengthened by Szostak and Blackburn, who ligated T. thermophila rDNA telomeres onto
both ends of a linear yeast plasmid and introduced it into yeast by transformation [6]. They
found that yeast cells maintained the plasmid as a linear molecule. Furthermore, cells
were capable to add the yeast C;_3A telomeric repeats at the tips of T. thermophila rDNA
telomeres [7], arguing that the structural features required for telomere replication had
been conserved during evolution.

The finding that telomere elongation was entirely attributable to an increase in the
number of tandemly repeated units led Blackburn and Szostak to propose the existence
of a terminal transferase-like activity that was capable to add telomeric repeats onto chro-
mosome ends, and that T. thermophila DNA ends, but not random sequence, could be
recognized as a substrate by the “DNA addition enzyme” [7]. By using cell-free extracts
from T. thermophila, Greider and Blackburn first uncovered the existence of a terminal
transferase activity capable of adding DNA repeat sequences to the chromosome ends [8].
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Purification of this enzyme, named telomerase, allowed them to show that it was a ri-
bonucleoprotein complex, whose RNA and protein components were both essential for
its activity [9]. The RNA component was then cloned and it was found to contain a short
RNA sequence that could act as a template for the addition of simple repeats [10]. Mutation
of this sequence caused the introduction, in vivo, of telomere sequences corresponding
to the mutated sequence, thus providing the proof that telomerase used its integral RNA
component as the template for the addition of simple repeat units [11].

In parallel, the search for S. cerevisiae mutants that were impaired in the ability to
convert a circular plasmid containing inverted repeats of T. thermophila telomeric sequences
into a stable linear form allowed Lundblad and Szostak to discover the first gene encoding
one of the subunits of the yeast telomerase enzyme [12]. This gene was called EST1,
because its mutation led to loss of telomeric DNA, giving rise to the so-called “ever shorter
telomere” (est) phenotype. est1 mutants also showed a gradual decline of cell viability, thus
providing the first experimental demonstration that loss of telomeric DNA limits cellular
proliferation. As the lack of Estl caused chromosome loss, three additional EST genes
(EST2, EST3, and EST4) were discovered in a screen for mutants that exhibited increased
chromosome instability combined with defects in plasmid linearization [13]. The TLC1
(telomerase component 1) gene encoding the template RNA of telomerase was identified
by Singer and Gottschling in a search for genes that, when overexpressed, counteract the
ability of telomeres to silence transcription [14]. Purification of the catalytic subunit of
telomerase from a ciliated protozoan allowed to demonstrate that the reverse transcriptase
motifs were essential for telomeric DNA synthesis in vivo and in vitro [15]. This discovery
was followed by the cloning of human telomerase RNA component (TERC) [16] and the
telomerase reverse transcriptase (TERT) [17].

2. The DNA Damage Response

Although telomeric DNA is structurally similar to the end of a DSB, it is intrinsically
refractory to repair and does not activate the DNA damage response (DDR) that is, instead,
elicited by an intrachromosomal DSB. In eukaryotic cells, the DDR comprises pathways
to repair DNA breaks and a mechanism, called DNA damage checkpoint, that inhibits
cell-cycle progression until DNA lesions are repaired [18]. The main mechanisms repairing
a DSB are non-homologous end-joining (NHE]) and homologous recombination (HR)
(Figure 2). NHE] catalyzes the direct ligation of the DSB ends and requires the Ku complex
that comprises the two Ku70 and Ku80 subunits. This protein complex acts as a hub for the
recruitment of downstream NHE] components, including S. cerevisiae Lifl (human XRCC4),
Nejl (human XLF), and the DNA ligase IV [19]. The presence of Ku at DSBs also protects
the DNA ends from degradation by inhibiting the recruitment of the Exol nuclease [20,21].
By contrast, HR is a more complex process that uses undamaged homologous DNA as a
template to restore the genetic information lost at the break site [22].

The key step in determining which pathway is used to repair a DSB is the initial
nucleolytic degradation of the DSB ends. While NHE] requires little or no DSB end-
processing, initiation of HR requires that the 5'-terminated strands of the DSB ends are
nucleolytically degraded, in a process called resection, to generate 3’-ended single stranded
DNA (ssDNA) [23]. Extended resection of the DSB ends not only commits DSB repair to
HR, but it makes also the DNA ends refractory to be ligated by the NHE] machinery. The
resulting 3’-ended ssDNA is first coated by the ssDNA binding complex replication protein
A (RPA), which is then replaced by the recombinase Rad51 to form a right-handed helical
nucleoprotein filament for homology search and strand invasion (Figure 2). The invading
DNA end serves to prime DNA synthesis using the intact homologous DNA sequence as a
template, followed by resolution of the resulting DNA structure and ligation [22].
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Figure 2. Overview of the DDR at DSBs in S. cerevisiae. DSBs can be repaired by non-homologous
end-joining (NHE]) or homologous recombination (HR). MRX-Sae2 and Ku protein complexes are
recruited to the DSB. MRX is required to load Tell. In NHE], Ku acts as a hub to recruit downstream
NHE] components, including the DNA ligase IV that catalyzes direct ligation of the DSB ends. If the
DSB is not repaired by NHE], upon ATP hydrolysis by Rad50, Mrell together with Sae2 catalyzes an
endonucleolytic cleavage of the 5'-terminated strands, followed by bidirectional resection catalyzed
by Mrell in the 3’ to 5 direction and by Exol or Dna2-Sgs1 in the 5’ to 3’ direction. RPA binds to the
3’-ended ssDNA overhangs and is then replaced by Rad51. The Rad51-ssDNA intermediate initiates
the homology search, invades the dsDNA, and pairs with the homologous DNA strand. RPA-coated
ssDNA recruits the Mec1-Ddc2 complex, which eventually leads to checkpoint activation by activating
Rad53 and/or Chkl through the adaptor Rad9 or Mrcl. Black dots indicate phosphorylation events.
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In both yeast and mammals, DSB resection requires the evolutionarily conserved
MRX/MRN protein complex that is composed of Mrell, Rad50, and Xrs2 (human MRE11,
RADS50, and NBS1) subunits [24] (Table 1). This complex possesses a hetero-hexameric
structure, in which Mrell dimerizes and interacts with both Rad50 and Xrs2/NBS1. While
Mrell exhibits 3/-5’ exonuclease and endonuclease activities [25,26], Rad50 is an ATPase
that possesses two antiparallel coiledcoil domains that can dimerize through a Zn-hook
motif [24]. During DSB resection, the Sae2 (human CtIP) protein stimulates a latent Mrel1l
endonuclease activity within the context of the MRX complex to cleave the 5'-terminated
strands on either side of the DSB [27]. The resulting nick generates an entry site for Mrel1l
exonuclease, which degrades back toward the DSB end in a 3'-5 direction, and for Exol
and Dna?2 nucleases that degrade DNA away from the DSB in a 5'-3’ direction [28-35]
(Figure 2). Dna2 processing activity requires the RecQ helicase Sgs1 (human BLM) that
unwinds double-stranded DNA (dsDNA) and generates a substrate for Dna2 that cleaves
ssDNA overhangs adjoining duplex DNA (Table 1). The ATPase activity of Rad50 drives
conformational changes of the complex that modulate its functions. In particular, the
Rad50 dimer, when bound to ATP, prevents the access of Mrell to dsDNA [36-39], whereas
ATP hydrolysis induces a dissociation of the Rad50 nucleotide binding domains and the
reposition of Mrel1 to one side of Rad50 dimer. This conformational change generates a
DNA cutting channel that allows Mrel1l to bind dsDNA and to endonucleolytically process
it [37,40].

Table 1. Major proteins involved in the DNA damage response and telomere capping.

S. cerevisiae H. sapiens Description

Mrell-Rad50-Xrs2 ~ MRE11-RAD50-NBS1 DSB sensor; telomere length regulator
Ku70-Ku80 KU70-KU80 DSB sensor; telomere length regulator

Tell ATM Apical protein kinase; telomere length regulator
Sae2 CtIP Activator of MRX/MRN endonuclease
Exol EXO1 Exonuclease

Sgs1 BLM DNA helicase

Dna2 DNA2 DNA helicase and nuclease

Mec1-Ddc2 ATR-ATRIP Apical protein kinase and interacting factor
Rad9 53BP1 Checkpoint adaptor/mediator

Mrcl Claspin Replisome component; checkpoint activator
Rad53 CHK?2 Downstream protein kinase

Chk1 CHK1 Downstream protein kinase

Cdc13-Stn1-Tenl
Rap1-Rifl-Rif2

CTC1-STN1-TEN1
TRF1-TRF2-RAP1-TIN2-TPP1-POT1

Telomere binding complex; telomere capping regulator
Telomere binding complex; telomere capping and length regulator

DSB occurrence can elicit activation of a DNA damage checkpoint response, which cou-
ples DSB repair with cell-cycle progression [18]. Key checkpoint players include the apical
protein kinases Tell and Mecl, whose mammalian orthologs are ATM (ataxia telangiectasia
mutated) and ATR (ataxia telangiectasia and Rad3-related), respectively (Table 1). Tell,
which was originally identified for its requirement to elongate S. cerevisiae telomeres [41], is
the kinase involved in sensing and signaling unprocessed or minimally processed DNA
DSBs. In both yeast and mammals, recruitment and activation of Tell / ATM require the
MRX/MRN complex [42—-46]. Tell, in turn, once loaded at DSBs by MRX, supports MRX
function in a positive feedback loop by promoting/stabilizing its association to the DSB [47].

Upon DSB resection, the replication protein A (RPA) complex binds the ssDNA over-
hangs and promotes recruitment of Mecl/ATR kinase [48]. Mecl, as well its human
ortholog ATR, interacts with Ddc2 (human ATRIP) that helps its recruitment to the DSB
ends [49]. Once Mecl/ATR is activated by RPA-coated ssDNA, it phosphorylates and
activates the downstream checkpoint kinases Rad53 (human CHK2) and Chk1 (human
CHKT1), which control two parallel branches of the checkpoint [50]. Signal transduction
from apical to downstream checkpoint kinases requires the mediator proteins Rad9 (human
53BP1) and Mrcl (human Claspin) (Figure 2) (Table 1). In particular, Rad9 allows Rad53
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phosphorylation and checkpoint activation in response to DNA damage in the G1 and G2
phases [51,52], whereas Mrcl, which is a component of the replisome, promotes Rad53
activation during S phase [53-56].

3. Telomere Capping and the Consequence of Its Loss

Following the discovery that the ends of chromosomes should possess a unique
structure that prevents their fusion, S. cerevisiae cells have been used to demonstrate that,
when a short array of telomeric DNA repeats was inserted immediately adjacent to an
endonuclease-induced DSB, the break was not subjected to fusions by NHE] because of its
failure to recruit the DNA ligase IV [57-59]. Furthermore, this DSB was unable to elicit a
checkpoint response [57,58], indicating that telomeres exert an “anticheckpoint” activity.
Subsequent studies have established that suppression of DNA repair and DNA damage
checkpoint at telomeres, referred to as capping, relies on proteins specifically present or
enriched at single-stranded and double-stranded telomeric DNA that, in budding yeast,
include the protein complexes Cdc13-Stnl-Tenl (CST), Ku70-Ku80 (Ku), and Rap1-Rif1-Rif2
(Table 1).

3.1. The CST Complex

The earliest demonstration of the existence of specialized proteins that distinguished
the chromosome ends from internal DSBs was the discovery that yeast cells, carrying
a temperature-sensitive mutation in the CDC13 gene, incubated at restrictive tempera-
tures, degraded their telomeres resulting in extensive ssDNA that activates a Rad9/Mecl-
dependent checkpoint [60,61]. Cdc13 interacts with Stnl and Tenl proteins to form a
telomeric ssDNA binding complex called CST (Figure 3A). Both Stnl and Ten1 support
Cdc13 capping activity. In fact, exposure of cells harboring stnl or fenl conditional alleles
to restrictive conditions causes telomere degradation and checkpoint-mediated cell-cycle
arrest [62-64]. This protein complex is highly conserved and has been identified in ciliates,
vertebrates, flies, and plants [65].

Subsequent studies have shown that the CST complex has structural similarities
with the single-strand DNA binding complex RPA [66], but with a preferential binding
to telomeric G-rich ssDNA overhangs. As Mecl recognizes RPA-coated ssDNA, CST has
been proposed to inhibit Mecl activation by blocking RPA from gaining access to the
telomeric single-stranded overhangs, thus limiting Mec1 loading onto DNA and, therefore,
its activation [67].

The use of an inducible degron allele of Cdc13 allowed to demonstrate that the CST
complex exerts its capping function during late S and G2/M phases of the cell cycle, but not
in G1 or early S [68,69]. Interestingly, passage through S phase in a temperature sensitive
cdc13 mutant causes generation of Exol-dependent ssDNA and unstable chromosomes that
are then the source for additional chromosome instability events [70]. This genome instabil-
ity has been shown to be due to defects in telomere replication, suggesting that the Cdc13
capping function relies on its involvement in supporting replication of telomeric DNA.
Consistent with this hypothesis, Cdc13 and Stnl physically interact with the polx-primase
complex and promote its recruitment to the telomeric DNA to fill-in the C-strand [71-73].
As telomere binding proteins can represent intrinsic obstacles for replication fork progres-
sion [74,75], the role of CST in supporting pola-primase activity could facilitate reprim-
ing on the lagging strand to compensate for fork stalling that inherently occurs during
telomere replication.

The CST complex in mammals is comprised of CTC1, STN1, and TEN1 subunits [65]
(Figure 3B). When CTC1 is disrupted, the G-rich 3’-ended overhangs elongate, while the
C-strands decrease in length due to a deficiency in C-strand fill-in synthesis [76-78]. The
role of CST as a repriming complex at telomeres was also proposed for the mammalian
CST [79,80], which appears to have extratelomeric functions in DNA replication and fork
restart in the presence of replication stress [81].
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Figure 3. Telomeric structure and capping proteins in yeast and humans. (A) Schematic representation
of the yeast Rap1-Rifl-Rif2 and CST complexes. CST in yeast is composed of Cdc13, Stn1, and Tenl
proteins. (B) Schematic representation of the mammalian shelterin complex, composed of TRF1,
TRF2, TIN2, RAP1, TPP1, and POT1 subunits, and the CST complex, composed of CTC1, STN1 and
TENT1 subunits. (C) The G-rich 3'-ended single stranded overhang bound by the shelterin complex is
looped back into the telomeric DNA to form a telomeric loop (T-loop).

3.2. The Ku Complex

In the G1 phase of the cell cycle, telomere capping relies on the Ku complex, which
is an evolutionarily conserved heterodimer composed of Ku70 and Ku80 (human KU?70
and KU80) subunits. In S. cerevisiae, Ku restrains degradation of telomeric DNA and
checkpoint activation [82-84]. The increased ssDNA and the activated checkpoint response
in cells lacking any Ku subunit at elevated temperatures can be suppressed by deletion
of EXO1 [83], suggesting that Ku represses Exol activity at telomeres. Consistent with
this hypothesis, the phenotypes caused by Ku dysfunction can be suppressed also by
the overexpression of either Est2 reverse transcriptase or TLC1 RNA template, whose
high levels appear to stabilize telomeres by enhancing their resistance to degradation by
Exol [85,86]. The Ku complex is constitutively present also at human telomeres, where it
protects telomeric DNA from degradation and HR, although this repression in Ku-deficient
mouse cells involves also RAP1 and POT1 proteins that belong to the shelterin complex
(see next paragraph) [87-89].

3.3. The Rap1-Rif1-Rif2 Complex

In S. cerevisiae, the other protein complex with capping function is composed of
Rap1, Rifl, and Rif2 proteins, with Rapl binding directly double-stranded telomeric
DNA (Figure 3A). These proteins also negatively regulate telomere length by control-
ling different pathways [90,91]. In S. cerevisiae, Rap1 and Rif2, and to a much lesser extent
Rifl, repress telomere-telomere fusions by NHE], telomere degradation, and checkpoint
activation [58,68,84,92]. Rif2 also inhibits activation of Tell, which is known to promote
telomerase-mediated telomere elongation [93,94]. By contrast, Rif1, but not Rif2, is impor-
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tant to support viability in cells where Cdc13 is dysfunctional [95]. Thus, Rapl and its
interactors Rifl and Rif2 have capping activities, with Rifl and Rif2 making specific and
separable contributions to this capping.

In mammals, the capping properties of the Rap1-Rif1-Rif2 complex are functionally
recapitulated by a protein complex, called shelterin, which is composed of TRF1, TRF2,
RAP1, TIN2, TPP1, and POT1 subunits [96] (Figure 3B). TRF1 and TRF2 bind to TIN2. TIN2
also binds to TPP1, which in turn binds to POT1, whereas RAP1 binds TRF2. RAP1 is
the only shelterin subunit possessing a limited conservation with its yeast ortholog Rapl,
although yeast Rapl binds directly telomeric DNA, whereas the association of human
RAP1 with DNA is mediated by TRF2.

The shelterin complex uses a variety of strategies and different subunits to block the
DDR activities at telomeres. In particular, TRF2 prevents ATM activation, whereas POT1 is
used to repress ATR signaling activity [97]. As POT1 binds ssDNA, the proposed model
is that POT1 blocks RPA from gaining access to the telomeric single-stranded overhang,
thereby limiting ATR activation. TRF2 is also the main inhibitor of classical NHE] (c-NHE]),
a pathway responsible for the generation of end-to-end fusions and dicentric chromosomes
that can result in breakage-fusion-bridge cycles and genome instability [98]. Artificial
tethering of TRF2 next to a DSB impedes its repair and elicits prolonged DDR activation,
suggesting that TRF2 is both necessary and sufficient to suppress c-NHE] [59]. The main
mechanism through which TRF2 exerts this inhibitory function is based on formation of
T-loops, which are large lariat structures that are generated through strand invasion of the
long 3’-ended overhang into the double-stranded telomeric DNA [99,100] (Figure 3C). TRF2
was also found to limit ATM signaling directly by inhibiting the kinase activity itself [101].

The shelterin complex also represses an end-joining pathway, called alternative NHE]
(alt-NHE]J), which is mediated by poly(ADP-ribose) polymerase 1 (PARP1), DNA ligase I1I,
and the error-prone translesion DNA polymerase 6 [102]. While c-NHE] leads to minimal
sequence alterations, alt-NHE] causes extensive deletions and insertions at the repair
junction. Furthermore, it is responsible for telomere fusions in senescent cultured cells and
in human cancers, suggesting that it might be involved in the processing of dysfunctional
telomeres in the early stages of tumorigenesis [103]. Activation of alt-NHE] can be observed
only when all the shelterin subunits are completely depleted in mouse cells that lack the
Ku complex [104], suggesting that repression of alt-NHE] at telomeres involves multiple
proteins that act in a redundant manner.

Although there are significant differences in the sequences and proteins at yeast
and human telomeres, human TRF1 and TRF2 share with S. cerevisiae Rap1 the DNA
binding domain with two Myb-like folds. However, while TRF1 and TRF2 contain a single
Myb-like domain, S. cerevisiae Rapl binds a recognition sequence through two tandem
Myb-like domains [105-107]. In yeast Rap1, a wrapping loop, immediately after the C-
terminal Myb-like domain, folds back and locks Rapl around DNA by interacting with
the Myb domain located at the N-terminus. The transient opening of the wrapping loop
destabilizes this clamped structure and allows Rap1 binding to DNA through a single
Myb-like domain [108,109]. These different Rapl DNA binding modes were shown to
influence Rap1 ability to interact with Rif2 in vivo [110]. In fact, Rap1l mutant variants
that increase or decrease Myb affinity to DNA, as well as mutational impairments of the
wrapping loop clamping, showed that binding of both Myb-like domains to DNA results
in Rap1-DNA complexes that act primarily through Rif2 to control MRX functions at
telomeres. By contrast, the transition to a binding mode where a single Myb-like domain is
bound to DNA leads to Rap1-DNA complexes that inhibit MRX function at telomeres in a
Rif2-independent manner [110].

In any case, the ability of Rif2 to counteract Tell activation, NHE], and nucleolytic degra-
dation of telomeric DNA appears to rely on inhibition of MRX activity at telomeres [58,68,84].
Because Rif2 interacts with Xrs2 C-terminus within the same region as Tell [94], Rif2 was
initially proposed to inhibit MRX association/persistence to telomeric DNA ends by com-
peting with Tell for Xrs2 binding, therefore antagonizing Tell-mediated stabilization of
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MRX association with DNA ends. However, the finding that Rif2 interacts in vitro with
Rad50 and can inhibit MRX-dependent stimulation of Tell kinase activity independently
of Xrs2 [47,111], suggests that Rif2 can act directly on Rad50 to control MRX activity at
telomeres. Interestingly, Rif2 was shown to stimulate ATP hydrolysis by Rad50 in an Xrs2-
independent manner [47,111]. As MRX binding to DNA, as well as its ability to stimulate
Tell activation and NHE] requires that Rad50 is bound to ATP [36,39,112-114], Rif2 can
inhibit all these MRX functions by discharging the MRX ATP-bound conformation through
stimulation of Rad50 ATPase.

Sae2 is required to stimulate Mrell endonuclease activity [27]. Interestingly, Rif2
was recently shown to inhibit Mrell endonuclease activity within the context of the MRX
complex [115,116]. Genetic and structural modelling approaches identified K6, N18, K81,
and I93 residues on Rad50 as being important to support Rad50-Rif2 interaction and
Rif2-mediated inhibition of Mrell endonuclease [115-117]. Notably, two of these amino
acids belong to a cluster of residues found to be mutated in the meiosis-defective rad50-S
alleles, which specifically impair Mrell endonuclease activity by abrogating Rad50-Sae2
interaction and, therefore, Sae2-mediated stimulation of Mrell nuclease [118]. Altogether
these findings suggest that Sae2 and Rif2 interaction interfaces can partially overlap on
Rad50, raising the possibility that Rif2 can inhibit Mrell endonuclease by competing with
Sae2 for Rad50 binding and, therefore, by limiting Sae2-mediated MRX stimulation.

Although Rif2 can be detectable also at DSBs [47], it is much more abundant at telom-
eres compared to Sae2, which in turn is avidly bound to DSBs. The different enrichment
of these two proteins at DSBs versus telomeres provides the rationale to explain why Rif2
inhibits MRX-mediated resection preferentially at telomeres. In fact, at DSBs Rif2 only
represses Tell activation and NHE] by discharging the MRX ATP-bound state [47], whereas
it fails to inhibit resection possibly because it is not enough to antagonize Sae2 binding
to Rad50 and, therefore, the conversion of MRX into an endonuclease active complex
(Figure 4).

Rad5\0 m Rif2
—

ATP
hydrolysis
Mre11
Tel1, NHEJ nucleclytic degradation
ﬂ Rif2 -
2 o} ﬁ ﬁ
ATP
hydrolysis
Rif2
ATP-bound state ADP-bound state

Figure 4. Model of regulation of MRX activity at DSBs and telomeres. In the ATP-bound state, the
dsDNA is inaccessible to Mrell. Upon ATP hydrolysis by Rad50, the two Rad50 coiled coils zip
up and Mrell moves to the side of Rad50 dimer where it can act as endonuclease. At the DSB, the
excess of Sae2 compared to Rif2 leads to Sae2 binding to the Rad50-Mre11 interface. This interaction
stabilizes Mrel1-Rad50 in a conformation that is proficient to cleave DNA. At telomeres, the excess of
Rif2 compared to Sae2 antagonizes Sae2 binding to Rad50 and stabilizes a post hydrolysis ADP-bound
state that is not competent for NHE], Tell activation, and DNA cleavage. Xrs2 is not represented.

Rif2 functions in inhibiting Mrell endonuclease, Tell activation, and NHE] depend on a
small Rif2 region of as little as 3440 amino acids, called MIN (MRN-INhibitor) [111,115,117].
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The MIN motif, which belongs to the Rif2 BAT (Blocks Addition of Telomeres) motif
(residues 1-60), previously shown to be involved in the negative regulation of telomere
length [119], mediates also Rif2 binding to Rad50 and stimulation of ATPase activity. The
finding that Rad50 K6 and K81 residues are evolutionarily conserved (human K6 and R83)
raises the possibility that an analogous mechanism might be deployed in other eukaryotes.

4. Consequences of Telomere Shortening

Telomere attrition can be caused not only by disrupting the interaction between the
telomeric DNA and the proteins that specifically bind to it, but also by eliminating the
telomerase activity. In 1961, Leonard Hayflick discovered that human fibroblasts derived
from fetuses possessed finite replicative potential of 50-60 doublings. Then, they entered
a non-dividing state called replicative senescence or the “Hayflick limit” [120]. Based on
the finding that DNA polymerases replicate DNA only in the 5’ to 3’ direction and need
a primer to initiate DNA synthesis [121], Alexei Olovnikov, in its theory of marginotomy,
predicted that the conventional DNA replication machinery cannot replicate completely
the chromosome ends that would incur a loss of DNA from the lagging strand, leading to
progressive chromosome shortening. He proposed that this shortening can account for the
limitation of doubling potential of normal somatic cells [122].

S. cerevisiae cells possess a constitutively active telomerase, but a senescence phenotype
can be induced following telomerase removal. The first experimental demonstration that
loss of telomeric DNA limits cellular proliferation comes from the discovery that yeast cells
lacking the Estl subunit of telomerase showed a gradual arrest of doubling [12]. Similarly,
human cultured primary cells shorten their telomeres as a function of serial passage during
ageing [123]. Furthermore, re-expression of the catalytic subunit of telomerase can extend
the lifespan of telomerase-negative human cells [124].

One hypothesis to explain the decrease in growth capacity was that chromosome
erosion leads to genetic instability that causes cell death. Indeed, it was shown that yeast
cells deleted for the EST1 gene increase the frequency of gross chromosomal rearrange-
ments involving terminal, but not internal, deletions [125]. However, these events can be
detectable only after a significant loss of growth potential, suggesting that chromosome in-
stability was not the major determinant of the senescent phenotype. Rather, loss of growth
in these yeast cells correlated with an arrest of the cell cycle in the G2 phase and activation
of Rad53 checkpoint kinase [126,127]. This response was dependent on genes involved
in the DNA damage checkpoint, indicating that checkpoint activation at critically short
telomeres is the trigger of replicative cellular senescence. Similarly, human cells, in which
the telomerase activity is downregulated, undergo telomere shortening and prolonged
DDR signaling, which results in the formation of telomere-induced DNA damage foci
(TIFs) that colocalize with DNA repair and DNA damage checkpoint proteins [128,129].
Furthermore, overexpression of the shelterin subunit TRF2 can delay senescence onset [130],
arguing that checkpoint activation at telomeres can be elicited not only as a consequence of
telomerase inactivation but also of insufficient amounts of shelterin bound at telomeres.

Altogether, these findings lead to a model whereby as telomeres shorten, they become
progressively unable to bind telomere-capping proteins, thus resembling one-ended DSBs
(Figure 5). This change in the protected status leads to activation of a checkpoint that is similar
to that triggered by intrachromosomal DSBs and that permanently arrests cells in replicative
senescence. It has been proposed that such short telomeres are not subjected to fusion events,
possibly because they retain sufficient shelterin complex to inhibit them [131]. However,
inactivation of the checkpoint allows these cells to bypass the senescent state, reaching a second
proliferative barrier, known as telomere crisis, in which critically short telomeres become
vulnerable to fusion events and formation of dicentric chromosomes [132,133]. Although most
cells die, the few cells that re-elongate their telomeres proliferate indefinitely. Telomere
shortening and activation of the DNA damage checkpoint occur also in ageing post-mitotic
cells, including cardiomyocytes, adipocytes, neurons, osteocytes, and osteoblasts [134],
suggesting that cellular senescence contributes to organismal ageing.
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Figure 5. Telomere attrition in cancer. Telomere attrition due to either deficiency in capping proteins
or loss of telomeric DNA induces a DNA damage checkpoint response that leads to a permanent cell-
cycle arrest and entry into a non-dividing state called replicative senescence, which provides a potent
anticancer barrier. However, checkpoint inactivation through mutations or adaptation allows cells
to bypass senescence, reaching a second proliferative state, known as telomere crisis, during which
critically short telomeres become vulnerable to end-to-end fusions, forming dicentric chromosomes
and resulting in deletions, amplifications, and translocations. This rampant genomic instability leads
to death of most cells, but the few cells that re-stabilize telomeres by re-activating telomerase or
inducing ALT can survive and proliferate indefinitely, thus promoting malignant transformation.

Telomerase-negative S. cerevisige cells, where a single telomere was engineered to be
reduced in length without affecting the integrity of its tip, accelerate the onset of senes-
cence [135,136]. This signaling telomere is bound by RPA, Rad52, Ddc2, and Mecl repair
and checkpoint proteins, indicating that a single very short telomere is sufficient to induce
checkpoint activation and replicative senescence in yeast. Similarly, the presence of few very
short telomeres in mouse cells is sufficient to trigger replicative senescence [137], indicating
that is not the average but rather the presence of one or few critically short telomeres that
causes checkpoint activation and senescence entry. Importantly, Mecl is required to induce
a senescent state in the presence of a critically short telomere [135], suggesting that ssDNA
is the primary signal triggering senescence. Consistent with this hypothesis, 5'-3' resection
is stimulated at short telomeres that expose subtelomeric ssDNA [138]. Furthermore, the
lack of telomere-processing proteins, such as MRX, delays senescence, while the lack of
MRX inhibitors, such as Rif2, anticipates it [139].
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The absence of Tell also delays senescence [126,135,139,140]. As Tell promotes ssDNA
generation at both DSBs and telomeres [141], the delayed senescence in Tell-deficient
telomerase-negative cells can be due to a reduced amount of telomeric ssDNA. By studying
the senescence phenotype of telomerase-deficient cells lacking Tell or expressing the
hyperactive Tell-hy184 mutant variant, which has been identified because of its ability to
compensate for the lack of Mec1 function [142], it was shown that Tell-hy184 anticipates
senescence, while the lack of Tell or of its kinase activity delays it [143]. Neither Tell-hy184
nor Tell kinase defective variant affects the generation of ssDNA at telomeres, suggesting
that Tell function in promoting senescence is not directly linked to ssDNA generation. The
finding that the anticipated senescence triggered by Tell-hy184 completely depends on
Rad9 and only partially on Mecl suggests that Tell promotes senescence mainly by directly
signaling the presence of dysfunctional telomeres to a Rad9-dependent checkpoint. These
results suggest that, as telomeres shorten in the absence of telomerase and the negative
control exerted by Rif2 on MRX-Tell activity declines, MRX recruits Tell at telomeres that
can directly signal to the checkpoint machinery.

5. Escape from Telomere-Induced Replicative Senescence

Replicative senescence elicited by activation of the checkpoint response is a state of
stable, terminal cell-cycle arrest that acts as a barrier against tumorigenesis. Importantly,
telomere attrition in ageing telomerase-deficient mice lacking the checkpoint protein p53
was reported to cause epithelial cancers by a process of breakage-fusion-bridge [144],
indicating that the status of the checkpoint response dictates whether the short telomeres
promote or suppress cancer.

The checkpoint response can be overcome either through mutational inactivation of
its components or through adaptation, which is a phenomenon originally described in
yeast as the ability of cells to overcome a sustained checkpoint arrest despite the presence
of unrepaired DNA damage. The ability of cells to adapt to altered telomere length or
structure has been first observed in S. cerevisiae by Sandell and Zakian, who discovered
that, after elimination of a single telomere and checkpoint activation, many cells were
capable to resume cell-cycle progression without having repaired the damaged chromo-
some [3]. In budding yeast, adaptation has been observed also in response to a single
unrepairable DSB [145-147], where it requires the polo kinase Cdc5 [145], the phosphatase
Ptc2 [148], the regulatory subunits Ckb1 and Ckb2 of casein kinase II (CKII) [145], and the
recombination proteins Tid1 and Srs2 [149]. During adaptation, Rad53 checkpoint kinase is
inactivated [147], thus allowing cells to resume cell-cycle progression to get an opportunity
to repair DNA damage in other cell-cycle phases [150,151]. Mechanisms to abrogate a
prolonged checkpoint arrest were also reported in Xenopus laevis and human cells and a
similar genetic requirement suggests a common evolutionary origin [152,153].

Budding yeast cells are capable to adapt to the checkpoint that is elicited not only in
response to loss of telomerase but also to capping defects. In fact, downregulation of the
checkpoint response can allow cdc13 mutant cells to adapt to the presence of uncapped
telomeres and resume cell-cycle progression [145,154]. In these cells, uncapped telomeres
persist throughout the cell cycle and are bound by DNA repair proteins, indicating that
the resuming of cell-cycle progression is not due to repair of damaged telomeres but to
abrogation of the checkpoint response. Proteins, such as Tid1, Ptc2, and Cdc5, known to
be required for adaptation to a single unrepaired DSB, are required to allow adaptation of
cdc13 mutant cells [154], arguing that adaptation to a DSB or to capping defects occurs by a
similar mechanism.

By tracking individual cell lineages over time using a microfluidic-based approach
coupled to single-cell imaging, it was found that adaptation-deficient cells have a higher
mutation rate than adaptation-proficient cells [155], indicating that adaptation contributes
to genome instability. This genome instability can be due to end-to-end telomeric fusions
to form dicentric chromosomes and subsequent breakage-fusion-bridge cycles [156]. The
increased genome instability in adapted cells might be due also to the use of mutagenic
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repair pathways, such as NHE] in G1 or microhomology-mediated end-joining, that were
not utilized during a checkpoint-mediated cell-cycle arrest [150].

The rampant chromosome instability experienced by adapted cells has important
implications for understanding the early steps of tumorigenesis, during which precancer-
ous cells undergo a phase of high genome instability [155]. Although cells undergoing
checkpoint adaptation almost die in the subsequent cell cycles due to high levels of genetic
instability, cells that overcome this crisis by re-stabilizing critically shortened telomeres
can proliferate indefinitely. Consistent with this model, ectopic expression of TERT in
combination with two oncogenes was shown to promote malignant transformation of
primary human cells [157]. Thus, the chain of events of telomeric alterations, checkpoint
activation, and adaptation is a major mechanism that enables malignant transformation in
cells lacking telomerase activity (Figure 5).

6. Telomerase-Independent Re-Stabilization of Telomere Length

Although reactivation of telomerase is the most common telomere maintenance mech-
anism in cancer, cancer cells can use telomerase-independent recombination-based mech-
anisms, called alternative lengthening of telomeres (ALT), to re-elongate their telomeres.
ALT was discovered by Lundblad and Blackburn, who found that yeast cells lacking telom-
erase can evade the senescence state by re-elongating their telomeres through the use
of recombination [158]. Cells that restabilize telomeres by activating such mechanisms
have been called post-senescence survivors. Based on telomere organization and genetic
requirements, two types of survivors can be described [158-160], although other mech-
anisms can contribute to stabilize telomeres in the absence of telomerase [161-164]. S.
cerevisiae telomeres are comprised of ~300 bp of double-stranded TG;_3/C;_3A repeats
with a 3’-ended 8-15 nucleotides overhang [165,166]. Internal to the TG;_3/Cj_3A tracts
are repetitive DNA elements, called X and Y’. Type I survivors arise through amplification
of the subtelomeric Y’ sequences that may stem from non-reciprocal translocations or
integration of extra-chromosomal Y’ circles into the short telomeres. By contrast, type II
survivors harbor long and heterogeneous telomeric repeat tracts with no rearrangement of
Y’ elements. Furthermore, type I requires Rad51, whereas type II relies on Rad50, Rad59,
and Sgsl [160,167-170]. Both types instead depend on the recombination protein Rad52
and the nonessential DNA polymerase § subunit Pol32. The requirement for Pol32 sug-
gests that break-induced replication (BIR), which is a mechanism used to repair one-ended
DSBs through strand invasion into a homologous donor sequence, can be involved [171].
However, a recent analysis of ultra-long sequencing of chromosome ends has revealed that
survivors contain DNA sequences that can be attributed to both type I and II [172]. Based
on this finding, it was proposed a unified pathway that comprises two sequential steps:
formation of precursors by Rad51-mediated strand invasion, followed by maturation into
survivors via a Rad59-dependent pathway. In any case, reactivation of telomerase in such
cells leads to reversal of the senescence phenotype and restores a telomerase-mediated
mode of telomere elongation [173,174], indicating that telomerase represses recombination
at telomeres.

The absence of telomerase results in replicative senescence also in S. pombe cells
that can escape it by maintaining telomeres in a telomerase-independent mode [175].
However, most survivors are formed by circularization of each individual chromosome,
possibly because loss of protection due to telomere shortening allows end-to-end fusions
to occur [175-177]. Interestingly, a new type of survivor, termed HAATI (heterochromatin
amplification-mediated and telomerase-independent), that relies on the presence of non-
telomeric heterochromatin, has been described in S. pombe [178].

ALT mechanisms that depend on homologous recombination can be observed also in
human telomerase-negative immortalized cell lines and in 10-15% of human cancers, which
use them to re-elongate their telomeres and gain unlimited proliferative potential [179,180].
A plasmid tag inserted into a single telomere in mouse or human ALT cells was found to be
copied to other telomeres or duplicated in its original location without the involvement of
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other telomeres [181-183]. This finding suggests that a telomere can use itself or a telomere
on a sister chromatid or on another chromosome as a copy template by BIR. Interestingly,
the BIR mechanism has been proposed to be responsible also for the generation of type II
survivors in yeast [171].

The cause of the triggering of HR-based mechanisms at telomeres remains poorly
understood. As stated above, telomeres are intrinsic obstacles for replication fork pro-
gression in both yeast [74,75] and mammals [184], because of the presence of telomeric
DNA-bound proteins and DNA secondary structures. Interestingly, in yeast, phosphory-
lation of Rad53 upon inactivation of telomerase or of Cdc13 depends not only on Rad9
but also on Mrc1 [185,186], a checkpoint protein implicated in the response to replication
stress [53,56]. Furthermore, Mrcl was found to be phosphorylated during senescence [186],
suggesting that replication stresses occur at short telomeres. Bidimensional gels assessing
replication intermediates in telomerase-negative fission and budding yeast cells revealed
a severe impairment of telomere replication that correlates with an accumulation of four-
branch DNA structures [187,188]. Furthermore, using a reconstituted replication assay; it
has been shown that budding yeast Rap1 acts as a roadblock to the replisome and potently
inhibits lagging strand replication behind the fork [74]. These data support the idea that
the absence of telomerase leads to replication stresses at telomeres that force cells to use
recombination to repair damaged telomeres and maintain viability.

In human cells, commitment to ALT is often associated with loss of ATRX/DAXX
chromatin remodeling complex, changes in telomeric chromatin, or formation of RNA:DNA
hybrids [189,190]. In particular, loss of ATRX causes decompaction/alterations of telomeric
chromatin and increased replication stress [191-194], suggesting that altered telomeric
chromatin can drive ALT by inducing replication stress that generates substrates for the
recombination machinery [195]. Fork progression can be hampered also by transcription
from subtelomeric and telomeric regions that can generate RNA:DNA hybrids, which
are structures formed by the annealing of nascent RNA transcripts to the DNA template
strand. The best known RNA species that are transcribed from the subtelomeric region
toward the chromosome end are long non-coding RNAs conserved in many species that
are called TERRA (telomeric repeat-containing RNAs). Interestingly, telomere shortening
in both S. cerevisiae and S. pombe induces TERRA transcription [196-199], which leads to the
generation of RNA:DNA hybrids and an increased frequency of telomere recombination
in the absence of telomerase [200-202]. Moreover, inhibition of TERRA transcription
decreases DNA replication stress and DNA damage at telomeres, and impairs ALT activity
and telomere length maintenance by BIR [203].

7. Conclusions

Telomere maintenance, which is essential for chromosome integrity, presents multiple
challenges. Since the pioneering work of Muller and McClintock, extensive research has
revealed that telomeric DNA is bound by a growing list of proteins that serve to regulate
its length and protect it from unwarranted fusion, recombination, and degradation events.
These results imply that genomes are not uniformly repairable and that some genomic loci,
such as telomeric DNA, resist DNA repair. This irreparability may be the consequence of
their functions in ensuring the maintenance of linear chromosomes.

Inactivation of telomerase via genetic manipulation in budding yeast recapitulates
the process of telomere shortening and induction of replicative senescence observed in
human somatic cells. Furthermore, budding yeast uses strategies to escape senescence that
resemble those used by human cells. As telomerase removal in budding yeast can allow
detection of early and rare events, this organism can be used to decipher the causes and
consequences of replication stress at telomeres, the molecular events leading to induction
of recombination and telomere-driven mutagenesis. Therefore, the data obtained with this
organism can help investigations in mammalian models to make rapid progress in this
field that is important for human health.
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As precancerous cells undergo rapid proliferation that leads to telomere shortening,
it is also clear that, in certain types of cancer, telomere attrition can be a promoter of
tumorigenesis. The role of telomere in malignancy and metastasis has been proved in
telomerase-deficient checkpoint-mutated mice, in which telomere attrition promotes the
development of epithelial cancers by a process of fusion-bridge breakage that leads to the
formation of complex non-reciprocal translocations [144,204]. Furthermore, reactivation of
telomerase in tumor cells that have already experienced telomere dysfunction is sufficient to
dampen the checkpoint response and quell rampant chromosome instability, enabling full
malignant transformation [205]. The increased telomerase activity observed in most cancers
has led to the development of several strategies to target TERT. However, as TERT inhibition
was found to select activation of ALT pathways in lymphoma [206], combined drugs
that suppress telomerase and ALT-pathway could be beneficial to minimize emergence
of resistance.
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