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Chapter 1

Introduction

The widespread use of information technology has affected many facets of life, including
healthcare and the hospital setting. This has made it possible to gather vast amounts of
information about patients’ clinical histories.
Within this thesis, some fundamental aspects regarding the analysis of longitudinal data
will be addressed. Such data are the result of repeated measurements on the same sub-
ject of certain clinical indicators or physiological signs, which are commonly referred to as
biomarkers (within the thesis we will use biomarkers or markers to indicate the covariates
measured over time, without distinction). During these three years as a doctoral student, I
have worked, from an applied perspective, primarily on longitudinal data from the clinical
setting of the Intensive Care Unit (ICU). Because of the medical condition in which ICU
patients find themselves, they are subjected to close and continuous monitoring, which gen-
erally begins from the day of admission and continues over the following weeks. The vital
functions of such individuals, observed over time and quantified through specific markers,
show sudden changes: this precisely forces close surveillance and constant evaluation of var-
ious clinical indicators of interest over time. This produces, in many cases, a large amount
of data that can be analyzed. Therefore, it is essential to have a thorough description of
the longitudinal trend of specific markers and the impact they may have on the outcome of
interest. So starting with our motivating clinical context, within this thesis we will address,
from a modeling perspective, of how to quantify the impact that a longitudinal biomarker
may have on the trend of the risk of experiencing a binary event over time, such as death.
This question will form the background throughout the paper and special emphasis will be
given to the Cox model in its extended version and to the Joint models for longitudinal
and time-to-event data. We therefore provide a very brief summary of the structure of the
thesis, highlighting the main topics that the reader will find within the individual chapters.
The second chapter frames the nature of longitudinal data, common strategies for analyzing
them (in particular the Linear Mixed-Effects models) and frequent issues such as missing
data, which are typical in the context of dynamic data. Survival Analysis will be briefly
introduced in order to build the bridge that will connect the following chapters. In the third
and fourth chapter, respectively, two widely used approaches for analyzing the link between
a longitudinal profile and the risk of a binary-type event (e.g., death) over time, namely
the Cox model in its extended version (ECM) and Joint models (JM), are detailed. The
fifth chapter shows the results from the ORANGE study, an international, observational,
prospective cohort study which is the clinical motivating context. The aim of the study
was to evaluate the association between the NPi, a neurological pupil index measured over
time with an automated electronic device and long-term outcomes, in patients with Acute
Brain Injury admitted to Intensive Care units. The data were analysed with ECM, but an
empirical comparison with JM fitted on the same data to evaluate ICU mortality is shown.
The sixth chapter is devoted to the presentation of the results of the simulation work done to
evaluate the robustness of ECM an JM when the longitudinal process is affected by different
missing mechanisms. Finally the last chapter contains some final remarks.
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Chapter 2

Longitudinal data

In a longitudinal study, each experimental or observational unit is measured at baseline and
repeatedly over time on the same subject ([1]). The primary characteristic that sets apart
longitudinal studies from other types of research in this context is the occurrence of several
measurements across time on the same subject. Direct assessment of changes in outcomes
of interest over a clinically relevant time window is made possible by continuous monitoring
of participants during the observation phase and subsequent data collection. A longitudinal
model is mostly employed to inspect two different types of effects:

• cross-sectional effects, that is what differs between groups at a given point in time
(for instance, the mean difference between men and women or between two treatment
arms);

• longitudinal effects, also known as time effects or distinct time effects between groups
of participants, e.g. include average trajectories of mean arterial pressure following
the initiation of a therapy or variations in trajectories between males and females.

Therefore, in the longitudinal context we can distinguish two different sources of variability:
one between-subjects, also called inter-variability, and one within-subjects, that is, intra-
variability, due to the repetition of measurements.

From a statistical perspective, the key feature of the longitudinal study is the presence
of a correlation structure that arises due to repeated measures on the same individuals
and it must be accounted for in order to obtain valid inferences ([2]). This circumstance
necessitates the employment of ad hoc statistical models and contrasts with the assumption
of independence among the residuals, typical, for example, of the linear regression model.

Three sources of variability that describe longitudinal data should be taken into consid-
eration by an adequate model ([3]):

• random variability coming from heterogeneity among individual trajectories;

• serial correlation due to residuals close to each other in time are more similar than
residuals further apart;

• measurement error to account for small variability unavoidable even from an immediate
replication of the measurement (noise variability).

Longitudinal data frequently fail the homoschedasticity assumption because the variability of
the data varies depending on when it was taken, that is, the variability is often heterogeneous
across measurement occasions. Furthermore, the number of repeated measurements among
patients are frequently unbalanced : this means that the data observed on participants in a
study are not collected at exactly the same times. Longitudinal data allow researchers to
assess multiple disease aspects: changes of outcome(s) over time in relation to associated risk
factors, timing of disease onset and individual and group patterns over time ([4]). Assessing
longitudinal temporal changes is crucial to learning specific time patterns: for example in a
clinical context important impairments could be missed ([5]).
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Theoretical and practical concerns, however, make longitudinal data analysis challeng-
ing. These consist of data that are possibly missing, correlated, and collected across wide
irregularly visit times. Modern statistical techniques address these difficulties, but chal-
lenges include knowing when to apply them, checking their assumptions and appropriately
interpreting their results. Confusion over these issues may result in analysis that is both
improper and misleading.

2.1 Methods for longitudinal data analysis

A longitudinal analysis of within-individual developments is conducted in two conceptu-
ally separate stages. Within-individual change is described, in the initial stage, using an
adequate summary of the variations in the repeated measurements taken on each subject
throughout the observation period. Certainly, the simplest longitudinal design is with only
two measurements at the start and at the end of an observational period; for example in a
pre post-treament scenario: here a straightforward approach is to analyze the change score
or difference score, that is the differences between the measures at each time point, and
a valid approach is to use ANOVA ([6]). These estimates of within-individual change are
connected to inter-individual variations in a few important factors (e.g. treatment group,
smoking status, gender...) in the second stage. Although conceptually distinct from one
another, these two analytical steps can be merged into a single statistical model. In fact,
this serves as the foundation for the extremely adaptable class of models known as linear
mixed-effects models for longitudinal analysis of continuous responses ([7]).

The mixed-effects model will be better described in the next sections as it is used as a
building block for Joint models ([8]), which will be a major theme of this thesis.

Longitudinal data from planned experiments have historically been widely analyzed using
response profile analysis: either a univariate repeated-measures ANOVA or a multivariate
ANOVA (MANOVA) was used to implement it. These approaches, however, present sev-
eral limitations. Unrealistic assumptions regarding the variances on each occasion and the
correlations between pairs of repeated measures are made by univariate repeated-measures
ANOVA, which is commonly the case for longitudinal data. Although MANOVA does not
impose any restrictions on variances or correlations, many implementations require a com-
plete case data scenario, which may make its use challenging ([6]).

To characterize the longitudinal trajectories arising from repeated measurements, other
types of approximations can be used, such as piecewise linear, curvilinear, or polynomial
functions that can also parsimoniously summarize within-individual changes in the response
over time. A truly flexible approach to estimating longitudinal profiles, which offers great
adaptability due to its mathematical properties, is the use of splines: there are many types,
characterized by the choice of different basis functions ([9]). These methods, though, do not
allow the user to directly regress the longitudinal responses on covariates, but they are used
to estimate particular, especially non linear trends, over time.

Another widely used approach to estimate longitudinal profiles is Generalized Estimating
Equations (GEE). In contrast to mixed-effects models, returning a conditional model with
the possibility to get marginal interpretations ([10]), GEE estimate a marginal model for
the mean of the trajectory over time ([11]), making the former to be often preferred to the
latter.
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2.2 Missing Data in Longitudinal Studies

The issue of missing data presents a significant obstacle for the analysis of longitudinal
data. It is fairly common for some participants to miss some of their planned assessments
for a number of reasons, even though longitudinal studies are meant to collect data on every
subject in the sample at a set of predetermined follow-up times. We can distinguish between
monotone and non-monotone missingness based on the characteristics of the patterns of
absent data ([1]). When a participant withdraws from the study before it is supposed to be
finished, this is known as attrition or dropout. Late entry occurs when a participant does
not provide all of her initial response measurements but shows up later and continues to
participate in the study until it is finished. Contrarily, non-monotone missingness, often
referred to as intermittent missingness, is a more generic class that includes situations in
which, for instance, a subject’s response is missing at one follow-up time, she returns at the
next, but can then be missing once more at later time points.
When designing longitudinal research and analyzing the data from these investigations, the
possibility of missing data presents a number of difficulties. The loss of efficiency is the first
and most evident result, as changes in the average longitudinal evolutions are estimated with
less accuracy than they would have been if all data had been accessible. In order to achieve
the same levels of power in identifying significant effects, we will have to recruit more people,
which has crucial implications for the design of long-term research. The amount of missing
data is closely correlated with the loss of precision, and the technique of analysis used also has
an impact. Additionally, because not all individuals have the same amount of measurements
at a similar set of times, missingness causes datasets to become unbalanced over time. This
complicates analytical techniques that call for balanced data, but does not pose any concern
for the linear mixed-effect model we previously discussed. Finally, missing data could induce
bias and result in erroneous inferences in some situations especially if handled incorrectly.
Before going into more details about how bias issues could arise, it is necessary to provide new
terminology that enables us to formally characterize the missing value mechanism and assess
how this mechanism might affect subsequent conclusions. In general, we assume that each
subject in the study is intended to be measured at j = 1, . . . , ni times, which means that,
for this subject, we are expecting to collect the vector of measurements yi = (yi1, ..., yini

).
The missing data indicator is introduced to help distinguish between the response measures
we actually gathered and those we expected to collect. It is defined as:

rij =

{
1 if yij is observed
0 otherwise

(2.1)

Therefore, we obtain a partition of the complete response vector yi into two sub-vectors, the
observed data sub-vector yoi containing those yij for which rij = 1, and the missing data
sub-vector ymi containing the remaining components. The vector ri = (ri1, . . . , rini

)T and
the process generating ri are referred to as the missing data process and the mechanism for
missing data determines whether certain techniques for analyzing incomplete longitudinal
data are appropriate. The missing data mechanism can be viewed as a probability model
outlining the connection between the processes for missing data (ri) and response data
(yi). A taxonomy of missing data mechanisms, first proposed by Rubin in [12], is based
on the conditional density of the missing process ri given the complete response vector
yi = (yoi , y

m
i ):

p(ri|yoi , ymi ;ϕr)

where ϕr denotes the corresponding parameter vector. The three types of mechanisms are:

• Missing Completely at Random (MCAR) which corresponds to the mechanism
such that neither the exact values that they would have been observed nor the collection
of observed responses have any bearing on the probability that responses are missing.
In other words, longitudinal data are MCAR when ri is unrelated to both yoi and ymi ,
i.e.:

p(ri|yoi , ymi ;ϕr) = p(ri;ϕr).
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Indeed, the observed data yoi can be viewed as a random sample of the complete data,
which is an important feature of MCAR. As a result, the distribution of the observed
data is the same as the distribution of the entire set of data, meaning that the observed
data are just a random sample of all the data ([1]). Because of this, MCAR allows
us to draw valid conclusions from the data at hand using any appropriate statistical
technique while ignoring the process(es) responsible for the missing values.

• Missing at Random (MAR) postulates that the probability of missing is indepen-
dent of the results that should have been attained and instead depends on the collection
of observed responses. In other words, longitudinal data are MAR if ri is conditionally
independent of ymi given yoi . An example of MAR is when a patient’s removal from
a study is mandated by the study’s protocol because their response value exceeds a
predetermined threshold. The observed data cannot be regarded as a random sample
from the target population in this instance because the missing process is controlled
by external factors and is only related to the observed values yoi ([1]). Due to the
fact that the missing data mechanism depends on yoi , the distribution of yoi does not
match the distribution of yi. The only distribution that is the same as the distribution
of the corresponding observations in the target population is the distribution of each
subject’s missing values, ymi , conditioned on her observed values, yoi . Therefore, under
a model for the joint distribution {yoi , ymi }, missing values can be correctly predicted
using the observed data. This characteristic of MAR has a significant impact in that
sample moments are not unbiased estimates of the the same moments in the target
population. Statistical inferences based on these moments without taking MAR into
account, such as scatterplots of sample average longitudinal evolutions, may therefore
be incorrect. As long as the model for the measurement process yi is properly spec-
ified, likelihood-based analyses on the observed data under MAR can still produce
trustworthy inferences even if we ignore the contribution of ri. This is demonstrated
by the fact that the factorization of the likelihood contribution of the full set of data
(yoi , y

m
i , ri) for the i− th subject is as follows:

Li(ϕ) =

∫
p(yi, ri;ϕ) dy

m
i =

=

∫
p(yoi , y

m
i ;ϕy) p(ri|yoi , ymi ;ϕr) dy

m
i

=

∫
p(yoi , y

m
i ;ϕy) p(ri|yoi ;ϕr) dymi

= p(yoi ;ϕy) p(ri|yoi ;ϕr)
= Li(ϕy)× Li(ϕr)

Thus, if ϕy and ϕr are disjoint in the sense that the parameter space of the full vector
ϕ = (ϕTy , ϕ

T
r )

T equals to the product of the parameter spaces of ϕy and ϕr, respectively,
inference for ϕy can be based on the marginal observed data density p(yoi ;ϕy) ignoring
the likelihood of the missing process. This property of likelihood-based inferences
under MAR is known as ignorability.

• Missing Not at Random (MNAR) posits that a fraction of the responses we would
have observed affects how likely it is that longitudinal responses would be missing. In
particular, the distribution of ri depends on at least some elements of the subvector
ymi , even if we condition on yoi , i.e.,

p(ri|ymi ;ϕr) or p(ri|yoi , ymi ;ϕr).

As a consequence, the missing data are non-ignorable, meaning that the observed data
alone are not sufficient to infer about the population ([12]). In such cases, we have
to conclude that the response and non-response represent not only different but also
unique parts of the true data ([13]). Similarly to MAR, MNAR missingness is often
called non-random missingness, and in the case of dropout non-random dropout. An
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example of MNAR longitudinal data arises in pain studies in which patients may ask
for rescue medication when their pain levels exceed the threshold they can tolerate. In
this situation, we do not have a record of their outcome because of dropout. As was also
the case in MAR, under MNAR the observed data do not constitute a random sample
from the target population. However, differently from MAR mechanism, the predictive
distribution of ymi conditional on yoi is not the same as in the target population,
but depends on both the observed yoi and on the missing probability distribution
mechanism conditional on the observed responses p(ri|yi). For this, the model assumed
for the missing process is crucial and must be included in the analysis. Missing data
assumptions represent our beliefs about how much the observed data may also apply to
the data that are absent. We distinguish between models that rely on information that
has not been captured in the observed data (i.e., Missing Not At Random; [12]) and
those for which the observed data alone would be sufficient for obtaining valid inference
(i.e., Missing Completely At Random or Missing At Random). Unfortunately, based
only on the observable data, we can never clearly discriminate between MAR and
MNAR mechanisms ([13]). Indeed we should be aware that, as explained in [14],
”Every missing not at random model has a missing at random counterpart with equal
fit”.

In this section we focused on the special issue of missingness in longitudinal data, e.g.
on a biomarker resulting from the repeated measurements on the same individuals: the
longitudinal profile may present a different amount of missing data due to different causes
and the modeling approach used in this context is crucial to get appropriate inferences about
it. In particular, we distinguished among two types of missingness in the longitudinal data,
that is, monotone and non-monotone missingness.
Mixed-effects models represent a suitable strategy to analyse data affected by missingness,
in particular when the nature of the missing data generating process can be considered to
be MAR ([15],[16],[17]).
In chapter 6 we will show the results of a simulation work in the context of longitudinal
and time-event data, affected by different missing mechanisms; we will inspect this issue in
a survival analysis context, indeed, where Extended Cox Models (ECM) and Joint Models
(JM, [8]) will be compared in terms of robustness in estimating an Hazard Ratio (HR),
that is a measure of the association between the longitudinal trajectory of a biomarker and
the risk of experiencing a binary event (e.g. death) throughout time. This is why we will
focus the attention on mixed-effects model, which is a widely used method in the context of
longitudinal data analysis and, as it will be seen, constitutes a building block for JMs.
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2.3 A two-stage approach estimation for longitudinal
responses

As previously recognized, the structure of a longitudinal dataset prevents it from being
analysed using traditional (linear) models. A parametric linear model for longitudinal data
(and also for clustered or hierarchical data), the linear mixed model (LMM), which will be
explained below, quantifies the associations between a continuous dependent variable and,
possibly, several covariates. In this model, two kind of effects are estimated to establish the
relationship between independent (continuous or categorical) and dependent covariate:

• fixed effects, that describe the mean structure model between covariates and response
variable in the whole sample;

• random effects, that are related to random cluster-specific (e.g. subjects, hospitals,
etc.) variations from the overall mean structure.

It is important to note that the second set of effects likewise controls the correlation between
repeated measurements on the same subject. The model gets its name from having both
fixed and random effects.

The two-stage approach proposed by Verbeke and Molenberghs ([18]) will be employed
to characterize the LMM. In the first stage, a vector of a few estimated subject-specific
regression coefficients will be used to try to explain the longitudinal response of interest for
each subject. In the second stage, another regression model will link the estimates from the
first stage to known covariates like treatment, disease classification, patient demographics,
and baseline characteristics. The generic formulation of the linear mixed model will be
provided by combining the two stages into a single statistical model.

We assume to follow N individuals, each of whom is measured at ni different time points
(i = 1, . . . , N), albeit ni does not always equal nj for i ̸= j, with i, j = 1, . . . , N . A
dependent random variable denoted by the letter Y, which is assumed to be continuous
(different distributions are allowed in the context of Generalized LMMs - GLMMs), is used
to model the response of interest. The fixed effects are modelled by random vectors with
both continuous and categorical components. The random effects, denoted by the matrix
Z, are defined as those factors that, in addition to a fixed effect, can have an effect that
differs from subject to subject.

2.3.1 Stage I

For i = 1 . . . , N and j = 1, . . . , ni where N is the number of subjects and ni is the number
of repeated measurements for the i− th subject, let Yij be the random variable denoting the
outcome of interest for the i− th subject measured at time j. If so, the vector of continuous
responses for the i − th subject is Yi = (Y i, 1, . . . , Y i, ni). We begin by assuming that Yi
complies with the linear regression model.

Yi = Ziγi + ϵi (2.2)

where Zi is a (ni × q) matrix whose columns represent the values of i − th subject’s q
covariates across time. Equation 2.2 in this case models how the response changes over time
for the i− th subject.

In light of this, γi is the vector of q subject-specific regression coefficients and the random
vector of residuals is assumed to follow a multidimensional Gaussian distribution centered
in zero with covariance matrix Σi of dimension ni, that is ϵi ∼ Nni

(0,Σi). It should be
noted that multilevel or clustered data could also be used using eq. 2.2. In such cases, the
matrix Z contains some variables required to specifically identify repeated measurements
within the same cluster (for example, patients in the same ward).

2.3.2 Stage II

The purpose of the second step is to provide an explanation for the between-subjects vari-
ability by modeling the relationship between the γi = (γ1, . . . , γq) coefficients produced in
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the first stage and a collection of known covariates contained in a (q × p) matrix indicated
with Ki. The model is:

γi = Kiβ + bi (2.3)

where bi ∼ Nq(0, D) is a q-dimensional residual vector and D its covariance matrix, β is
a p-dimensional vector of unknown regression parameters. The estimate of the regression
parameters γi which can be obtained by sequentially fitting the two models in the two
stages, serves as the fundamental component of the model. The examination (second stage)
of the summary statistics generated in the first stage, which this sequential fitting can be
understood as, entails at least two issues ([18]):

• the estimated vector of effects γ̂i summarizes the information on the longitudinal re-
sponse Yi for the subject i, obtained in the first stage, but involves a loss of information;

• in the second stage, the replacement of γi with their estimates γ̂i is another source of
variability.

In order to overcome these two issues, the Linear Mixed Model -which will be discussed
in the following section- combines the two stages into a single model and implements a
simultaneous parameter estimation procedure. Despite these two problems, the two-stage
estimation is computationally cheap and could be applied in the real world when the Linear
Mixed Model has convergence problems.

2.4 The Linear Mixed Model (LMM)

In order to obtain a single model, we can replace γi of the second stage in the first stage,
yielding:

Yi = Ziγi + ϵi

= Zi(Kiβ + bi) + ϵi

= ZiKiβ + Zibi + ϵi

= Xiβ + Zibi + ϵi

in which the existence of both random subject-specific effects bi and fixed effects gives
rise to the term ”linear mixed model”. As a result, the longitudinal outcome for each subject
can be viewed as a linear regression model with subject-specific deviations from the mean
population and population-specific effects (i.e., effects that are common to the entire group
of patients). In conclusion, LMM is defined as follows using Laird and Ware’s approach
([7]).

Definition 2.4.1. A linear mixed-effects model is any model which satisfies the following
relationship for each subject i = 1, . . . , N


Yi = Xiβ + Zibi + ϵi
bi ∼ Nq(0, D)
ϵi ∼ Nni

(0,Σi)
b1, . . . , bq; ϵ1, . . . , ϵni independent

where, Yi is the ni-dimensional response vector for subject i, Xi and Zi are (ni × p) and
(ni × q) dimensional matrices, β is a p-dimensional vector, bi is a q-dimensional vector and
ϵi is a ni-dimensional vector of residual components. Finally, D is a (q × q) covariance
matrix while the matrix Σi is a (ni × ni) covariance matrix. For the sake of simplicity, we
can write the following, for each i = 1, . . . , N :

• Yi is the response vector for subject i,

• Xi and Zi are matrices whose elements are the known values of covariates for subject
i,
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• β contains the fixed effects,

• bi contains the random effects,

• D models the associations among the random factors in Z,

• Σi is a subject-specific covariance matrix whose dimension depends on the number of
repeated visits done by the i− th subject (ni) and represents the relationship among
the residuals for the i− th subject.

The LMM enables the researchers to establish a-priori a structure for the two matrices or
to estimate all entries of the covariance matrices for the random effects D and the residuals
Σi.

The most typical method is to start with the D matrix and put it up as a matrix with
only variance components:

D =


σ2
Z1

0 · · · 0
0 σ2

Z2
· · · 0

0 · · ·
. . . 0

0 · · · 0 σ2
Zq


where σ2

Zq
is the p− th random effect’s variance. The researcher in this instance posits the

independence of the random effects. Another popular option, even if more computationally
expensive, is provided by the use of an unstructured covariance matrix, where all of the half
matrix’s elements are estimated from the data:

D =


σ2
Z1

σ2
1,2 · · · σ2

1,q

σ2
1,2 σ2

Z2
σ2
2,q

...
. . .

...
σ2
1,q · · · · · · σ2

Zq


where σ2

a,b is the covariance between the a− th and the b− th random effect, with a ̸= b and
a, b = 1, . . . , q. The most widely used statistical softwares include and allow for the definition
of a number of other matrices. Because the random effects are formally employed to explain
the random variation from one subject to another, or from one cluster to another in the
case of a multilevel model, the model given in definition 2.4.1 is known as a subject-specific
model. A marginal model can be derived from def. 2.4.1 to examine the relationship between
the fixed components and the result. The random components of the equation are not used
directly. By modeling a mean trajectory across the whole sample while accounting for the
subject variability, it is feasible to determine the marginal influence of a covariate, such as
time, on the result. The following definition provides a general outline of a population-
averaged model.

Definition 2.4.2. A population-averaged model is any model which satisfies the following
conditions for each subject i = 1, . . . , N :{

Yi = Xiβ + ϵ∗i
ϵ∗i ∼ N (0, V ∗

i )

where, Xi is the design matrix with dimensions (ni × p), β is the vector of the fixed ef-
fects, ϵi represents a vector of marginal residuals errors and V ∗

i is a ni-dimensional matrix.
Furthermore V ∗

i = ZiDZ
T
i +Σi where Σi, Zi and D are as in def. 2.4.1.

In synthesis, def. 2.4.2 becomes for each subject:

Yi ∼ Nni
(Xiβ, Vi),

with
Vi = ZiDZ

T
i +Σi
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and in standard vector notation including all subjects it becomes:

Y = Xβ + ϵ.

Mixed models have the advantage of allowing for the estimation of parameters that
define how the mean response varies in the population of interest as well as the prediction
of how individual response trajectories vary over time. The combined modeling framework
for longitudinal and time-to-event data ([8]), which will be covered in chapter 4, uses these
models primarily for this reason. Importantly, mixed models can account for any level of
data imbalance, thus we are not required to collect the same number of measurements for
each subject or to collect them at the same times.
Furthermore, the correlation between each subject’s repeated measurements is effectively
explained by the random effects. Due to the fact that they share the same random effect
bi, the longitudinal responses of the i − th subject will be marginally correlated. Another
way to state it is to say that we assume that the longitudinal responses of a subject are
independent conditionally on her random effect, i.e.,

p(yi|bi; θ) =
ni∏
j=1

p(yij |bi; θ) (2.4)

2.4.1 Estimation of LMM

The criteria of maximum likelihood (ML) applied on the marginal density derived in def.
2.4.2 for the i − th subject provides the basis for the estimation of the parameters for the
linear mixed model:

Yi ∼ Nni(Xiβ, Vi)

Vi = Vi(α) = ZiDZ
T
i +Σi

where:

• α is the column vector of all parameters of the covariance matrix (variance components)

found in Vi. In α there are at most q(q+1)
2 different elements of D and in Σi; the actual

number of different elements depends on the choice of the shape of the variance-
covariance matrices as explained in section 2.4.

• θ = (βT , αT )T is the column vector of all parameters in the marginal model for Yi.

The log-likelihood function, accordingly with the maximum likelihood (ML) approach is:

lML(θ, y) =

N∑
i=1

log p(yi; θ) =

N∑
i=1

log p(yi;β, α)

=

N∑
i=1

∫
p(yi|bi;β, α) p(bi; θb) dbi (2.5)

with θb = vech(D), and

p(yi;β, α) = (2π)−
ni
2 |Vi(α)|−

1
2 exp

(
−1

2
(yi −Xiβ)

TV −1
i (α)(yi −Xiβ)

)
with |V | denoting the determinant of the square matrix V .
Assuming α known, the ML estimate for β is given by

β̂ML(α) =

(
N∑
i=1

XT
i V

−1
i Xi

)−1 N∑
i=1

XT
i V

−1
i yi

with Vi = Vi(α). In this instance, even though Vi is unknown but an estimate of its
components α is provided, we can estimate by substituting α with α̂ and obtaining V̂i = V̂i(α)
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It is possible to estimate βML when Vi it is unknown by maximizing lML(θ, y) with respect
to α and replacing with its ML estimate. The drawback is that it estimates β beforehand
from the data rather than β and α concurrently. Because it ignores the loss of degrees
of freedom brought on by estimating the fixed-effect parameters in β, the ML estimate
of α is thus biased downward. To address this problem the REML -Residuals/Restricted
Maximum Likelihood- has been developed ([19]). This approach is a particular form of ML
estimation that does not base estimates on a ML fit of all the information, but instead
uses a likelihood function calculated from a transformed set of data, so there is no effect
related to the nuisance parameters. Then, in the case of variance component estimation as
this, the likelihood function is generated from the probability distribution of set of contrasts
calculated from the data. In a nutshell, the goal of the REML estimation is to determine an
estimate for α not relying on β and viceversa. Additionally, REML can generate unbiased
estimates of the parameters shaping variance and covariance matrix.
In other words, the idea in REML estimation of Vi is to eliminate β from the likelihood so
that it is defined only in terms of Vi. By maximizing the slightly modified log-likelihood
function, REML estimation is carried out:

lREML = −1

2
log

∣∣∣∣∣
N∑
i=1

XT
i V

−1
i Xi

∣∣∣∣∣+ lML(β̂(α), α; y)

with respect to all parameters (α and β) simultaneously .

2.5 Mixed Models on real data: two examples

In this section some examples of analysis on real data I did during the last three years of
doctoral work where Mixed-effects models were employed to answer some clinical questions
are briefly detailed. They will be shown two instances of analysis of real data collected
for the CENTER-TBI project. CENTER-TBI is a large European project that aims to
improve the care for patients with Traumatic Brain Injury (TBI). It forms part of the larger
global initiative InTBIR: International Initiative for Traumatic Brain Injury Research with
projects currently ongoing in Europe, the US and Canada.

To be consistent with the examples, we recall here that we can distinguish among two
different settings of applications of these models. Indeed, mixed-effects models, are suitable
to be deployed in situations where:

• the data are in longitudinal form, as a result of repeated measurements on the same
subjects of some biomarkers of interest. In this framework, for example, mixed models
may be used to investigate averaged longitudinal trajectories of biomarkers as the result
of some fixed covariates and some latent traits, accounting for the serial correlation
among repeated measurements: therefore the random effects are subject-specific. This
was the context of the first work presented.

• the data have a hierarchical structure: that is a situation in which observational data of
biomarkers, in longitudinal or aggregate form, refer to different subjects from explicit
clusters. To clarify, one can think of longitudinal data, resulting from the observation
of one or multiple biomarkers over time on a number of patients who are in different
centers or hospitals. In this context, one might want to take into account the reasonable
correlation that exists due to the repeated measurements on the same subjects and
a residual correlation between data from the same cluster, induced, for example, by
center-specific practices or different starting conditions among the places where these
centers are located (social, cultural..). For this reason, such models are sometimes
appended by the name of multilevel models or hierarchical models ([20]). This was
the context of the second work presented.
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2.5.1 Management of arterial partial pressure of carbon dioxide in
the first week after traumatic brain injury: results from the
CENTER-TBI study

The purpose of the study was to describe the management of arterial partial pressure of
carbon dioxide (PaCO2) in severe traumatic brain-injured (TBI) patients and the optimal
target of PaCO2 in patients with high intracranial pressure (ICP). The primary aim was
to describe current practice in PaCO2 management during the first week of intensive care
unit (ICU) after TBI, focusing on the lowest PaCO2 values. We also assessed PaCO2 man-
agement in patients with and without ICP monitoring and with and without intracranial
hypertension. We evaluated the effect of profound hyperventilation (defined as PaCO2 < 30
mmHg) on long-term outcome. We used the median odds ratio (MOR, ([21])) to estimate
the between-centers heterogeneity in targeting a PaCO2 of 35–45 mmHg. MOR was ob-
tained from a longitudinal logistic mixed effects models on daily lowest PaCO2 adjusted for
the IMPACT core covariates ([22]), ICP monitoring, and daily evidence of elevated ICP (at
least one ICP>20 mmHg during the day); and with a hierarchical random intercept effect’s
structure (i.e., patients within centers), to estimate the between-centers heterogeneity in
targeting a PaCO2 of 35–45 mmHg. We remind the reader to the Appendix A to get a
complete vision of the work ([23]).

2.5.2 High arterial oxygen levels and supplemental oxygen admin-
istration in traumatic brain injury: insights from CENTER-
TBI and OzENTER-TBI

The aim of the study was to evaluate whether the exposure to high blood oxygen levels
and high oxygen supplementation was independently associated with outcomes in TBI pa-
tients which underwent mechanical ventilation and were admitted to the ICU. This was a
secondary analysis of two multicenter, prospective, observational, cohort studies performed
in Europe and Australia. In TBI patients admitted to ICU, we describe the arterial partial
pressure of oxygen (PaO2) and the oxygen inspired fraction (FiO2). We explored the as-
sociation between high PaO2 and FiO2 levels within the first week with clinical outcomes.
Furthermore, in the CENTER-TBI cohort, we investigate whether PaO2 and FiO2 levels
may have differential relationships with outcome in the presence of varying levels of brain in-
jury severity (as quantified by levels of glial fbrillary acidic protein (GFAP) in blood samples
obtained within 24 hours of injury. The role of PaO2,max, FiO2,max, FiO2,max, FiO2,mean

or ∆PaO2,mean, ∆FiO2,mean (one at a time) on 6-month mortality and unfavorable neuro-
logical outcome was evaluated through mixed-effect logistic regression models, adjusting for
the IMPACT core covariates (age, Glasgow Coma Scale (GCS) motor score and pupillary
reactivity) and injury severity score (ISS), with the center as a random effect. We remind
the reader to the Appendix A to get a complete vision of the work ([24]).
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Chapter 3

Survival Analysis

Many different types of outcomes are collected in follow-up studies, including the multiple
longitudinal responses we saw in the previous chapter and the time-to-event(s) of particular
interest (such as death, relapse, hospitalization, etc.). The duration between a clinically
significant starting point, known as the baseline, and the occurrence of an event of interest
can be studied using techniques and models which undergo the umbrella of so called survival
analysis. Within this framework, the outcome is typically described as failure time, survival
time, or event time.

3.1 Characteristics of event time data

The first factor that needs to be considered in the statistical analysis of failure times, which
are typically represented with the letter T (continuous or discrete), is the form of their
distribution. Event times must be positive and their distributional patterns are frequently
skewed. Therefore, statistical techniques that rely on normality are not immediately appli-
cable and may yield erroneous findings when used to survival data. Using an appropriate
transformation of the event times, such as the logarithm or square root, this is frequently a
simple problem to overcome.

The most crucial feature that sets the study of survival times apart from other statistical
fields is censoring, that is the event times of interest are not fully observed on all individuals,
which is the distinguishing characteristic of censored data. There are two implications:
first, as result of their assumption that we have complete information, common statistical
methods like the sample average and standard deviation, the t-test, and linear regression
provide biased estimates of the distribution of event times and associated variables. Second,
inferences, as opposed to complete data, may be more susceptible to an incorrect definition
of the survival time distribution.

The censoring might be of different nature ([25]):

• Administrative censoring: The censoring that takes place after the study observa-
tion period ends is known as administrative censoring. All participants in the study
complete it, and at its conclusion, it is known whether they experienced either failure
or survival.

• Lost-to-follow-up: This type of censoring occurs when an event may have occurred
after the last time a person was under observation, but the specific timing of the
event is unknown. In contrast to administrative censoring, which coincides with the
end of the analytical period and can be placed precisely in time, lost-to-follow-up is a
non-event.

Both these types of censoring are known as right-censoring.
A second classification of censoring mechanisms concerns whether the probability of a

subject being censored depends on the failure process. More precisely, we can distinguish
between:
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• Informative Censoring: when a participant leaves the study for a reason that is di-
rectly connected to the expected failure time, such as when her prognosis deteriorates.
A censoring mechanism is informative if, at any time t, the failure rates that apply to
participants who are still in the study differ from those that apply to individuals who
have dropped out of the study, to put it more technically. Informative censoring re-
sembles the MNAR missing data framework in longitudinal studies that was discussed
in chapter 2 in certain ways.

• Non-informative censoring: when a participant leaves the research for causes unre-
lated to her prognosis, although it may be influenced by variables. Using longitudinal
research as an example, non-informative censoring is comparable to a MCAR missing
data context, introduced in chapter 2.

Different inferential techniques should be used depending on the type of censoring mech-
anism. Because they are the most common, methods that can handle right censored data
have received the greatest attention in the literature when it comes to the first classifica-
tion. When it comes to the second classification and the informative censoring mechanism,
unfortunately, there aren’t many options available. The issue is that there isn’t enough in-
formation in the observed data to model the censoring process, which is a problem that also
affects longitudinal studies’ MNAR missing data mechanisms. Therefore, the chances for a
useful analysis in these situations are fairly slim, unless external information is given. The
majority of the literature has concentrated on non-informatively censored data approaches
as a result of these issues.

3.2 Basic theory of survival analysis

3.2.1 Time-to-event

Let T ∗ denote the random variable of failure times under study. The function that is
primarily used to describe the distribution of T ∗ is the survival function.

Definition 3.2.1. Let T be a continuous random variable defined for t ∈ [0,+∞) with
cumulative distribution function F (·) and probability function f(·). Its survival function is
defined as:

S(t) = 1− F (t) = P[T > t] =

∫ +∞

t

f(s) ds

with S(t = 0) = 1 always, the survival function must be non-increasing as t increases.
The hazard function is another important function in a survival analysis. This is defined as
the instantaneous risk for the occurrence of an event in the time period [t, t+ dt] assuming
survival up to t.

Definition 3.2.2. Let T be a continuous r.v. defined for t ∈ [0,+∞) with cumulative
distribution function F (·) and probability function f(·). The hazard function is defined as:

h(t) = lim
dt→0

P[t ≤ T < t+ dt|T ≥ t]

dt
, t > 0

It turns out that that the two functions are linked through the following differential
equations, making them mathematically equivalent:

h(t) =
f(t)

S(t)
= −dS(t)/dt

S(t)
= − d

dt
[log S(t)]

Therefore we can write:

S(t) = exp

(
−
∫ t

0

h(s) ds

)
= exp (−H(t))

where H(·)is known as the cumulative risk (or cumulative hazard) function that describes
the accumulated risk up until time t. Function H(t) can also be interpreted as the expected
number of events to be observed by time t.
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3.2.2 Censoring

In the preceding section, the generic formulation for the survival, hazard, and cumulative
hazard functions was given in relation to a random variable T that models the failure times.
The notion of censoring, which is the primary feature that sets survival analysis apart, must
be taken into account: indeed, follow-up studies frequently have censored data, that is,
subjects who are lost during the period in which the study is conducted. This condition
may have several reasons and must be considered when formulating a model to estimate the
time to event. Hence, if in section 3.1 this topic was introduced from a descriptive point of
view, below it will be discussed from a mathematical point of view.

The main effects of censoring include the inability to apply common techniques like
sample average, t-test, and linear regression, as well as the possibility that inferences could
be susceptible to incorrect distribution of event timings.
When censoring occurs, the outcome can be thought of as comprising two dimensions: an
event indicator and a time at risk. With a little variation from the previous section, for each
subject i = 1, . . . , N let T ∗

i (and not Ti) denote the random variable of the failure times
under study and let Ci be a non-negative variable which models the censoring times, then
only the random variable Ti = min(T ∗

i , Ci) is observed due to censoring.
We also get to see the event indicator δi = I(T ∗

i ≤ Ci) in addition to Ti: note that, under
non-informative censoring, Ti and Ci are independent for each i, as well as T1, · · · , Tn being
independent and identically distributed (i.i.d.), and C1, . . . , Cn being assumed to be i.i.d..
In general, the goal of a survival analysis is to estimate the features of the distribution of T
using just the data Ti and δi for each i = 1, . . . , N . There are two methods for estimating
the survival function:

• by developing an empirical estimate of the survival function, i.e. a non-parametric
estimation;

• by specifying a parametric model for h(t) on a particular density function f(t).

If no censoring occurs, an empirical estimator of the survival function is:

Ŝ(t) =

∑N
i=1 I(Ti > t)

N
=

# of individuals with T > t

total sample size

Under the assumption of i.i.d. sample, it holds:

Ŝ(t) ∼ Binomial(n, S(t))

and for large sample sizes, by the central limit theorem:

Ŝ(t) ∼ N
(
S(t),

S(t)(1− S(t))

N

)
Otherwise, Ŝ(t) is not a reliable indicator of the real S(t) in the presence of censored ob-
servations, necessitating the adoption of additional non-parametric approaches, the most
common of which is discussed in sec. 3.3.

3.3 Survival times estimations

3.3.1 Non-parametric estimation

The product limit estimator, generally regarded as the most well-known estimator of S(t)
when censoring occurs, was developed by Kaplan and Meier (KM) ([26]). This estimator
does not make any assumptions about the failure times’ underlying distribution because
it is non-parametric. This estimator is based on the observed data and the cumulative
distribution function F (·) calculation:

F̂ (t) =
# of individuals who experienced the event up t

total sample size
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This function, that assumes the name of empirical distribution function is a useful and
simply way to summarize and display survival data.
Its complementary survival function Ŝ(t) also called empirical survivor function is:

Ŝ(t) = 1− F̂ (t)

The main issue with using these functions is related to the existence of censoring that is not
taken into account. The KM estimator instead can take censoring into consideration based
on conditional probability. Suppose:

• t0 ≤ t1 ≤ · · · ≤ tj ≤ · · · ≤ tk ≤ t < tk+1 are different failure times in a sample size of
N individuals and tk+1 = +∞;

• dj is the number of subjects who experience the event at time tj , j = 0, . . . , k;

• mj is the number of censored subjects in the interval [tj , tj+1);

• rj = (dj +mj) + · · ·+ (dk +mk) is the number of subject at risk at a time just prior
to tj (risk set).

The probability of failure at tj given that you are at risk before tj is:

P[T ∗ = tj |T ∗ > tj−1] = F (tj)− F (t−j ) =
dj
rj

and the Kaplan-Meier estimator of the survival probability beyond t is given by:

ŜKM(tk) = P[T
∗ > tk]

= P[T ∗ > tk ∩ T ∗ > tk−1 ∩ · · · ∩ T ∗ > t1 ∩ T ∗ > t0]

= P[T ∗ > t1]

k∏
j=2

P[T ∗ > tj |T ∗ > tj−1]

=

k∏
j=1

{1− P[T ∗ = tj |T ∗ > tj−1]}

The KM estimator can be written as:

ŜKM(t) =
∏
tj<t

(1− λj)

where λj =
dj

rj
.

It has been proven that the KM estimator, also in presence of censoring, is consistent
and asymptotically normal ([27]). Moreover, it has been shown that the KM estimator is
also a non-parametric maximum likelihood estimator ([28]). The plot of the KM estimate
of the survival function is a step-function in which the estimated survival probabilities are
constant between adjacent failure times and decreasing at each failure time.

3.3.2 Parametric estimation

The estimation of the survival experience can also be attained by assuming a parametric
form for the distribution of survival times T ∗.
We can use distributions such that for Y ∈ R, by taking into consideration T ∗ = eY , so that
Y = log T ∗ represents the log failure time.
The exponential and the Weibull distributions are largely used in applications: for this
reason we limited the outline about the theory of parametric estimation of survival times to
these types of probability distributions, but others are available.
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The exponential distribution

The Exponential distribution is used when the hazard function h(t) is constant. The in-
stantaneous failure rate is independent of t, so that the conditional chance of failure in a
time interval of specified length is the same regardless of how long the individual has been
on study; this is referred to as the memoryless property of the exponential distribution. It
holds:

h(t) = λ

f(t) = he−λt

S(t) =

∫ t

0

f(s)ds = e−λt

H(t) =

∫ t

0

h(s)ds = λt

The Weibull distribution

Because it allows a power dependence of the hazard on time, the Weibull, a two-parameter
(shape and scale) distribution, is an important generalization of the exponential distribution.
The hazard function is given by:

h(t) = ϕλtλ−1; ϕ, λ > 0

therefore, we have that:

f(t) = ϕλtλ−1e−ϕtλ

S(t) =

∫ t

0

f(s)ds = e−ϕtλ

H(t) =

∫ t

0

h(s)ds = ϕλtλ

3.3.3 Likelihood function for censored data

The maximum likelihood technique is frequently used for parameter estimation when the
survival function S(·) is believed to have a particular parametric form. Let T ∗ be a con-
tinuous random variable on [0,+∞) with cumulative distribution function F (·). Assume
that F (·) depends on a parameter θ belonging to some sample space. Let C be a censoring
random variable with cumulative distribution function G(·). Furthermore, for i = 1, . . . , N ,
assume:

• T ∗
1 , ..., T

∗
N independent copies of T ∗, so that F (t) = P[T ∗

i ≤ t]

• C1, . . . , CN independent copies of C

• Ti = min(T ∗
i , Ci)

• I(T ∗
i ≤ Ci)

Definition 3.3.1. A censoring mechanism is said to be non-informative or random if

P[T ∗
i > t|Ci = t] = P[T ∗

i > t] ∀t > 0, i = 1, . . . , N

Now, consider a patient i with complete observation at time ti:

{Ti = ti, δi = 1} = {T ∗
i = ti, Ci > ti}
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His contribution to the likelihood is given by:

lim
dt→0

P[ti ≤ T ∗ ≤ ti + dt, Ci > T ]

dt

= lim
dt→0

P[ti ≤ T ∗ ≤ ti + dt]P[Ci > T ]

dt

=f(ti)(1−Gi(ti)).

Similarly, if the patient i is censored at ti , his contribution to the likelihood function is:

g(ti)(1− Fi(ti))

Therefore, the contribution of the patient i to the likelihood is given by:

Li(θ) = [f(ti)(1−Gi(ti))]
δi [g(ti)(1− Fi(ti))]

1−δi

The overall likelihood results to be:

L(θ) =

N∏
i=1

Li(θ)

=

N∏
i=1

f(ti)
δi(1−Gi(ti))

δig(ti)
1−δi(1− Fi(ti))

1−δi

=

N∏
i=1

f(ti)
δi(1− Fi(ti))

1−δi × k

=

N∏
i=1

f(ti)
δi(Si(ti))

1−δi × k

where k is a multiplicative constant that can be ignored because depends on G which does
not depend on the parameter θ of interest. Using the relation between S(·) and h(·) (see
sec. 3.2) on the log-scale we have that the log-likelihood for the censored data is given by:

logL(θ) =

N∑
i=1

(
δi · log hi(Ti; θi)−

∫ Ti

0

hi(s; θ)ds

)
.

All subjects contribute to the log-likelihood through the cumulative hazard function evalu-
ated at the corresponding observed event time ti. The subjects who experienced the event
additionally contribute an amount equal to the log hazard function evaluated at ti. Once
the log-likelihood has been formulated, iterative optimization procedures (e.g. Newton-

Raphson algorithm) can be utilized to give the maximum likelihood estimates θ̂. Inference
then proceeds under the classical asymptotic maximum likelihood theory paradigm.

3.4 Failure Times Models

For modeling a population’s survival experience, we have seen a variety of survival distri-
butions. However, determining if and how failure time may depend on various explanatory
variables is typically of interest. As a result, it becomes important for generalizing models to
consider patients’ information. We want to model the failure time T > 0 taking into account
a set of p covariates X = (Xi,1, . . . , Xi,p) are available for each patient i at baseline (t = 0)
(qualitative and/or quantitative variables, such as information on treatment, biomarkers,
age, and so on). The primary goal is to assess how certain factors affect T , but we also
include covariates to take individual variation into account.
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3.4.1 Parametric regression models

It is possible to generalize the exponential distribution to create a regression model where
the failure rate depends on a collection of covariates X. The hazard function at time t for
an individual can be expressed as follows if the failure rate is considered to be constant over
time and dependent on the covariates X.

h(t|X) = h0(X)

The h(·) function may be modelled through a linear combination β
′
X:

h(t|X) = h0 · c(β
′
X)

where the vector β is the set of regression parameters that quantifies the effect of each
covariate on the hazard, h0 here is a constant baseline hazard and c is a specified functional
form. There are different specific forms for c, and the most used is the form c(s) = exp(s)
for which the hazard function assumes the form:

h(t|X) = h0 · exp(β
′
X)

and the conditional density function of T given X = x becomes:

f(t|X) = h0 · exp(β
′
X) · exp[−h0 · exp(β

′
X) · t]

Analogously, hypothesizing a Weibull distribution for the hazard function, we have that the
conditional hazard given x:

h(t|X) = ϕλtλ−1 · exp(β
′
X)

and the conditional density is:

f(t|X) = ϕλtλ−1 · exp(β
′
X) · exp[ϕλ · exp(β

′
X) · tλ]

Two distinct generalizations are suggested by the forms of the previous regression models.
First, Due to the variables’ addicting influence on Y = log(T ), both of these models are
log-linear, and we can generate a more diverse class of log-linear models known as the
Accelerated Failure Time Models (AFT). The AFT models, which are commonly employed
when it is assumed that the effect of the variables is to accelerate or decelerate the life
course of the disease, is not further addressed in this thesis. Second, the hazard function is
multiplicatively affected by the covariates, and this relationship suggests the Relative Risk
Model, often known as the Cox Model (see sec. 3.5), which is a more general model that
will be discussed in the next sections.

3.5 The Cox Model

Let hi(t|X) be the hazard function at time t for a subject i whose baseline covariates X
were collected. The Relative Risk model ([29]) posits that covariates have a multiplicative
effect on the hazard for an event and it is described as:

hi(t) = lim
dt→0

P[t ≤ T ∗ < t+ dt|T ∗ ≥ t,W ]

dt
(3.1)

= h0(t) · exp(γ
′
Wi)

where h0(t) is an arbitrary unspecified baseline hazard function and corresponds to the
hazard function for a subject for whom γ

′
W = 0

The conditional density function of T given X becomes:

f(t|W ) = h0(t) · exp(γ
′
W ) · exp

(
−exp(γ

′
W ) ·

∫ t

0

h0(s) ds

)
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The estimation of all parameters in the model, that are the regression coefficients γ and
the parameters in the specification of the h0(t), proceeds by maximizing the corresponding
log-likelihood function. However, Cox ([29]) showed that the estimation of the regression
coefficients γ can be based on the Partial Likelihood:

L(γ) =

n∏
i=1

[
exp(γ

′
Wi)∑

j∈Ri
exp(γ′Wi)

]δi
where Ri is the risk set at the time just prior to t; or equivalently expressed as Partial
Log-Likelihood:

pl(γ) =

N∑
i=1

δi ·

γ′
Wi − log

 ∑
Tj≥Ti

exp(γ
′
Wj)


that does not require specification of h0(·), that is, without having to specify the distribution
of T ∗

i . The relative risk model obtained without a specific baseline function is a semi-
parametric model because it does not make any assumption for the distribution of the event
times, but assumes that the covariates have a multiplicative effect on the hazard rate. Indeed
rewriting model (3.1) in the log scale, log(hi(t|Wi)) = log(ho(t))+γ1wi1+γ2wi2+· · ·+γpwip,
we observe that the regression coefficient γj , for predictor wj , denotes the change in the log
hazard at any fixed time point t if wj is increased by one unit while all other predictors are
held constant. Analogously, exp(γj) denotes the ratio of hazards (HR) for one unit change
in wij at any time t. In general, the HR for a subject i with covariate vector Wi compared
to a subject k with covariate vector Wk is:

hi(t|wi)

hk(t|wk)
= exp{γ

′
(Wi −Wk)}

3.6 Survival analysis with time-dependent covariates

As we have seen, baseline covariates are those that are measured at baseline and which their
values remain constant throughout the follow-up period. However, in many clinical studies,
the question of whether the covariates (such as biomarkers) change over time are related to
the hazard is of interest. Time-dependent covariates are those factors that can change over
time and can be either endogenous (also known as internal) or exogenous (also known as
external) covariates.

If Yi(t) = {yi(s), 0 ≤ s < t} denotes the covariate history up to t, we have the following:

Definition 3.6.1. A covariate is called exogenous if the future path of the covariate up to
any time t > s is not affected by the occurrence of an event at time point s; i.e.:

P[s ≤ Ti < s+ ds|T ∗
i ≥ s,Yi(s)] = P[s ≤ T ∗

i < s+ ds|T ∗
i ≤ s,Yi(t)] (3.2)

for all s, t such that 0 < s ≤ t, and ds→ 0. An equivalent and more clear definition is

P[Yi(t)|Yi(s), T
∗
i ≥ s] = P[Yi(t)|Yi(s), T

∗
i = s], s ≤ t (3.3)

which outlines the concept that yi(·) is associated with the rate of failures over time, but
its future path up to any time t > s is not affected by the occurrence of failure at time s. In
particular the value of an exogenous covariate at each time t is known infinitesimally before
t, making it a predictable process. Endogenous time-varying covariates, on the other hand,
do not meet 3.2 or, equivalently, 3.3. For external covariates, and under condition 3.2 or
3.3, we can directly define the survival function conditional on the covariate path, using its
relation to the hazard function, i.e.,

Si(t|Yi(t)) = P[T
∗
i > t|Yi(t)] = exp

{
−
∫ t

0

hi(s|Yi(s)) ds

}
(3.4)
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Endogenous covariates, on the other hand, typically arise as time-dependent measurements
taken on the subjects under study. These include biomarkers and other clinical parameters.
The statistical analysis of such covariates is complicated for different reasons. The first cru-
cial feature of endogenous variables is that they frequently depend on the subject’s survival
in order to exist. As a result, when a subject’s death is considered as a failure, the subject’s
path contains explicit information about the failure time. Indeed, in such a case:

Si(t|Yi(t)) = Pr(T ∗
i > t|Yi(t)) = 1

On the other hand, failure of the subject at time s corresponds to the covariate not existing
at time s, which directly implies that the endogeneity criterion has been violated. Another
feature of endogenous covariates is that they are typically measured with error. Instead
of the error caused by the process or equipment that determines the value of this kind of
covariate, this measurement error mainly pertains to the biological fluctuation created by
the patient herself. Therefore, for such factors, it would be more natural to infer that the
reported marker levels are actually a version of the true marker levels that has been tainted
by biological variance. Nevertheless, it should be noted that measurement error is not a
defining characteristic of endogenous covariates because some external variables (such as
air pollution) may also be evaluated inaccurately. Endogenous covariates have one more
significant implication: their entire trajectory up to any given time t is not completely seen.
Hence, the distinction among endogeneous and exogeneous covariates becomes of practical
importance from an inferential point of view, but it pertains more a logical point rather
than a practical one, that is, once the information about longitudinal covariate is available
it is possible to estimate the extent of association, e.g. through an HR, it has with the risk
of an event, regardless of its nature.

3.7 The Extended Cox Model (ECM)

In the relative risk model described in sec. 3.5, we made the assumption that the hazard
depends exclusively on covariates, such as baseline age, sex, and randomized treatment,
whose values remain constant over time. Nevertheless, in many researches, it may also be
interesting to look into whether time-dependent factors are linked to the risk of an event.
Environmental elements, biochemical and clinical markers observed during follow-up, and
modifications to therapy dose are a few examples of these.
To formally introduce the notation of a time-dependent variable, let yi(t) denote the co-
variate vector at time t for subject i, and Yi(t) = {yi(s), 0 ≤ s < t} denotes the covariate
history up to t.
The counting process formulation can be used to extend the Cox model presented in sec.
3.5 to handle time-dependent covariates. Here, the precise mathematical formulation of the
ECM in terms of counting process is omitted for the sake of brevity, but all the details
can be found in [30]. What is important, particularly in view of the next chapters and the
simulation work presented in the last chapter, is to to understand how the counting process
formulation handles time-dependent variables: it is assumed that the longitudinal covariate
changes value at the follow-up visits and stay constant in the period between them. Then
the observed values of each longitudinal value is directly used in the model: therefore the
ECM assumes that this covariate is not affected by random measurement error ([31]). This
notion is fundamental and it has to be kept in mind to understand the differences on how
ECM and Joint model, that will be discussed in the next chapter, treat the longitudinal
covariate. The stepwise extrapolation used by the ECM takes the name of Last Observation
Carried Forward (LOCF), of which a graphical representation is given in fig. 3.1 as example.

Thereby, the model postulates that the hazard for an event, at any time point t, is
associated with the extrapolated value of the covariate at the same time point.
The formulation of the model is as follows:

hi(t|Yi(t), wi) = h0(t) · exp(γ
′

iwi + αyi(t)) (3.5)

25



Figure 3.1: Stepwise extrapolation of the time-dependent covariate in the ECM. Red points

show the observed biomarker value which remains constant between one measurement occa-

sion and the next.

where wi denotes a vector of baseline covariates and yi(t) denotes a time-dependent covariate
(possibly multiple covariates).

The regression coefficient α has the exact same meaning as for the vector γ
′

i for the
covariates wi, as discussed in 3.5 . For example, if there is only one time-dependent covariate
yi(t), at any given time point t, exp(α) signifies the relative increase in the risk of an event
occurring at that time, due to a one-unit increase in yi(t) at that same time point.

As a final note we raise the point that the ECM should not be used when the time-
dependent factors are endogenous. This is due to the Extended Cox model’s assumption
that time-dependent variables are deterministic processes that can be predicted, measured
accurately, and fully specified throughout their whole course. There are few doubts that this
step-function approximation is impractical and unrealistic for several endogenous factors,
such as biomarkers. However, we will not explore this theoretical aspect throughout this
thesis.
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Chapter 4

Joint Models for longitudinal
and time-to-event data

This chapter is devoted to the description of the Joint Model (JM) for longitudinal and time-
to-event data, which is formulated out of a linear mixed-effects and a relative risk models
introduced in the previous chapter. Most of the notation and the flow of the presentation
follows from the book by D.Rizopoulos ([8]). This type of modeling belongs to the family
of shared parameters models.
A Joint Model for longitudinal and time-to-event data allows for the analysis of the associa-
tion structure between a number of measurable biomarkers gathered over several visits and
the amount of time prior to a particular event of interest takes place.
In the survival analysis with time-dependent covariates, seen in chapter 3, the assumption
regarding the longitudinal covariate was that it is observed error-free and that its value
only varies at each observation time point. Instead of using the observed biomarker values
as subject-specific measurements, as if they were the longitudinal response at the observa-
tion times, one of the fundamental components of a JM is to use a linear mixed model to
model the longitudinal trajectory of a biomarker, assuming that the collected observations
of the individual longitudinal profile of the biomarker(s) of interest is actually the result
of a true and unobserved profile plus a random measurement error. Hence this a major
difference among these two (similar) approaches to analyse longitudinal and time-to-event
data. Indeed, the ECM assumes no measurement error on the longitudinal covariates, using
in its formulation the observed (extrapolated) value; on the contrary, the JM assumes that
the longitudinal profile is affected by measurement error and the time-dependent covariate
is instead interpolated from the gathered individual data by using a regression model, in
particular a (generalised) mixed-effects model (see chapter 2). Due to this different assump-
tions, another major point that distinguishes ECM and JM is the fact that the latter allows
to make dynamic predictions, which is not a feature of the ECM, both on the individual
longitudinal trajectories and associated survival experiences, even beyond the follow-up pe-
riod of the study. This topic will be not addressed within this thesis, but theory and details
about it can be found, for example, in [8],[32],[33].

4.1 Joint Model formulation

Let N be the number of subjects and let DN = {Ti, δi,Yi(t); i = 1, . . . , N} denote a sample
from the target population, where Ti = min(T ∗

i , Ci) is the observed event time for the
i− th subject, with T ∗

i being the random variable of the failure times and Ci a non-negative
censoring variable. In addition to observing Ti we also get to see the event indicator δi =
I(T ∗

i ≤ Ci). We focus on the endogenous time-dependent covariate Yi(t) = {yi(s), 0 ≤ s ≤ t}
where Yi(t) is the vector of ni observed repeated measurements yi of a biomarker collected up
time t for the i− th subject. We assume that Yi(t) is univariate, although the generalisation
to the multivariate case is possible in the JM context in the sense that more than one
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longitudinal biomarker can be taken into account. The multivariate aspect of the JM will
not be covered within this thesis but this extension is pretty straightforward and the details
can be found, for example, in [34],[35],[36].

4.1.1 The Survival sub-model

Our goal is to quantify the relationship between the longitudinal marker level and the
likelihood of an event. With this purpose, we introduce the term mi(t), which stands for
the true and unobserved longitudinal outcome value at time t. Indeed, mi(t) differs from
yi(t), the latter being the longitudinal outcome’s measurement error-contaminated value at
time t. In order to measure the strength of the relationship between mi(t) and the risk for
an event, a relative risk model is used:

hi(t|Mi(t), wi) = lim
dt→0

P[t ≤ T ∗
i ≤ t+ dt|T ∗

i ,Mi(t), wi]

dt
(4.1)

= h0(t) · exp{γ
′
wi + αmi(t)}

where h0(·) denotes the baseline risk function, Mi(t) = {mi(s), 0 ≤ s < t} denotes the
whole true unobserved longitudinal process up to time point t, and wi is a vector of baseline
covariates with a corresponding vector of regression coefficients γ. The α parameter quan-
tifies the effect of the underlying longitudinal response to the risk for an event and exp(α)
should be interpreted as relative increase in the risk for an event at time t resulting from
a one unit increase in mi(t) at the same time point. Note that specifying a model as in
4.1 implies that the risk for an event at time t depends only on the current value of the
time-dependent marker mi(t).
This is not true for the survival function, though. Specifically, we find that using the es-
tablished relationship between the survival function and the cumulative hazard function
(see chapter 3), the corresponding survival function depends on the whole covariate history
Mi(t):

Si(t|Mi(t), wi) = P[T
∗
i > t|Mi(t), wi] (4.2)

= exp

(
−
∫ t

0

h0(s) exp{γ
′
wi + αmi(s)} ds

)
.

Unlike the Cox model, in order to complete the specification of 4.1, the baseline risk func-
tion h0(·) has to be specified for JMs. Indeed, as we saw in chapter 3, in order to avoid
the effects of specify incorrectly the distribution of survival times, it is common to leave
h0(·) fully undefined in traditional survival analysis. However, it turns out that taking this
approach may result in an underestimation of the standard errors of the parameter estimates
within the joint modeling framework ([37]), enforcing the necessity to explicitly declare h0(·)
to prevent such issues. One possible, common choice for the baseline hazard function is to
relating to a parametric distribution, as Weibull, log-normal, exponential and Gamma dis-
tributions, frequently utilized in the context of classic survival analysis. As an alternative,
and perhaps better, JM allows to specify a parametric baseline risk function while keeping it
flexible. In the literature, a number of methods have been suggested for modeling the base-
line risk function flexibly. Two simple options that often work quite satisfactorily in practice
are the piecewise-constant and splines approximations ([9]). Under the piecewise-constant
approximation, the baseline risk function takes the form:

h0(t) =

Q∑
q=1

ψq 1(νq−1 < t ≤ νq) (4.3)

where 0 = ν0 < ν1 < · · · < νQ denotes a split of the time scale, with νQ being larger than
the largest observed time, and ψq denotes the value of the hazard in the interval (νq−1, νq].
As the number of knots increases the specification of the baseline hazard becomes more
flexible. In the limiting case where each interval (νq−1, νq] contains only a single true event
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time (assuming no ties), this model is equivalent to leaving h0(·) completely unspecified and
estimating it using non-parametric maximum likelihood. For the regression splines model
the log baseline risk function log h0(t) is expanded into B-spline basis functions for cubic
splines as follows:

log h0(t) = r0 +

m∑
d=1

rdBd(t, q) (4.4)

where rT = (r0, r1, . . . , rm) are the spline coefficients, q denotes the degree of the B-splines
basis functions B(·), andm = l+q−1, with l denoting the number of interior knots. Similarly
to the piecewise-constant model, increasing the number of knots increases the flexibility
in approximating h0(·). However in both approaches, we should keep a balance between
bias and variance and avoid overfitting. After the number of knots has been decided, their
location is typically based on percentiles of either the observed event times Ti = min(T ∗

i , Ci)
or only the true event times {Ti : T ∗

i ≤ Ci, i = 1, . . . , n}, to allow for more flexibility in the
region of greatest density.

4.1.2 The Longitudinal sub-model

We used mi(t) to signify the true value of the underlying longitudinal covariate at time
point t in the definitions of the survival models (4.1). However, as was previously already
indicated, longitudinal data is actually acquired irregularly and prone to error for each par-
ticipant. Therefore, we have to estimate mi(t) and effectively reconstruct the entire longitu-
dinal history Mi(t) for each participant in order to quantify the impact of the longitudinal
covariate on the probability for an event. To this end, a mixed-effects model suitable for
representing subject-specific temporal evolutions is postulated. Assuming that longitudinal
outcomes are normally distributed, we have: yi(t) = mi(t) + ϵi(t)

mi(t) = xTi (t)β + zTi (t)bi
bi ∼ N (0, D), ϵi(t) ∼ N (0, σ2)

(4.5)

where the design vectors xi(t) for the fixed effects β and zi(t) for the random effects bi,
as well as the error terms ϵi(t), are possibly time-dependent. Moreover, it is assumed that
the error terms are mutually independent, independent of the random effects, and normally
distributed with mean zero and variance σ2

By assuming that the observed level of the longitudinal outcome, yi(t), is equal to the
true level, mi(t), plus a random error term, the mixed model solves the measurement error
problem. Additionally, by using subject-specific random effects and the temporal structure
in the definitions of xi(t) and zi(t), it is possible to reconstruct the whole path determined
by each subject’s time-dependent process Mi(t).

4.2 Joint Models estimation

Maximum likelihood (semi-parametric) estimation is the main technique that has been sug-
gested for JMs ([37],[38],[39]). Here, we provide the fundamentals of the maximum likelihood
estimation method for JMs.
We will assume that the vector of time-independent random effects jointly underlies both
the longitudinal and survival processes in order to establish this joint distribution: for that
reason JMs go by the name of shared parameter models. This implies that the link between
the longitudinal and event outcomes as well as the correlation between the repeated measure-
ments in the longitudinal process are both explained by these random effects (conditional
independence). Formally we have:

p(Ti, δi, yi|bi;ϕ) = p(Ti, δi|bi;ϕ) p(yi|bi;ϕ) (4.6)

p(yi|bi;ϕ) =
∏
j

p{yi(tij)|bi;ϕ} (4.7)
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where ϕ = (ϕTt , ϕ
T
y , ϕ

T
b )

T denotes the full parameter vector, with ϕt denoting the parameters
for the event time outcome, ϕy the parameters for the longitudinal outcomes and ϕb the
unique parameters of the random-effects covariance matrix, and yi is the ni × 1 vector of
longitudinal responses of the i − th subject. In addition, it is assumed that, given the
observed history, the censoring mechanism and the visiting process are independent of the
true event times and future longitudinal measurements. These assumptions imply that
there is no additional dependence on underlying, latent, subject characteristics associated
with the prognosis. Instead, decisions on whether a subject withdraws from the study
or visits the clinic for a longitudinal measurement depend on the observed past history
(longitudinal measurements and baseline covariates). When one of the two processes depends
on the random effects, these presumptions are broken. This is due to the fact that such a
dependence implies a dependence on upcoming longitudinal measures. Since the observed
data do not provide enough information to suggest differently, evaluating the plausibility of
the non-informativeness for the visiting and censoring processes typically requires external
information from subject-matter experts.
These assumptions allow for the formulation of the log-likelihood contribution for the i− th
subject as follows:

log p(Ti, δi, yi;ϕ) = log

∫
p(Ti, δi, yi, bi;ϕ) dbi (4.8)

= log

∫
p(Ti, δi|bi;ϕt, β) [

∏
j

p{yi(tij)|bi;ϕy}] p(bi;ϕb) dbi (4.9)

with the conditional density for the survival part p(Ti, δi|bi;ϕt, β) having the form:

p(Ti, δi|bi;ϕt, β) = hi(Ti|Mi(Ti);ϕt, β)
δi Si(Ti|Mi(Ti);ϕt, β) (4.10)

=
[
h0(Ti) exp{γTwi + αmi(Ti)}

]δi × exp

(
−
∫ Ti

0

h0(s) exp{γTwi + αmi(s)} ds

)
(4.11)

where h0(·) can be any positive function of time, such as the piecewise-constant hazard as
in 4.3, or the B-spline approximation given by 4.4 or the hazard function of any known
distribution, and the survival function is given by 4.2.
The joint density for the longitudinal responses and the random effects is given by:

p(yi|bi;ϕ) p(bi;ϕ) =
∏
j

p{yi(tij)|bi;ϕy} p(bi;ϕb) (4.12)

= (2πσ2)−ni/2exp{−||yi −Xiβ − Zibi||2/2σ2} × (2π)−qb/2det(D)−1/2exp(−bTi D−1bi/2)

where qb denotes the dimensionality of the random-effects vector, and ||x|| denotes the
Euclidean vector norm. Maximization of the log-likelihood function with respect to θ is a
computationally challenging task. This is mainly because both the integral with respect
to the random effects, and the integral in the definition of the survival function do not
have a closed-form analytical solution, except in rare cases. Standard numerical integration
techniques such as Gaussian quadrature and Monte Carlo have been successfully applied in
the joint modeling framework ([38],[39]). However, computational complexity increases with
the dimension of the random-effects. For this reason, a pseudo-adaptive Gauss–Hermite
quadrature rule which is considerably faster than the standard Gauss–Hermite rule was
proposed and the mathematical details of this methodology can be found in [40].

4.2.1 Random Effects estimation

Up to this point, our main attention has been on ϕ parameter estimation and inference for the
joint model. The relationship between the longitudinal and event time processes was built by
using the random effects bi as a way to characterize heterogeneity in the patient longitudinal
evolutions. However, determining patient-specific forecasts for either of the outcomes may
be of importance in many circumstances and an estimation of the subject-specific random
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effects vector bi is needed to obtain such predictions. It is natural to estimate the random
effects using the Bayesian paradigm because it is assumed that they are random variables. In
particular, assuming that p(bi;ϕ) is the prior distribution, and that p(Ti, δi|bi;ϕ)p(yi|bi;ϕ)
is the conditional likelihood part, we can derive the corresponding posterior distribution as:

p(bi|Ti, δi, yi;ϕ) =
p(Ti, δi|bi;ϕ) p(yi|bi;ϕ)p(bi;ϕ)

p(Ti, δi, yi; δ)
(4.13)

∝ p(Ti, δi|bi;ϕ)p(yi|bi;ϕ)p(bi;ϕ) (4.14)

This posterior distribution in JMs does not have a closed-form solution and must be com-
puted numerically, in contrast to the linear mixed models framework where it is a multivari-
ate normal distribution. However, as the number of longitudinal measurements ni increases,
this distribution will converge to a normal distribution.
To describe this posterior distribution, standard summary measures are often utilized. For
its location the mean or the mode are typically used, defined here as:{

b̄i =
∫
bi p(bi|Ti, δi, yi;ϕ) dbi,

b̂i = argmaxb{log p(b|Ti, δi, yi;ϕ)}
(4.15)

respectively, and as a measure of dispersion we may use the posterior variance or the inverse
Hessian matrix of the random effects, that is:{

var(bi) =
∫
(bi − b̄i)

2 p(bi|Ti, δi, yi;ϕ) dbi
Hi =

{
−∂2log p(b|Ti,δi,yi;ϕ)

∂bT ∂b
|b=b̂i

}−1 (4.16)

4.3 Asymptotic Inference

Having fitted the joint model under a maximum likelihood framework, the standard asymp-
totic likelihood inference tests are appropriate. If, in general, we are interested in testing
the null hypothesis: {

H0 : ϕ = ϕ0
H1 : ϕ ̸= ϕ0

(4.17)

we are allowed to use:

• Likelihood Ratio Test

LRT = −2 ln

[
LML(ϕ̂0)

LML(ϕ)

]
→ χ2

df

• Score Test
U = Uϕ(ϕ̂0)

′
{I(ϕ̂0)}−1Uϕ(ϕ̂0) → χ2

df

where Uϕ(ϕ̂0) is the score function computed from the JM log-likelihood and I(ϕ̂0) is
the observed information matrix (i.e., the negative of the inverse Hessian matrix)

• Wald Test
W = (ϕ̂− ϕ0)

′
I(ϕ̂)(ϕ̂− ϕ0)

Under the null hypothesis, the asymptotic distribution of each of these tests is a χ2 distribu-
tion on p degrees of freedom, with p denoting the number of parameters being tested. For a
single parameter ϕj the Wald test is equivalent to (ϕ̂j − ϕ0j)/std.err.(ϕ̂j), which under the
null hypothesis follows an asymptotic standard normal distribution. These test statistics are
approximately low-order Taylor series expansion of each other and they are asymptotically
equivalent.
Because standard errors do not account for the variability introduced by estimating the
variance components, i.e., the covariance matrix for the random effects, they underestimate
the true variability in the Wald test for testing the fixed effects in the classical linear mixed
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model ([41]). For this reason, instead of using the conventional χ2 distribution that the Wald
test requires, typically an approximate F distribution with adequate degrees of freedom is
employed. This issue might be exaggerated in JMs, since we neglect to estimate the survival
process in addition to estimating the variance components. Although there has not been
much research in the joint modeling literature to look into the Wald statistic’s properties in
finite samples, asymptotically, we expect it to follow the alleged χ2 distribution. Therefore,
although likelihood ratio tests need more processing resources, it is often better to choose
them.
Only two nested models can be compared using the three standard tests we have seen so
far, because the model under the null hypothesis is an exception to the model under the
alternative. Information criteria are often applied when comparing non-nested models is
of interest. The fundamental goal of these criteria is to compare two models on the basis
of their maximal log-likelihood values while penalizing overparameterization. The Bayesian
Information Criterion ([42]) and the Akaike’s Information Criterion ([43]) are the two most
widely used information criteria.

4.4 Different Joint Model parametrizations

The typical joint model, which was described before, makes the assumption that the true
level of the longitudinal marker at a given time point t, determines the risk for an event
at that time point. The α parameter captures the magnitude of the association between
the risk and the present level of the marker. Despite the fact that this parameterization
has a straightforward meaning for α, it is unrealistic to anticipate that it will always be
the best choice for representing the proper link between the two processes. In this section
we present several alternative parameterizations that extend the standard parameterization
4.1 in different ways. These different parameterizations can be seen as special cases of the
following general formulation of the association structure between the longitudinal marker
and the risk for an event:

hi(t) = h0(t) · exp[γ
′
wi1 + f{mi(t− c), bi, wi2;α}] (4.18)

where f(·) is a function of the true level of the marker mi(·), of the random effects bi and
extra covariates wi2.

• Interaction Effects: the parameterization 4.1.1 assumes that the effect of the true level
of the marker is the same in all subgroups of the target population, but this is evidently
a strong assumption that may not be true when the marker behaves differently for
different subgroups of subjects. Including interaction terms between the marker and
the relevant baseline covariates in the linear predictor of the relative risk model is a
natural extension to handle such situations, i.e.:

hi(t) = h0(t) · exp[γ
′
wi1 + αT {wi2 ×mi(t)}]

• Lagged Effects: in some circumstances there is the need to consider lagged effects,
that is when the association between the relative risk model and the biomarkers is
better captured by considering a time past observation. In these cases the following
formulation of the relative risk model is used:

hi(t) = h0(t) · exp[γ
′
wi1 + αmi{max(t− c, 0)}]

which postulates that the risk at time t depends on the true value of the longitudinal
marker at time t− c, where c specifies the time lag of interest.

• Time-Dependent Slopes Parameterization: since for each patient the marker follows a
trajectory in time, it is also reasonable to consider parameterizations that allow the
risk for an event to also depend on other features of this trajectory. For these situations
we can consider a JM in which the risk depends on both the current true value of the
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trajectory and the slope of the true trajectory at time t (or just the slope). Therefore
we will consider the first derivative of the longitudinal sub-model:

m∗
i (t) =

d

dt
mi(t) =

d

dt
{xTi (t)β + zTi (t)bi}

or a cumulative effect of the biomarker by considering the integral of the longitudinal
sub-model, that is:

m∗
i (t) =

∫ t

0

mi(s)ds =

∫ t

0

xTi (s)β + zTi (s)bi ds

where for any particular time point t, α measures the strength of the association
between the risk for an event at time point t and the rate of change of the biomarker
values and the area under the longitudinal trajectory up to the same time t, with the
area under the longitudinal trajectory regarded as a suitable summary of the whole
trajectory, respectively.

• Spline based parametrization: to allow to capture non-linear effects of the biomarker
trajectory, a spline approximation can be used. In this case, a general formulation of
the longitudinal sub-model is as follows:

mi(t) = (β0 + bi0) + (βk + bik)
TB(t, 4, 4)

where B(t, df, q) denotes a B-spline basis matrix for q−1 degree splines with df−q+1
internal knots placed at the corresponding percentiles of the follow-up times, and βk
and bik denote the vectors of fixed and random effects corresponding to the B-spines
matrix.

4.5 Connection with the Missing Data Framework

In the second chapter of this thesis, we addressed the issue of missing data regarding indi-
vidual profiles of a time-dependent variable. Indeed, we pointed out how longitudinal data
are often affected by this issue and also provided, from a practical point of view, how to
deal with this situation. To this end, the mixed-effects model is an appropriate approach
for analyzing time evolutions that may have missing data. This approach is valid both in
contexts where the missing process is assumed to be MCAR or MAR.
So, when the longitudinal outcome is the main concern, the patient’s longitudinal process
often ends when a specific event occurs. This is due to the fact that either follow-up mea-
surements are unable to be taken or their distribution changed after the event and is now
deemed irrelevant. In particular, it may not be conceptually appropriate to evaluate the
values of the longitudinal outcome after the event time in some clinical studies, where, for
example, death is the terminating event. Although we designed a mixed model for the
observed longitudinal responses, it is important to keep in mind that the JM implicitly in-
cludes assumptions for the ’full’ longitudinal response vector, including observations that
would have been made after the event or censoring ([8]).
To better illustrate this, let use define for each participant the observed and missing parts
of the longitudinal response vector in order. The observed part comprises of all longitu-
dinal measures of the i − th subject that have been observed before the event time, i.e.
yoi = {yi(tij) : tij < T ∗

i , j = 1, . . . , ni}. The longitudinal measurements that would have
been taken up until the end of the research, had the event not occurred, form the missing
part, that is the set ymi = {yi(tij) : tij ≥ T ∗

i , j = 1, . . . , n+
i }. The dropout mechanism, which

is the conditional distribution of the time-to-dropout given the whole vector of longitudinal
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responses (yoi , y
m
i ), can be derived from these definitions:

p(T ∗
i |yoi , ymi ;ϕ) =

∫
p(T ∗

i , bi|yoi , ymi ;ϕ) dbi = (4.19)

=

∫
p(T ∗

i |bi, yoi , ymi ;ϕ) p(bi|yoi , ymi ;ϕ) dbi = (4.20)

=

∫
p(T ∗

i |bi;ϕ) p(bi|yoi , ymi ;ϕ) dbi, (4.21)

where the simplification in the last line is due to the conditional independence assumption
4.6.
The posterior distribution of the random effects p(bi|yoi , ymi ;ϕ), reveals that the time-to-
dropout is dependent on ymi , indicating that joint models are consistent with a MNAR
missing data mechanism. A deeper look at 4.19 reveals that the random effects bi is the
main driver of the process in joint models. Indeed, and as already implicitly shown, under
the JM, the survival and longitudinal sub-models share the same random effects. Due to
this feature, joint models belong to the class of the so called shared parameter models ([44],
[45]). This missing data mechanism means that patients who exhibit steep rises in their
longitudinal profiles may be more (or less) likely to drop out of the study under an ordinary
random-effects structure (i.e., random intercepts and random slopes).
The relationship between the association parameter and the kind of the missing data mecha-
nism is an important consideration in this case. Because the dropout process is independent
of both missing and observed longitudinal responses, once available covariates are taken
into account, a null value for the link parameter α specifically corresponds to a MCAR
missing data mechanism ([46]). Additionally, since the parameters in the two sub-models
are distinct when α = 0, it is possible to factorize the joint probability of the dropout and
longitudinal processes as follows, allowing the parameters estimation of the two sub-models
independently:

p(Ti, δi, yi;ϕ) = p(Ti, δi;ϕt) p(yi;ϕy, ϕb)

= p(Ti, δi;ϕt)

∫
p(yi|bi;ϕy) p(bi;ϕb) dbi, (4.22)

The estimated parameters, however, derived from maximizing the log-likelihood of the longi-
tudinal process l(ϕy) =

∑
i log p(yi;ϕy), remain valid under a MARmissing data mechanism,

that is, under the assumption that dropout depends only on the observed responses ([8]).
Therefore, even though α = 0 corresponds to a MCAR mechanism technically speaking, the
parameter estimates we will get will still be valid under MAR. As an aside, we should also
point out that, in practice, a subject leaving the study due to censoring also results in the
cessation of data collection for the longitudinal process. However, we made the assumption
that the censoring mechanism may be dependent on the observed past of longitudinal re-
sponses and covariates, but is independent of future longitudinal outcomes when formulating
the likelihood function of joint models. In light of this, censoring is equivalent to a MAR
missing data mechanism.
The shared parameter models structure has the additional benefit of making it very simple
to handle intermittent missingness and attrition (see chapter 2). To demonstrate how this
is done, we write the observed data log-likelihood for the longitudinal outcome under the
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complete data model yoi , y
m
i as follows:

l(ϕ) =

n∑
i=1

log

∫
p(Ti, δi, y

o
i , y

m
i ;ϕ) dymi (4.23)

=

n∑
i=1

log

∫ ∫
p(Ti, δi, y

o
i , y

m
i |bi;ϕ) p(bi;ϕ) dymi dbi (4.24)

=

n∑
i=1

log

∫
p(Ti, δi|bi;ϕ) {

∫
p(yoi , y

m
i |bi;ϕ)dymi } p(bi;ϕ) dbi (4.25)

=

n∑
i=1

log

∫
p(Ti, δi|bi;ϕ) p(yoi |bi;ϕ) p(bi;ϕ) dbi (4.26)

The missing longitudinal responses ymi are solely involved in the density of the longitudinal
sub-model, according to the first conditional independence assumption 4.6. Additionally,
the longitudinal responses depending on the random effects are independent with each other
under the second conditional independence assumption 4.7, making it simple to drop the
integral with regard to ymi . Therefore, even if some subjects have irregularly missing data,
it is simple to determine the likelihood of a joint model without needing to integrate with
respect to the missing responses. A practical problem in the handling of missing data in
longitudinal outcomes is the fact that the observed data alone cannot distinguish between
a MAR and a MNAR dropout mechanism ([47]).
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4.6 Final considerations on Joint modeling of longitu-
dinal and time-to-event data

JMs are frequently used in researches where determining the ’real’ trajectory of the longitu-
dinal variable is the main focus and, as already explained, where patients leaving the study
can result in missing values in longitudinal studies. The linear mixed model can be deployed
to investigations when these values are MCAR or MAR to get unbiased estimates. Ignoring
the missing process and analyzing the longitudinal evaluations using, e.g., a mixed effects
model, can lead to biased inferences regarding group differences in the average longitudinal
evolutions: thus, joint modeling of the measurement and missing processes is required to
account for informative non-response ([48]). Dropout is considered ”informative” and is
sometimes referred to as informative censoring when the rate of dropout is correlated with
the level of the longitudinal variable, and this kind of missing data is also known as non-
ignorable missingness or ”not missing at random.” Failure to correctly handle the type of
missing process may lead to biased estimate ([8]) and JMs can address this issue by using
the survival component to inform the longitudinal process of missingness. Shared parameter
models, e.g. JMs, account for the dependence between the measurement and missing process
by means of latent variables (not observed) as random effect ([1],[44]) Hence, JMs can be
applied to correct the longitudinal trajectory for dropout bringing both the survival sub-
model (modeling the survival outcome, that is the time-to-event data) and the mixed model
(modeling the longitudinal outcome): thus the random effects in the linear mixed model are
included (shared) in the survival model, in order to capture the relationship between the
longitudinal and the survival outcome on an individual level ([49]). This relationship works
in both directions: the survival outcome is used to correct the longitudinal trajectory on
dropout due to the event and the longitudinal process is linked to the survival experience,
allowing to associate the longitudinal information with the event under study. Also, we un-
derline the concept that the other reason to deploy a JM concerns the need to account and
correct for the random measurement error in the longitudinal expressions of some personal
process going on ([50]), due to the endogenous nature of the dynamic observations measured
throughout the time on an individual level. Finally we remind that a third reason to adopt a
JM approach, especially instead of the ECM, is the possibility to make dynamic predictions
of both individual longitudinal profiles and survival experiences, which were not discussed
as being not a major concern of this thesis.
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Chapter 5

The ORANGE study

Throughout this chapter, the ORANGE study will be presented. Part of this material is
published in The Lancet Neurology in a paper for which my contribute was in the statisti-
cal analyses, writing and review ([51]). The objective of the study was to investigate the
strength of the association between the Neurological Pupil Index (NPi) and outcomes at 6
months. A further evaluation at shorter follow-up time (ICU) was also carried out in this
thesis, employing both ECM and JM, previously introduced from a theoretical point of view
(chapters 3 and 4). This in order to outline, from a practical point of view, what information
can be gathered by looking at these two approaches’ outputs.

5.1 Background

The management of ICU patients following brain injury urges the usage of non-invasive pro-
cedures, enhancing the odds of their survival during ICU staying and after discharge. Those
are needed to provide the neurointensivists a bedside quantitative tool to predict early prog-
nostication in patients with Acute Brain Injury (ABI), without the necessity of adopting
procedures that may also aggravate their condition. In this context, the NPi evaluation,
which will be detailed in the next section, has emerged as valuable bedside monitoring as-
sessment to get a fast, non-invasive, quantifiable and standardized neurological examination
of pupillary function, which may allow rapid diagnosis of intracranial pathology that affects
clinical decision making ([52]). The investigation of the value of the NPi in predicting the
outcome of high-risk (due to potential worsening of the intra-cerebral lesions) critically ill,
severely brain-injured patients ([53]), and its probable association with a corresponding in-
crease of Intracranial blood pressure (ICP) is a topic of great interest in the Neurocritical
care field ([54],[55]), being a non-invasive monitoring procedure. Preliminary single-center
data recently demonstrated that abnormal NPi is associated with worse outcome in patients
with traumatic ([54]), and haemorrhagic ABI ([56],[57]). Emerging data from single-center
retrospective cohort studies in patients with severe non-anoxic acute brain injury suggest
the potential prognostic value of NPi ([53],[58]). Three-month non-survivors had signifi-
cantly lower NPi than did survivors at all time points in an observational cohort of sedated,
mechanically ventilated VA-ECMO patients during the early phase after ECMO insertion
(first 72 hours) [59] and abnormal values of NPi (NPi < 3) was 100% specific for 90-day
mortality ([53],[59]). In patients suffering hypoxic-ischemic brain injury after cardiac arrest,
where the most likely cause of abnormal NPi is direct irreversible brainstem anoxia, low
NPi (defined as ≤ 2) was associated with poor neurological outcomes ([60],[61],[62]). In this
setting, one single pathological NPi measurement at least 24 hours after the initial injury
was highly predictive of poor outcomes. Conversely, following non-anoxic ABI, brainstem
injury may more often be secondary to brainstem compression or herniation, and therefore
more susceptible to be reversed by therapeutic interventions, such as osmotherapy, with
subsequent improvement in NPi values ([63],[54]). Indeed, about two-third of patients who
had an NPI of 0 during their stay had values > 3, which reinforces the importance of in-
tegrating repeated NPi measurements when assessing coma prognostication after ABI. In
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patients with traumatic brain injury and aneurysmal subarachnoid haemorrhage, NPi has
been found to be associated with the severity of the injury ([53],[56]). However, the added
predictive value of NPi to baseline characteristics remains poorly defined and confirmatory
studies from large prospective cohorts lack, thus the ORANGE study was planned.

5.2 The Neurological Pupil Index (NPi)

An accurate and precise neurological examination of ICU patients is essential, since pre-
existing or acquired neurological disorders may significantly affect their short and long-term
outcomes. The pupillary examination is an important part of the neurological assessment,
especially in the setting of acutely brain-injured patients, since pupillary abnormalities are
associated with poor outcomes ([64]). The standard care of ICU patients with Acute Brain
Injury (ABI) involves the pupillary light reactivity (PLR) evaluation as part of daily man-
agement, commonly done through a visual assessment of pupil size, shape, symmetry, and
pupillary light reflex ([52]). Hence, PLR is a fundamental clinical evaluation done on ICU
patients having a strong diagnostic and prognostic value ([65],[66]). Classically, PLR has
been performed using a hand-held light source, such as a penlight or flashlight, which provide
a non-standardized qualitative measurement. However, these subjective assessments of PLR
may lead to imprecision, mainly because of significant inter-observer variability and hetero-
geneity in the technique used ([67]). On the other hand, Automated Infrared Pupillometry
(AIP) ([68],[69]) furnishes a standardized, quantitative, highly reproducible measurement of
the PLR and other pupillary variables, including amplitude, latency, constriction and dila-
tion velocity. By employing an electronic pupillometer instead, such as NPi Pupillometer
NPi-200 or NPi-300 (NeurOptics, Inc., Irvine, CA), dynamic quantifications can be made
over time, capturing subtle changes in pupillary functions ([64],[53]). These measures can
be integrated and through an algorithm translated into a numerical index to compute the
Neurological Pupil index (NPi) ([63],[70]), which is a composite numerical index (ranging
from 0 to 5) of pupillary reactivity and global midbrain function. It is important to note that
the NPi is not influenced by sedation–analgesia, at the doses used in neurocritical care prac-
tice, and by mild hypothermia ([63],[71],[72]). The deployment of AIP evaluations through
an electronic pupillometer in severely brain-injured ICU patients has increased over recent
years ([73]). Several single-center retrospective cohort studies have suggested a potential
prognostic value of NPi in patients with severe acute brain injuries, but large prospective
cohorts are needed to confirm these findings ([53],[54],[74],[58]).

Figure 5.1: The NPi is derived from the integration of multiple measured pupillary variables

thorugh an electronic device (pupillometers NPi-200, NPi-300)

5.3 Study design

As there have never been any large multicenter cohort studies investigating the potential
diagnostic and prognostic value of NPi in patients with ABI, the ORANGE study outlines an
important turning point. The ORANGE (Outcome pRognostication of Acute brain injury
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with the NeuroloGical pupil indEx) study ([64]) is an international, multicenter, prospective,
observational trial that enrolled 18 years older patients admitted to the ICU, requiring
intubation and mechanical ventilation after Traumatic Brain Injury (TBI), Subarachnoid
Haemorrhage (SAH), or Intracranial Haemorrhage (ICH), at 13 hospitals in eight countries
in Europe and the United States. Patients were excluded if they had facial trauma that
could alter the use of AIP. Patients underwent AIP assessment every 4 hours to compute
NPi during the first 7 days after admission to the ICU. Clinical teams were not blinded
to the NPi measurements, as it was part of the standard clinical practice. Conversely, the
outcome assessors were blinded. After the enrollment, the patients were followed up for 6
months after the injury, for outcome assessment.

Figure 5.2: The specialized centers involved in the study: Monza, Italy; Lausanne, Switzer-

land; Roma, Italy; Oslo, Norway; Erlangen, Germany; Grenoble, France; Bruxelles, Bel-

gium; Madrid, Spain; Brescia, Italy; Washington, US; UCSF, US; John Hopkins, US; Va-

lencia, Spain. The size of the dots, locating the centers on the map, is proportional to the

number of patients enrolled.

Between November 1, 2020 and May 3, 2022, 1938 patients with ABI were screened, of
whom 514 (27%) were enrolled for the study (figure 5.3).

Figure 5.3: Flowchart.

NeurOptics NPi-200 and NPi-300 (after July 2021) pupillometers were used in the par-
ticipating centers; the two devices have a high level of agreement, as recently reported ([75]),
and can be used interchangeably. For all included patients, the data were gathered in an
electronic Case Report Form (eCRF) developed in REDCap ([76]) and hosted at the Uni-
versity of Milano-Bicocca. The NPi data were imported automatically into the eCRF, using
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smart-card technology (SmartGuard® Reader), thereby avoiding errors related to manual
data transfer.

5.3.1 Outcomes and Aims

The ORANGE study aimed to evaluate the association between abnormal pupillary function,
assessed by the NPi, and short and long-term outcomes in patients with ABI. In particular
the co-primary outcomes of the study were functional neurological outcome (assessed with
the extended Glasgow Outcome Scale -GOSE- ([77])) and mortality at 6 months ([64]). The
secondary outcome was the mortality in ICU. Scores on the extended Glasgow Outcome
Scale (GOSE) were collected by trained personnel who were blinded to the pupillometry
results, using a validated questionnaire via telephone-structured interviews with patients or
family members. A poor neurological outcome was defined as a GOSE score of four or less
(i.e., low and upper disability, vegetative state, and death).

5.4 Statistical methods

Description of baseline characteristics and between-group comparisons were performed
through the Wilcoxon or χ2 test, as appropriate. The NPi values for both the right and left
eye were collected. In order to investigate the association between the NPi and the clinical
outcomes of interest, the lowest measurement obtained from each assessment on both eyes
was used, since deemed as most pathological ([64]). The association between NPi and a
poor neurological outcome at 6 months was evaluated through logistic regression, adjusting
for age, ABI diagnosis, and motor Glasgow Coma Scale (mGCS) score on admission. We
also considered alternative confounders to adjust for illness severity (ie, worst mGCS score,
picking the lowest daily mGCS over the week, and pathological radiographic examinations
at baseline defined as a Marshall classification ([78]) of three or more for traumatic brain
injury, a modified Fisher ([79]) grade three or more for SAH, and a volume of 30 mL or
greater for ICH) as supportive analysis. The longitudinal NPi values during the first week
were summarised with the following quantities: the relative frequency of NPi less than three,
defined as abnormal by the protocol, and the relative frequency of NPi equalling 0. The
results were presented as odds ratios (ORs) and corresponding 95% confidence interval (CI).
To evaluate the relationship of NPi with 6-month mortality, the extended version of the
Cox regression model was used, entering NPi as a time-dependent covariate and age, ABI
diagnosis, and mGCS on intensive care unit admission as fixed covariates. To account for
individual dynamic variations of NPi over the first week of assessment, NPi was considered
in the following three ways: first, categorised in two (NPi < 3 vs NPi ≥ 3, as defined by
the protocol, and NPi= 0 vs NPi > 0) or three levels (NPi < 3 vs NPi 3–4 vs NPi ≥ 4);
second, as a continuous variable; and third, considering the actual (NPi[ti]) and the preced-
ing (NPi[ti−1]) NPi measurement, defining four categories according to the presence of NPi
equal to zero or not on both occasions. We used the ECM also to evaluate the association
between the NPi and mortality in shorter follow-up time (ICU). The assumption of pro-
portional hazards was assessed by visually inspecting the plots of Schoenfeld residuals and
using appropriate statistical tests for all covariates; the linearity of the effect for continuous
variables was evaluated using splines. The results are presented as hazard ratios (HRs) and
95% CIs. As comparison we also used the JM on the same outcome. For the sake of brevity,
we will only present the results of the ECM using the NPi as a continuous time-dependent
covariate and of a JM with piecewise constant baseline hazard and a linear mixed effects
specification to model the NPi trajectories over time, both adjusted for age, ABI diagnosis
and GCS motor. Among the possible JMs specifications, it was chosen the combination
of baseline hazard and random effects structure that resulted in lowest AIC and BIC here.
Very similar results were obtained with other parameterizations, though.
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5.5 Results on descriptive statistics

5.5.1 Baseline characteristics and outcomes

Among the 514 enrolled patients, 224 (44%) had TBI, 139 (27%) had SAH, and 151 (29%)
had ICH. The median age was 61 years (IQR 46–71), and 309 (60%) patients were male. The
median Glasgow Coma Scale score on admission was 8 (IQR 5–11). Baseline characteristics
are presented in table 5.1

Six-month outcomes were available for 497 (97%) patients: 206 (41%) were alive with a
good neurological outcome (GOSE >4), and 291 (59%) had a poor outcome (GOSE ≤4),
of whom 160 (32%) died (table 5.2). Before ICU discharge 124 (24%) patients died (table
5.2); out of these ∼ 80% died before or soon after the first week of ICU stay.

5.5.2 NPi evaluations

40071 pupillometry examinations from both eyes were collected, with a median of 40 mea-
surements per patient (IQR 20–50) during the study period. At baseline and over time,
right and left NPi values were not significantly different. The overall distribution of NPi
values is presented in figure 5.4.A, showing two peaks at 0 and 4.7 and a median NPi of
4.3 (Inter Quartile Range -IQR- 3.7–4.7). The distribution of the 20194 lowest NPi values
at each timepoint is shown in figure 5.4.B which shows a similar shape to the previous one,
with two peaks at 0 and 4.7 and a median NPi of 4.2 (IQR 3.5–4.6).

Figure 5.4: (A) Distribution of all (n=40071) NPi measurements on 514 patients. (B)

Distribution of lowest NPi measurements (n=20194).

Among the NPi values, considering the lowest measure at each assessment between the
two eyes, abnormal NPi (NPi < 3) was observed at least once in 241 (47%) of 514 patients.
At least one NPi equal to zero was recorded in 132 (26%) of 514 patients (two of whom did
not have a 6-month outcome), most frequently in the ICH group (table 5.3).

In figure 5.5 are shown some examples of NPi trajectories measured through the time
on the left and the right eye for a few selected patients. In the majority of the cases, the
longitudinal profiles are stable and linear with respect to the time, but it can be seen how,
in some occasions, this biomarker exhibits quite complex dynamics, with many wiggles and
multiple ups and downs close in time.
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Table 5.1: Baseline characteristics.

ALL
(n=514)

TBI
(n=224)

SAH
(n=139)

ICH
(n=151)

Age, years 61 (46-71) 54 (34–72) 59 (51-71) 64 (54–71)
Gender

Male 309 (60) 170 (76) 46 (33) 93 (62)
Female 205 (40) 54 (24) 93 (67) 58 (38)

Glasgow Coma Scale score
3-5 141 (29) 69 (33) 38 (29) 34 (24)
6-8 131 (27) 70 (33) 21 (16) 40 (28)
9-15 211 (44) 72 (34) 71 (55) 68 (48)
NA 31 13 9 9

Motor Glasgow Coma Scale
None 120 (23) 63 (28) 31 (22) 26 (17)

Extension 40 (8) 14 (6) 13 (9) 13 (9)
Abnormal flexion 27 (5) 12 (5) 5 (4) 10 (7)
Normal flexion 63 (12) 35 (16) 11 (8) 17 (11)
Localises/obeys 263 (51) 99 (44) 79 (57) 85 (56)

NA 1 1 0 0
Pupil reactivity

Reactive 414 (82) 186 (85) 117 (85) 111 (75)
One unreactive 32 (6) 11 (5) 9 (7) 12 (8)
Both unreactive 60 (12) 22 (10) 12 (9) 26 (17)

NA 8 5 1 2
Pathological severity by
radiographical examinations

Pathological 334 (65) 117 (52) 121 (87) 96 (64)
Non-pathological 180 (35) 107 (48) 18 (13) 55 (36)

Any cardiovascular disease
Yes 248 (48) 83 (37) 71 (51) 94 (62
No 408 (79) 190 (85) 109 (78) 109 (72)

Any liver diseases
Yes 20 (4) 6 (3) 5 (4) 9 (6)
No 494 (96) 218 (97) 134 (96) 142 (94)

Any neurological diseases
Yes 72 (14) 23 (10) 21 (15) 28 (29)
No 442 (86) 201 (90) 118 (85) 123 (81)

Any oncological diseases
Yes 44 (9) 14 (6) 12 (9) 18 (12)
No 470 (91) 210 (94) 127 (91) 133 (88)

Any respiratory diseases
Yes 31 (6) 9 (4) 5 (4) 17 (11)
No 483 (94) 215 (96) 134 (96) 134 (89)

Any psychiatric disturbances
Yes 47 (9) 26 (12) 13 (9) 18 (11)
No 467 (91) 198 (88) 126 (91) 133 (89)

Any renal diseases
Yes 15 (3) 2 (1) 3 (2) 10 (7)
No 499 (97) 222 (99) 136 (98) 141 (93)

Any eye diseases
Yes 16 (3) 7 (3) 4 (3) 5 (3)
No 498 (97) 217 (97) 135 (97) 146 (97)

Data are n (% of available data) or median (IQR). NA=not available.
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Table 5.2: ICU mortality, 6 months mortality and 6 months neurological outcome evaluated

with the GOSE, overall and divided by pathology.

m
ALL

(n=514)

TBI

(n=224)

SAH

(n=139)

ICH

(n=151)

ICU
Mortality, n(%)

Survivors 124 (24) 46 (20) 32 (23) 46 (30)
Non-survivors 324 (76) 178 (80) 107 (67) 105 (70)
NA 0 0 0 0

6 months
Mortality, n (%)

Survivors 337 (68) 155 (72) 97 (71) 85 (59)
Non-survivors 160 (32) 61 (28) 39 (29) 60 (41)
NA 17 8 3 6

Neurological
outcome, n (%)

Poor (GOS-E 1-4) 291 (59) 106 (49) 79 (58) 106 (73)
Good (GOS-E 5-8) 206 (41) 110 (51) 57 (42) 39 (27)

17 8 3 6

5.5.3 Association between abnormal NPi and 6-months outcomes

Figure 5.6 illustrates the distribution of NPi values according to different outcomes. The
median NPi value was lower in patients with a poor neurological outcome (median 4.0,
IQR [3.3–4.5]) compared with those with a good neurological outcome (median 4.3, IQR
[3.9–4.6]; p<0.0001). 113 (39%) of 291 patients with a poor neurological outcome had at
least one NPi equal to zero, and 17 (8%) of 206 patients with a good neurological outcome
had at least one NPi equal to zero (p<0.0001). An abnormal NPi was measured at least
once in 179 (62%) of 291 patients with a poor neurological outcome and in 59 (29%) of 206
patients with a good neurological outcome (p<0.0001). The median NPi value was lower
in non-survivors (median 3.9, IQR [3.0–4.5]) than in survivors (median 4.3, IQR [3.7–4.6];
p<0.0001); 80 (50%) of 160 non-survivors had at least one NPi equal to zero, and 50 (15%)
of 337 survivors had at least one NPi value equal to zero (p<0.0001). None of the 35 patients
who had all NPi measurements equal to zero survived (median number of measures 7, IQR
[5–10]; median time to death 2.1 days, IQR [1.3–2.5]). An abnormal NPi was measured at
least once in 113 (71%) of 160 non-survivors and in 125 (37%) of 337 survivors (p<0.0001).
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Table 5.3: NPi values in the first 7 days from admission to ICU.

All
(n=514)

TBI
(n=224)

SAH
(n=139)

ICH
(n=151)

NPi first measure right eye
Median (IQR) 4.0 (3.4–4.5) 4.0 (3.4–4.5) 4.0 (3.4–4.4) 3.9 (2.5–4.4)

n 514 224 139 151
NPi first measure left eye

Median (IQR) 4.0 (3.4–4.5) 4.1 (3.4–4.5) 4.1 (3.4–4.5) 3.7 (3.2–4.5)
n 514 224 139 151

NPi right eye
Median (IQR) 4.4 (3.8–4.7) 4.4 (3.9–4.7) 4.4 (3.8–4.7) 4.3 (3.6–4.6)

n 19976 8466 6112 5398
NPi left eye

Median (IQR) 4.3 (3.7–4.7) 4.4 (3.9–4.7) 4.4 (3.8–4.7) 4.3 (3.6–4.6)
n 20095 8640 6124 5511

Lowest NPi value
Median (IQR) 4.2 (3.5–4.6) 4.2 (3.6–4.6) 4.2 (3.6–4.6) 4.1 (3.4–4.5)

n 20194 8499 6163 5532
Patients with at least
one NPi=0

132 (26%) 45 (20%) 32 (23%) 55 (36%)

0 382 (74%)) 179 (80%) 107 (77%) 96 (64%)
1 22 (4%) 7 (3%) 5 (4%) 10 (7%)
2 12 (2%) 7 (3%) 3 (2%) 2 (1%)
3 8 (2%) 4 (2%) 0 4 (3%)
>3 90 (18%) 27 (12%) 24 (17%) 39 (26%)

Patients with at least
one NPi<3

241 (47%) 89 (40%) 70 (50%) 82 (54%)

0 273 (53%) 135 (60%) 69 (50%) 69 (46%)
1 57 (11%) 23 (10%) 17 (12%) 17 (11%)
2 22 (4%) 8 (4%) 6 (4%) 8 (5%)
3 24 (5%) 9 (4%) 6 (4%) 9 (6%)
>3 138 (27%) 49 (22%) 41 (30%) 48 (32%)

Data are n (%), unless otherwise stated. NPi=Neurological Pupil index.
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Figure 5.5: Six patients’ NPi trajectories as a result of the measurement on left and right

eye over time.

Figure 5.6: Distribution of the 19427 lowest NPi measurements by 6-month neurological

outcome (GOSE 1 [dead], n=160 patients, n=5725 NPi measurements; GOSE 2–4 [poor

outcome], n=131 patients, n=5997 NPi measurements; GOSE 5–8 [good outcome], n=206

patients, n=7705 NPi measurements).

5.6 Results on long-term outcomes

The analysis of the relationship of NPi with the neurological outcome (GOSE ≤ 4) evaluated
at 6 months is reported in table 5.4 in terms of odds ratios (OR) with their corresponding
95% CIs. We found that a 10% increase in the frequency of abnormal NPi was associated
with poor neurological outcome (OR 1.42, 95% CI [1.27–1.64]; p<0.0001). Similarly, a 10%
increase in the frequency of NPi equal to zero was associated with poor neurological outcome
(OR 1.70, 95% CI [1.37–2.38]; p<0.0001). These results were consistent when TBI, SAH,
and ICH were considered separately (results not shown). The sensitivity analyses adjusting
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for the worst mGCS score and pathological severity by radiographic examinations further
confirmed the results (results not shown).

Table 5.4: Table shows the association between frequencies of NPi<3 and NPi=0 value and

6-month poor neurological outcome (GOSE ≤4; model 1-2), adjusted for age, ABI diagnosis,

and motor Glasgow Coma Scale on admission to the intensive care unit. Models 1-2 included

data for 497 patients, of whom 291 had a GOSE≤4.

NPi and GOSE at 6 months OR (95 % CI) p value

Model 1 10% increase in the frequency of NPi <3 1.42 (1.27–1.64) <0.0001

Model 2 10% increase in the frequency of NPi = 0 1.70 (1.37-2.38) <0.0001

The analysis of the association between the NPi and within 6 months mortality is pre-
sented in table 5.5. After adjusting for covariates, abnormal NPi was associated with an
increased risk of mortality (HR 5.58, 95% CI [3.92–7.95]; p<0.0001). An association was
also found for NPi equal to zero (HR 12.05, 95% CI [7.86–18.48]; p<0.0001). A one-unit
decrease in the NPi value was independently associated with a higher risk of mortality (HR
1.80, 95% CI [1.62–1.99]; p<0.0001). In the analysis including individual dynamic NPi vari-
ations over time and using two consecutive values of NPi greater than zero as the reference
category, the occurrence of two successive NPi values equal to zero was associated with an
increased risk of mortality (HR 13.92, 95% CI [8.94–21.67]; p<0.0001). Also, deterioration
of an NPi value to zero was associated with an increased risk of mortality (HR 8.37, 95%
CI [2.52–27.87]; p=0.0007), and the risk of mortality was not increased when NPi improved
from zero to a higher value (HR 1.32, 95% CI [0.32–5.41]; p=0.6995). Finally, NPi less than
three (HR 7.10, 95% CI [4.77–10.57]; p¡0.0001), and NPi values between three and four (HR
1.70, 95% CI [1.13–2.56]; p=0.0186) were associated with a higher risk of mortality than
were higher NPi values (≥4). Internal cross-validation showed robustness in the results of
the multivariable models that were performed on both outcomes.

Table 5.5: Results of the multivariable time-dependent Cox model on the association between

longitudinal NPi value and six-month mortality adjusting for age, ABI diagnosis, and motor

Glasgow Coma Scale on admission to the ICU.

NPi and mortality at 6 months HR (95 % CI) p value

Model 1
NPi(ti) < 3 5.58 (3.98–7.95) < 0.0001
NPi(ti) ≥ 3 1 ..

Model 2
NPi(ti) = 0 12.05 (7.86-18.48) < 0.0001
NPi(ti) > 0 1 ..

Model 3 NPi(ti) 1.80 (1.62-1.99) <0.0001

Model 4

NPi(ti−1) = 0 , NPi(ti) = 0 13.92 (8.94-21.67) <0.0001
NPi(ti−1) = 0 , NPi(ti) > 0 1.32 (0.32-5.41) 0.6995
NPi(ti−1) > 0 , NPi(ti) = 0 8.37 (2.52-27.87) 0.0005
NPi(ti−1) > 0 , NPi(ti) > 0 1 ..

Model 5
0 ≤ NPi(ti) < 3 7.10 (4.77-10.57) <0.0001
3 ≤ NPi(ti) < 4 1.70 (1.13-2.56) 0.0163
NPi(ti) ≥ 4 1 ..
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5.6.1 Results on short term mortality (ICU):
a comparative analysis using ECM and JM

Table 5.6 reports the results of the ECM on mortality within ICU showing an estimated HR
of 1.89, very close to the estimated HR by the analogous modeling for 6 months mortality
(124 died in ICU vs 160 died within 6 months) (table 5.12). In this analysis we were able to
apply also a JM as the outcome was assessed in a shorter time period, i.e. close to the NPi
evaluations (first 7 days). In fact for 6 months mortality, although the LOCF approximation
in the Cox model is, at least, questionable to be used to assess this long term outcome, it
has the advantage of using values of the NPi that are naturally within the definition range
[0,5]. This problem, on the other hand, may occur using a JM that, based on available
NPi measurements, estimates longitudinal trajectories, providing out-of-range predictions
in some cases. In according with ECM, also the JM found that a one-unit decrease in the
NPi values was statistically associated with an increase in the risk of death during ICU stay.
Nevertheless the magnitudes of the HRs are different. In particular, a one-unit decrease
in the NPi value corresponds to an estimated 90% increase in the risk of death during
the first week of ICU using the ECM, and a 44% increase using JM (table 5.7). These
results showed that these two approaches may give quite different results due to the LOCF
approximation of ECM and the estimation of the NPi trajectories with a JM strategy. In
fact, as previously noted, NPi trajectories often exhibited highly non-linear patterns over
time, with rapid oscillations and abrupt changes and due to this the best regression technique
on these longitudinal data remains a challenging task. Indeed, we could have used other
mixed models to approximate such longitudinal profiles, for example by deploying regression
splines (see chapter 2). With such flexible approximations we could have better captured the
shape of the NPi dynamic evolutions over time, but a disadvantage would have been in the
interpretation of the results, especially in terms of HR. Thus, we will not delve further into
the analysis of these data, but we conclude by saying that all the modeling methodologies
used have consistently confirmed the prognostic value of the NPi on the risk of experiencing
death: in particular we found that a deterioration of NPi should be sounded as an alarm
and, careful and intense monitoring of the longitudinal evolutions by clinicians is desirable
and recommended.

Table 5.6: Extended Cox regression model’s hazard ratios with 95% CI of mortality within

ICU for NPi over the first week as a continuous variable, age, ABI diagnosis (Subarachnoid

hemorrhage, Intracranial hemorrhage, TBI), GCS Motor (no motor response, extension to

pain, abnormal flexion, normal, localizes/obey). *Benjamini-Hochberg adjusted.

HR (95% CI) p-value

Age 1.06 (1.04-1.07) <0.0001

NPi

NPi 1.89 (1.63-2.11) <0.0001

Diagnosis

Subarachnoid haemorrhage 0.79 (0.50-1.26) 0.3306
Intracranial haemorrhage 0.97 (0.63-1.49) 0.8995
Traumatic Brain Injury 1 ..

GCS Motor Score

None 1.24 (0.76-2.02) 0.3945
Extension 2.23 (1.33-3.72) 0.0022
Abnormal flexion/
Normal flexion

1.24 (0.67-2.29) 0.4962

Localizes/obeys 1 ..

n. NPi obs. = 20106, n. of deaths = 124 (n. patients 514)
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Table 5.7: JM’s hazard ratios with 95% CI of mortality within ICU for NPi over the first

week as a continuous variable, age, ABI diagnosis (SAH, ICH, TBI), GCS Motor (no motor

response, extension to pain, abnormal flexion, normal, localizes/obey).

Variance Components:

Std. Dev. Corr.

Intercept 1.43
time (days) 0.13 -0.34
residual 0.63

Longitudinal Process

Coeff. (95% CI) p-value

Intercept 3.50 (3.37-3.62) <0.0001
time (days) 0.04 (0.02-0.05) <0.0001

Event Process

HR (95% CI) p-value

Age 1.05 (1.04-1.07) <0.0001

NPi

NPi 1.44 (1.30-1.60) <0.0001

Diagnosis

Subarachnoid haemorrhage 0.85 (0.53-1.35) 0.4661
Intracranial haemorrhage 1.19 (0.77-1.84) 0.4218
Traumatic Brain Injury 1 ..

GCS motor score

None 2.12 (1.33-3.39) 0.0016
Extension/
Abnormal flexion

2.85 (1.72-4.74) 0.0001

Normal Flexion 1.37 (0.74-2.55) 0.3192
Localize/obeys 1 ..

n. NPi obs. = 20106, n. of deaths = 124 (n. patients 514)
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5.7 Discussion

To the best of our knowledge, the ORANGE study is the most extensive prospective study
to investigate the prognostic value of NPi as a standardised quantitative measurement of
pupillary reactivity and global midbrain function in patients with non-anoxic brain injury.
Overall, our results strongly suggest that repeatedly abnormal NPi values, including the
most extreme values of zero, in the first week after ABI predict poor outcome. Abnor-
mal NPi (<3) and NPi values of zero were more frequently observed in patients with poor
(GOSE ≤4) versus good (GOSE >4) outcomes. An increase in the number of abnormal
NPi measurements over time was associated with a higher probability of poor neurological
outcome. Two consecutive NPi measurements equal to zero, or deterioration of NPi to a
value of zero, were associated with an increased mortality risk. By contrast, the mortality
risk was not increased when an NPi value of zero recovered to a higher value. These findings
indicate the importance of the trajectories of NPi. Our results also offer further valuable
insights into the interpretation of NPi values. Indeed, while the absence of pupillary light
reactivity (i.e., NPi=0) is a well-established indicator of poor outcome, an abnormal NPi
has been previously defined as below 3. This cut-off was recently challenged by a multi-
center study in patients with ABI after cardiac arrest, where a value below 2 was found to
hold a one-hundred percent specificity of poor prognosis. Here, repeated NPi measurements
enhanced the sensitivity analysis and allowed the identification of an NPi range, between
3 and 4, that was already associated with an increased risk of mortality. In this setting,
NPi monitoring might identify at-risk patient population that would benefit from careful,
intensive observation to manage secondary brain deterioration, and target specific interven-
tions before irreversible damage may occur. In this context, instead of focusing on a single
measurement or cut-off, clinicians should view NPi as a tool for quantifying in a timely
fashion the extent of midbrain dysfunction, ranging from very severe (NPi= 0), to severe
(NPi< 3) and moderate (NPi 3-4).

The ORANGE study was thereby designed to assess the prognostic value of multiple NPi
measurements over time after adequately adjusting for other known baseline predictors. We
used a dataset with high data granularity, a minimum of six NPi assessments per day,
an automated digital system for data downloading, and a rigorous, effective, and blindly
evaluated long-term outcome follow-up, all of which added to the robustness of the current
study analysis. In patients with non-anoxic brain-injuries, repeated NPi measurements are
crucial for predicting outcome. Indeed, serial NPi assessments offer a more comprehensive
and accurate understanding of the evolution of brain damage over time in this context.
Our approach had several advantages. Detecting NPi changes allows clinicians to monitor
patient conditions and identify improvements, deteriorations, or persistent abnormal NPi
values. This information can help to identify patients at high risk of poor outcome (i.e.,
those with a high percentage of abnormal NPi measurements over time). Additionally,
including reliable non-invasive neurological monitoring in clinical practice is highly beneficial,
as it represents a safe alternative to invasive procedures, reducing the associated risks and
complications for the patient. Our analysis also showed that NPi variations between two
consecutive measurements have significant prognostic value, particularly in patients with
NPi deterioration without recovery or with persistent NPi measurements at a value of zero.
Due to the dynamic changes of NPi over time, a single abnormal measure should prompt
health-care providers to retest NPi to minimise measurement errors. Furthermore, as NPi
can improve over time, repeated measurements would enable clinicians to assess the efficacy
of therapeutic interventions over time. Our results also offer further valuable insights into
the interpretation of NPi values. Although the absence of pupillary light reactivity (i.e.,
an NPi value of zero) is a well established indicator of poor outcome, an abnormal NPi
has been previously defined as below three. Repeated NPi measurements enhanced the
sensitivity analysis and identified an NPi range between 3 and 4 already associated with
an increased mortality risk. In this setting, NPi monitoring might identify at-risk patient
populations that would benefit from careful intensive observation to manage secondary brain
deterioration and target specific interventions before irreversible damage can occur. In this
context, instead of focusing on a single measurement or cut-off, clinicians could view NPi
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as a tool for quantifying in a timely fashion the extent of midbrain dysfunction, ranging
from very severe (NPi= 0), to severe (NPi <3) and moderate (NPi 3–4). Integrating NPi
with other available tools for assessing the severity of brain injury could ultimately lead to
targeted and effective diagnostic and treatment strategies for patients with varying degrees
of ABI. In conclusion, in this prospective international multicenter study, abnormal NPi
was strongly associated with long-term mortality and a poor neurological outcome after
an ABI, irrespective of age, primary diagnosis, and severity of cerebral damage. Repeated
NPi measurements provided relevant prognostic information. Our study also identified novel
NPi pathological thresholds (<4) following ABI that could assist clinicians in detecting brain
damage and monitoring the response to therapeutic interventions in this setting.

5.7.1 Limitations

Our study has several limitations that should be acknowledged. First, the observational
design and the lack of standardised treatment protocols across centers might compromise the
robustness of certain results. The study strives to depict real-life situations accurately. The
staff conducting the study were not blinded to the NPi evaluation because NPi evaluation
is an integral part of the clinical evaluation practice. As a result, the observed NPi changes
could have influenced some actions. Moreover, the blinded evaluation of NPi changes and
the effect on outcome enhances the reliability of the findings. This approach reinforces the
integrity of the assessment by minimising potential biases. Second, our focus was solely on
NPi. We did not assess the potential value of other variables obtained from AIP assessment,
such as pupillary constriction or dilation velocities. However, this limitation could be seen
as an advantage since NPi, contrary to pupillary constriction or dilation velocities, is only
minimally influenced by sedatives and analgesics. Third, it is yet to be determined whether
the measurement duration over the 7 days following admission to the intensive care unit was
the most optimal approach. It remains uncertain whether the findings from our study can
be extrapolated to other types of brain injuries. Finally, although our data provided robust
associations between NPi and patient prognosis using a large dataset and internal cross-
validation, additional confirmation of these findings in diverse settings is needed, including
in centers with varying expertise in pupillometry utilisation or different protocols regarding
the limitation of life-sustaining therapies. Based on this evidence, we expect that future
trial designs will explore the potential of AIP as both a diagnostic tool for decision making
and an interventional tool in conjunction with standardised therapy.
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Table 5.8: Logistic regression model’s odds ratios with 95% CI of GOSE at 6-month follow-

up for 10% increment for frequency of NPi< 3, age, ABI diagnosis (SAH, ICH, TBI), GCS

Motor (no motor response, extension to pain, abnormal flexion, normal, localizes/obey).

*Benjamini-Hochberg adjusted.

Odds ratio (95% CI) p-value

Intercept 0.04 (0.02-0.10) <0.0001

Age 1.04 (1.03-1.05) <0.0001

NPi

10% increment for
frequency of NPi<3

1.42 (1.27-1.64) *<0.0001

Diagnosis

Subarachnoid haemorrhage 1.32 (0.80-2.18) 0.2735
Intracranial haemorrhage 2.29 (1.36-3.89) 0.0021
Traumatic Brain Injury 1 ..

GCS Motor Score

None 1.87 (1.07-3.32) 0.0306
Extension 2.84 (1.15-7.56) 0.0284
Abnormal flexion 1.02 (0.39-2.66) 0.9680
Normal flexion 1.88 (0.98-3.71) 0.061
Localizes/obeys 1 ..

Number of patients = 497, GOSE ≤ 4 = 291

Table 5.9: Logistic regression model’s odds ratios with 95% CI of GOSE at 6-month follow-

up for 10% increment for frequency of NPi=0, age, ABI diagnosis (SAH, ICH, TBI), GCS

Motor (no motor response, extension to pain, abnormal flexion, normal, localizes/obey).

*Benjamini-Hochberg adjusted.

Odds ratio (95% CI) p-value

Intercept 0.06 (0.02-0.13) <0.0001

Age 1.04 (1.03-1.05) <0.0001

NPi

10% increment for
frequency of NPi=0

1.70 (1.37-2.38) *<0.0001

Diagnosis

Subarachnoid haemorrhage 1.33 (0.81-2.19) 0.2548
Intracranial haemorrhage 2.27 (1.36-3.85) 0.0020
Traumatic Brain Injury 1 ..

GCS Motor Score

None 2.02 (1.16-3.57) 0.0143
Extension 2.75 (1.12-7.22) 0.0320
Abnormal flexion 1.14 (0.44-2.92) 0.7830
Normal flexion 1.83 (0.95-3.57) 0.0728
Localizes/obeys 1 ..

Number of patients = 497, GOSE ≤ 4 = 291
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Table 5.10: Extended Cox regression model’s hazard ratios with 95% CI of mortality at

6-month follow-up for NPi over the first week categorized in two (using a cut-off of 3),

age, ABI diagnosis (SAH, ICH, TBI), GCS Motor (no motor response, extension to pain,

abnormal flexion, normal, localizes/obey). *Benjamini-Hochberg adjusted.

Hazard ratio (95% CI) p-value

Age 1.05 (1.04-1.07) <0.0001

NPi

NPi(ti)< 3 5.58 (3.92-7.95) <0.0001
NPi(ti)≥ 3 1 ..

Diagnosis

Subarachnoid haemorrhage 0.78 (0.52-1.18) 0.2353
Intracranial haemorrhage 1.20 (0.83-1.75) 0.3287
Traumatic Brain Injury 1 ..

GCS Motor Score

None 1.92 (1.28-2.85) 0.0014
Extension 2.87 (1.70-4.83) <0.0001
Abnormal flexion 1.26 (0.61-2.61) 0.5248
Normal flexion 1.72 (1.04-2.85) 0.0341
Localizes/obeys 1 ..

n. NPi obs. = 19427, n. of deaths= 160 (n. patients 497)

Table 5.11: Extended Cox regression model’s hazard ratios with 95% CI of mortality at

6-month follow-up for NPi over the first week categorized in two (using a cut-off of 0),

age, ABI diagnosis (SAH, ICH, TBI), GCS Motor (no motor response, extension to pain,

abnormal flexion, normal, localizes/obey). *Benjamini-Hochberg adjusted.

Hazard ratio (95% CI) p-value

Age 1.05 (1.04-1.07) <0.0001

NPi

NPi(ti)= 0 12.05 (7.86-18.48) *<0.0001
NPi(ti)> 0 1 ..

Diagnosis

Subarachnoid haemorrhage 0.88 (0.59-1.32) 0.5439
Intracranial haemorrhage 1.14 (0.78-1.65) 0.5015
Traumatic Brain Injury 1 ..

GCS Motor Score

None 1.46 (0.95-3.96) 0.0828
Extension 2.28 (1.34-3.90) 0.0025
Abnormal flexion 1.95 (0.96-3.96) 0.0655
Normal flexion 1.52 (0.91-2.51) 0.1061
Localizes/obeys 1 ..

n. NPi obs. = 19427, n. of deaths = 160 (n. patients 497)
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Table 5.12: Extended Cox regression model’s hazard ratios with 95% CI of mortality at

6-month follow-up for NPi over the first week as a continuous variable, age, ABI diagnosis

(Subarachnoid hemorrhage, Intracranial hemorrhage, TBI), GCS Motor (no motor response,

extension to pain, abnormal flexion, normal, localizes/obey). *Benjamini-Hochberg adjusted.

Hazard ratio (95% CI) p-value

Age 1.05 (1.04-1.07) <0.0001

NPi

NPi(ti) 1.80 (1.62-1.99) *<0.0001

Diagnosis

Subarachnoid haemorrhage 0.79 (0.53-1.19) 0.2640
Intracranial haemorrhage 1.05 (0.72-1.54) 0.7813
Traumatic Brain Injury 1 ..

GCS Motor Score

None 1.30 (0.84-1.99) 0.2345
Extension 2.24 (1.32-3.83) 0.0030
Abnormal flexion 1.50 (0.73-3.05) 0.2680
Normal flexion 1.49 (0.90-2.47) 0.1234
Localizes/obeys 1 ..

n. NPi obs. = 19427, n. of deaths = 160 (n. patients 497)

Table 5.13: Extended Cox regression model’s hazard ratios with 95% CI of mortality at 6-

month follow-up for NPi over the first week considering the actual [NPi(ti)] and the preceding

[NPi(ti−1)] NPi, defining four categories according to a cut-off of 0 on both, age, ABI

diagnosis (SAH, ICH, TBI), GCS Motor (no motor response, extension to pain, abnormal

flexion, normal, localizes/obey). *Benjamini-Hochberg adjusted.**Four patients had only

one NPi collected.

Hazard ratio (95% CI) p-value

Age 1.05 (1.04-1.07) <0.0001

NPi

NPi(ti−1)= 0 & NPi(ti)= 0 13.92 (8.94-21.67) *<0.0001
NPi(ti−1)= 0 & NPi(ti)> 0 1.32 (0.32-5.41) *0.6995
NPi(ti−1)> 0 & NPi(ti)= 0 8.37 (2.52-27.87) *0.0007
NPi(ti−1)> 0 & NPi(ti)> 0 1 ..

Diagnosis

Subarachnoid haemorrhage 0.89 (0.59-1.34) 0.5787
ICH 1.07 (0.73-1.56) 0.7205
Traumatic Brain Injury 1 ..

GCS Motor Score

None 1.30 (0.83-2.02) 0.2480
Extension 2.16 (1.25-3.73) 0.0059
Abnormal flexion 2.01 (0.99-4.09) 0.0533
Normal flexion 1.57 (0.95-2.58) 0.0762
Localizes/obeys 1 ..

n. NPi obs. = 18947, n. of deaths = 156 (n. patients 493**)
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Table 5.14: Extended Cox regression model’s hazard ratios with 95% CI of mortality at

6-month follow-up for NPi over the first week categorized in three levels (<3, 3-4 and 4-5),

age, ABI diagnosis (SAH, ICH, TBI), GCS Motor (no motor response, extension to pain,

abnormal flexion, normal, localizes/obey). *Benjamini-Hochberg adjusted.

Hazard ratio (95% CI) p-value

Age 1.06 (1.04-1.07) <0.0001

NPi

0 ≤ NPi(ti) < 3 7.10 (4.77-10.57) *<0.0001
3 ≤ NPi(ti) < 4 1.70 (1.13-2.56) *0.0186
NPi(ti) ≤ 4 1 ..

Diagnosis

Subarachnoid haemorrhage 0.74 (0.49-1.12) 0.1519
Intracranial haemorrhage 1.11 (0.76-1.62) 0.5855
Traumatic Brain Injury 1 ..

GCS Motor Score

None 1.70 (1.13-2.56) 0.0102
Extension 2.68 (1.59-4.52) 0.0002
Abnormal flexion 1.20 (0.58-2.48) 0.6256
Normal flexion 1.72 (1.05-2.83) 0.0315
Localizes/obeys 1 ..

n. NPi obs. = 19427, n. of deaths = 160 (n. patients 497)
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Chapter 6

Evaluating the robustness of
Extended Cox and Joint models
with missing longitudinal data

Recognising that longitudinal studies often suffer from missing data, including our motivat-
ing clinical context, within this thesis work we investigated the ability and the degree of
robustness of the Cox model in its extended version (ECM), and of the Joint model (JM),
to correctly estimate the strength of the association between a dynamic marker and a time-
to-event (event time). In particular we focused on situations in which the dynamic profile
of the time-dependent covariate is affected by specific missing processes in different ways.
To this aim, we simulated longitudinal and time-to-event data and we assessed the per-
formances of those two approaches considering different functional forms for the individual
longitudinal markers (linear and quadratic shape) and numerous missing processes affecting
their evolutions over time. The first part of this chapter will cover some aspects, both from
a theoretical and a practical point of view, concerning how to simulate time-to-event data.
To carry out the simulations, we simulated the event times in a particular circumstance,
namely one in which we have a longitudinal covariate. The approach we used will be briefly
explained in section 6.2 but, before, the simpler case of simulating event times with only
fixed baseline covariates, assuming a parametric or a semi-parametric baseline hazard will
be treated. The second part will be devoted to presenting the simulation workflow and the
results of the study. We will conclude the chapter by discussing some limitations of this
work and possible future extensions.
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6.1 Times-to-event simulation with baseline covariates

6.1.1 Survival time simulation

The survival function for individual i is the probability that its “true” event time T ∗
i is

greater than the current time t:

Si(t) = P[T
∗
i > t]

A survival function’s complement to one is the corresponding probability of having experi-
enced the event at or before time t. In other words, the probability of failure is:

Fi(t) = P[T
∗
i ≤ t] = 1− Si(t)

It turns out that the definition of the probability of failure in the last equation coincides
to the definition of the cumulative distribution function (CDF) for the distribution of event
times. The probability integral transform theorem ([80]) states that transforming a con-
tinuous random variable by its own CDF leads a new random variable following a uniform
distribution on the range [0,1]. That is, FX(x) ∼ U(0, 1) where FX(·) denotes the CDF for
the continuous random variable X. Therefore, a new random variable obtained by taking
the complement to 1 of X transformed by its own CDF (FX(x)) must also follow a uniform
distribution on the range [0,1], i.e. 1 − FX(x) ∼ U(0, 1). Thanks to this probabilistic re-
sult one can conclude that the survival probability of individual i at its true event time is
distributed according to a uniform random variable taking values on [0,1]. Hence,

Si(T
∗
i ) = Ui ∼ U(0, 1) (6.1)

From 6.1 one can then generate the survival times TS
i for each subject by using the relation

between the survival function Si(·) and the cumulative hazard function Hi(·), inverting the
latter.

6.1.2 The proportional hazards data generating process

It is possible to extend these aforementioned results to generate times-to-event to the case of
a proportional hazards (PH) model with baseline fixed covariates which is generally referred
to as cumulative hazard inversion method( [81]). Under a PH model the survival probability
for individual i at its event time T ∗

i can be expressed as:

Si(T
∗
i ) = exp(−H0(T

∗
i ) exp(γ

′
wi)) (6.2)

where H0(t) =
∫ t

0
h(s)ds is the cumulative baseline hazard evaluated at time t, and xi

is a vector of covariates with associated population-level (i.e. fixed effect) parameters γ.
This is because the PH assumption also implies proportional cumulative hazards. Hence,
using equation 6.1, the survival probability Si(T

∗
i ) can be replaced by the uniform random

variable Ui. Moreover, since the objective is to simulate a new event time for individual
i (i = 1, . . . , N), rather than to evaluate the survival probability at the known true event
time, one can replace T ∗

i with the simulated event time TS
i . This leads to

Ui = exp(−H0(T
S
i ) exp(γ

′
xi))

To obtain the formula for the cumulative hazard inversion method, one simply needs to
rearrange the latter equation to solve for the event time ([82]):

TS
i = exp(−log(Ui) exp(−γ

′
wi)).

This method allows one to simulate event times under a PH model data generating process
with any parametric formulation for the baseline hazard: all that is required is an invertible
cumulative baseline hazard function.
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For the purpose of exposure, we report the mathematical relations that can be used to
simulate times-to-event assuming an exponential baseline hazard:

Ti ∼ Exp(λ)

H0(t) = λt

H−1
0 (t) = λ−1t

Ti = − log(Ui)

λexp(γ′wi)

Weibull and Gompertz baseline hazards corresponding equivalences can be found in [81].

6.2 Complex survival data generating processes:
longitudinal and time-to-event data simulation

If one can obtain an algebraic closed-form solution for the inverse cumulative baseline hazard
H−1

0 (·), then a major benefit of the cumulative hazard inversion method is that it is simple
and computationally efficient. The method can be used to generate event times for a variety
of parametric baseline hazards, including standard choices such as the exponential, Weibull
or Gompertz distributions. However to simulate event times considering a time-dependent
covariate poses many obstacles but, based on the cumulative hazard inversion method, an
extension of this method to find closed-form expressions to simulate event times data under
Cox-PH models with time-dependent covariates exists ([83]). Generally speaking, there are
two possible obstacles that may arise in simulating survival data considering time-varying
covariates. First, it’s possible that the cumulative baseline hazard H0(t) cannot be solved in
closed form. Secondly, it is possible that the cumulative baseline hazard cannot be inverted.
This is due to the fact that the cumulative hazard integral is frequently an intractable
integral due to the general shape of the time-dependency in the hazard function, which is
dependent on the longitudinal sub-model specification. This is the case if one simulated
data under a JM setting because of its complex structure linking the event and longitudinal
sub-models. In particular to find a closed form expression for the inverse of its cumulative
baseline hazard may be a challenging computational task since it involves many terms and
the integration over the random effects.

Within our simulations where we generated longitudinal and time-to-event data under a
JM setting, we deployed an extension of the cumulative hazard inversion method ([84]). This
extension allows for more adaptable baseline hazard functions and offers a much more broad
framework that can be expanded beyond the typical parametric distributions. The method
includes numerical quadrature and/or numerical root discovery. Numerical approximations
can be employed when an analytical form for the inverted cumulative baseline hazard cannot
be obtained and needed when it is necessary to compute complex integrals due to the time-
dependent covariate.

Indeed, the root finding is used to numerically solve for TS
i in circumstances where

the cumulative baseline hazard function cannot be inverted analytically, as in our case. A
convenient choice in this case is the univariate root finder algorithm ([85]), which guarantees
to find a solution to the equation:

Si(T
S
i )− Ui = 0

or, equivalently,
exp(−Hi(T

S
i ))− Ui = 0

by treating TS
i as the single unknown. The quadrature is used to numerically evaluate the

cumulative hazard function in this setting, where it does not have a simple and tractable
form. A standard choice of algorithm is either Gauss-Legendre or Gauss-Kronrod quadra-

ture, whereby the cumulative hazard Hi(T
S
i ) =

∫ TS
i

0
hi(s)ds can be approximated by

Hi(T
S
i ) ≈ TS

i

2

Q∑
q=1

νqhi

(
TS
i (1 + zq)

2

)
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where νq and zq are, respectively, the standardised weights and locations (”abscissa”) for the
q = 1, . . . , Q quadrature nodes. The method involves iterating between numerical quadra-
ture and numerical root finding until the root finding equation is properly solved and an
appropriate solution for t is obtained.

6.3 Simulation study for longitudinal and time-to-event
data in the presence of different missing processes
on the longitudinal covariate

The aim of our simulation study was to evaluate the extent of bias of the estimated Hazard
Ratio in the ECM in the JM to assessing the strength of the association between the marker
and the time-to-event, when the longitudinal profile of the marker, considering two different
functional forms (linear ad quadratic), undergoes different missing processes.
Therefore, the focus is on the ability of these two data modeling approaches to correctly
estimate the α parameter, following notation of chapter 4, when the longitudinal trajectories
of the markers are affected by missing data in different ways.

6.3.1 Simulation of longitudinal and event times data

The data were generated under the following univariate JM with a current value associa-
tion between the PH event sub-model and the longitudinal sub-model, specified through a
polynomial trajectory in time with individual random effects and fixed baseline effects.

• The longitudinal sub-model took the form:

Yi(t) ∼ N (µi(t), σ
2
y)

yi(t) = µi(t) + ϵi(t)

µi(t) = β0i + β1it+ β2it
2 + γ1x1i + γ2x2i

β0i = β0 + b0i

β1i = β1 + b1i

(b0i, b1i)
T ∼ N (0,Σ2

b) , ϵi(t) ∼ N (0, σ2
y)

x1i ∼ N (ν, σ2
ν) , x2i ∼ B(p)

(6.3)

Each observed biomarker value {yi(t) : i = 1, . . . , N ; t ∈ [0, 14]} was the result of the
”true” (unobserved) biomarker level µi(t) plus a random measurement error ϵi(t), whose
variability is controlled by the variance parameter σ2

y. The ”true” marker level µi(t) was
the composite result of an intercept value β0 and a temporal trend β1t+β2t

2, the individual
random effects (b0i, b1i) and the fixed baseline effects γ1 of a continuous covariate x1 and
γ2 of a dichotomous covariate x2. These baseline covariates were independently drawn
from a Normal distribution N (ν, σν) and a Bernoulli distribution B(p), respectively. The
random effects represented the individual random deviations from the population-level fixed
trajectory: they entered into the model as a random intercept b0i and a random slope b1i,
drawn from a multivariate normal distribution N (0,Σ2), centered around the 0 vector and
with 2 by 2 inter-subject variance-covariance matrix Σ2, whose diagonal elements represent
their variances, and the anti-diagonal entries their correlation.

• For the event sub-model we posited:

hi(t) = λ(tλ−1)exp(θ0 + θ1w1i + θ2w2i + αµi(t))

that is, a PH model with a Weibull baseline hazard, where λ is the shape parameter and
θ0 is the scale parameter on log hazard scale (intercept term), and θ1 and θ2 are the true
coefficient (log hazard ratio) for the continuous and binary covariate in the event sub-model.
The α parameter stands for the association coefficient between the two sub-models.
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To simulate longitudinal and time-to-event data under this framework we used the R
package simjm ([86]). We could have used, in principle, also the R package simsurv ([82])
to simulate survival data. However, utilizing the simsurv package to generate survival data
under a JM setting necessitates writing a substantial amount of computational code in R. To
facilitate this process, simjm ([86]) was developed: a user-friendly interface is provided by
the package, which serves as a wrapper for the simsurv package and is designed specifically
for simulating longitudinal and times-to-event data under a JM specification.

6.3.2 simjm: a R package for simulating Joint longitudinal and
time-to-event data

The use of the simjm package is briefly demonstrated below through an example. Arguments
are provided in the call to the simjm() function which, in this instance, produces one of the
complete case scenarios considered within the simulations.

# Use simjm to generate Joint Longitudinal and Event data

simdat <- simjm(M = 1,

n = 400,

max_fuptime = 14,

family = gaussian(),

betaEvent_aux = 1,

max_yobs=10,

balanced=FALSE,

fixed_trajectory = "quadratic",

betaLong_quadratic = 0.1,

betaLong_linear = 0.25,

betaLong_intercept = 10,

betaLong_continuous = 1,

mean_Z2 = 2,

sd_Z2 = 3,

betaLong_binary = -1,

prob_Z1 = 0.5,

random_trajectory = "linear",

b_rho = 0,

b_sd = c(1.5,1.5),

betaEvent_assoc = 0.25,

betaEvent_binary = 0,

betaEvent_continuous = 0)

The number of distinct markers is set to be one. The longitudinal data (marker profiles)
for 400 individuals are generated as random draws from a (conditional on covariates and
random effects) Gaussian distribution specified in the data generating model, incorporating
measurement error ϵ(t) ∼ N (0, 1); then it is possible to specify the maximum number of
measurement occasions, with balanced or unbalanced visit times. The functional form of
the marker can be quadratic or linear and accordingly the ”true” values are chosen for each
of the parameters to generate the population-averaged trajectory. Then the fixed effects
of baseline covariates which follow a Gaussian and a Bernoulli distribution, respectively,
are set. The structure of the, correlated or uncorrelated, random effects can be linear or
quadratic as well: in the former case, in addition to a random intercept, random slopes will
also be generated for the linear effect of time on the marker, while, in the latter case also
the subject-specific quadratic trend will be composed of a population-level fixed effect and
a random one. The values of the standard deviations for each random effect considered in
the longitudinal data-generating model must then be supplied. Then the true values of the
parameters for the event sub-model are specified: the value of the association parameter
α representing the HR and quantifying the impact of the marker on event risk over time
and the fixed effects at baseline of the same continuous and discrete covariates used for
generating marker profiles, but which may have a different marginal effect on event risk (in
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this example equal to zero). The baseline hazard is set to Weibull by default, so it is not
necessary to specify it explicitly (as would be necessary if simsurv were used directly), and
it is possible to provide the scaling and shape parameters that characterize the distribution
(omitted here, retaining their default value). The simulated data are returned in a separate
data frame for each sub-model, that is, one for the longitudinal sub-model and one for the
event sub-model: the first data frame shows the multiple-row per-individual marker data;
the second data frame shows the single-row per individual time-to-event data.

The simulation routine just described allows to consider an administrative consoring
that coincides with the specified time duration for follow-up. Then, all the subjects that
do not die within this time window of observation are followed up the end of the study
(max fuptime). However, since survival times are commonly affected by right censoring, in
order to be consistent with a more realistic scenario, a random censoring mechanism was
manually introduced by considering a right-censoring time random variable CS

i , uniformly
distributed on the range [0,10*max fuptime], getting around 10% of the patients censored.
Then, since the event data of each patient is described through the random couple (TS

i ,δSi ),
the time-to-event TS

i will bet set to be equal to min(TS
i , C

S
i ) and the event status δSi is

modified according to: {
δSi = 0, if CS

i ≤ T s
i

δSi = δSi , else
. (6.4)

Recall that, either δSi = 0, if the patient is censored during the follow-up or he/she had no
event within it, or δSi = 1 if the patient experiences the event. TS

i and CS
i are assumed to

be independent conditional on the biomarker trajectory µi(t), as commonly done in survival
analysis.

6.3.3 Missing processes on simulated data

In medical studies, longitudinal responses y(t) are prone to be missing. The missingness
of some data gives rise to “incomplete” longitudinal data. The nature of the missing data
patterns is a major concern in these kind of studies and, generally, some assumption have
to be made about the nature of the missingness before conducting analyses ([87]). From
a theoretical point of view, a taxonomy of missing processes in the longitudinal context
was detailed in chapters 2 and 4. As already said in chapter 4, a practical issue in the
handling of missing data in longitudinal outcomes is the fact that the observed data alone
cannot precisely distinguish on the nature of missing generating process ([47]) but, in the
simulations, we could manage the missing mechanism and in this thesis we focused on the
case of Missing Not at Random (MNAR). In particular, we considered different scenarios in
which a specific region of the overall distribution of the data is more likely to be affected
by missingness, depending on the value of the longitudinal observations themselves. We
used a probabilistic approach to generate the missing data and, in particular, recreated the
conditions under which higher marker values were more likely to be missing. Thus it was
assumed, that in addition to being predictors of the event, higher values of the marker were
also more likely to be missing, due to the fact that we set a positive value for the α parameter
linking the longitudinal and event processes. To generate the missing data on the simulated
longitudinal data, we relied on the missMethods R package ([88]) and a quick overview of
which function we used will be provided in the next subsection.

Starting from the ”complete case” longitudinal data, we branched out into two possi-
ble scenarios. In the first case, after the missing process (”amputation”) is applied, the
biomarker profiles loose some observations, resulting in Intermittent patterns. In such a sit-
uation, the marker yi(t) has some observed values yoi (t), while some others are unobserved,
i.e. ymi (t) . In the second case, instead, we took into account a scenario in which as soon as
a visit is missed, that is after the first missing value in the biomarker profile, the following
values are no longer observed. In such a situation, that we called ”lost assessment” case,
the marker yi(t) still has some observed values yoi (t), and unobserved values ymi (t), but the
resulting profile is of the type yi(t) = (yoi (0), . . . , y

o
i (tj), y

m
i (tj+1), . . . , y

m
i (TS

i )). In figure 6.1
we make use of a graphical representation to indicate which were the two types of missing
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mechanisms considered. Thereby the distributions of the ”complete case” marker profile
yi(t) and after amputation are different. In both cases, the random pair (TS

i , δ
S
i ) is still

available for the analysis, i.e. the state and time at the patient’s event are observed and
unaltered. In other words, the missingness of some values in the individual markers profiles
does not imply the drop-out of the individual. We emphasize that we induced longitudinal
data amputation starting from the third value to avoid patients with only one observation,
especially in the second scenario. This setting was chosen to be logically consistent with the
application of JMs with intercept and especially random slope; thus we simply wanted to
accommodate the idea that to draw a straight line, estimated for each subject, we at least
needed two points in the space of observations for each individual marker.

Figure 6.1: The two missing mechanisms on a fictitious longitudinal profile

6.3.4 missMethods: a R package to simulate missing data

In order for ”high” marker values to be more prone to be missing than ”low” values, we
used a procedure called delete MNAR 1 to x() of the R package missMethods ([88]). This
routine allowed us to obtain different missing scenarios, by controlling for for the following
arguments:

• missing variable: the variable ending with missing values

• cutoff : splitting point dividing the data into two parts

• odds: odds of missing in one group of the split data

• where: controls where missing values are created (”lower”, ”upper” or ”both”)

• Missing Rate (MR): the final percentage of missing data

We now briefly detail the functioning of this procedure. At first, the rows of the longitudinal
data returned from the simjm procedure (see subsec. 6.3.2) are divided into two groups
based on the cutoff value, used to calculate the splitting point for the variable that is going
to be amputated. The group A consists of the rows whose values of the unobserved marker
values (measurement error-free) are below the calculated cutoff value. The group B consists
of the remaining rows, which values are above the cutoff point. Then, each observation is
assigned a probability of being missing such that the odds for a value belonging to group
B to be unobserved are x : 1 compared to an observation in group A. That means that the
probability for a value to be missing in group B divided by the probability for a value to
be missing in group A equals x (where=”upper”). Finally, the MR parameter allowed to
specify the percentage of missing data of longitudinal markers.
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6.4 Simulation design

In order to make explicit and accessible the simulation setup in this section the parameters
used to generate the data, following the same notation as in subsec. 6.3.1, and the methods
used to analyse them are listed.

6.4.1 Simulation parameters

We drew nsim = 1000 simulations for each scenario. We generated longitudinal and times-
to-event data for N = {150, 400} subjects in the linear case and N = {400} in the quadratic
longitudinal marker case, with unbalanced (non-regular) measurements occasions over a
follow-up period of 14 days, with a maximum number of observations of 10 per patient.

• Longitudinal sub-model. We considered two different functional forms for the longi-
tudinal markers: a linear temporal trend and a quadratic one, with (uncorrelated)
random intercept and random slope in both cases.

– Linear case: the fixed effect parameters of the longitudinal sub-model were chosen
to be β0 = 10, β1 = 0.25, β2 = 0.

– Quadratic case: the fixed effect parameters of the longitudinal sub-model were
chosen to be β0 = 10, β1 = −1 β2 = 0.10.

The β parameters, different for the two functional forms considered, were chosen to
obtain similar ranges spanned by the markers. The regression coefficient of the con-
tinuous and discrete variables (x1, x2) in the longitudinal sub-model were chosen to
be γ1 = 0.75, γ2 = −1, respectively, in both cases. The baseline covariates x1 and x2
were independently drawn from a Normal N (2, 3) and a Bernoulli B(0.5) distribution,
respectively. The random intercept b0i and the random slope b1i, for each individ-
ual, were generated from a Normal distribution N (0,Σ2

b), with different variances σ2
b ,

specifying what we called a ”low” and a ”high” variability case for the longitudinal
markers. For the former, we specified Σ2

b having σ2
b0

= σ2
b1

= 0.25 and for the latter
σ2
b0

= σ2
b1

= 2.25. In both cases we set correlation of random effects ρb0b1 = 0. The
value of each random measurement error ϵi(t) was drawn from a Normal distribu-
tion N (0, 1). This can produce a relatively large measurement error, but it can be
considered reasonable from an empirical point of view. In fact, overall, no significant
discrepancy was found between the actual values of the markers and the corresponding
version contaminated by the measurement error random.

• Event sub-model. The parameters of the Weibull baseline hazard were kept to their
default values, i.e. λ = 1.2 and θ0 = −7.5.

Figure 6.2: Weibull baseline hazard deployed for simulations
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The fixed effects for the covariates w1 and w2 in the event sub-model were set θ1 =
θ2 = 0. Finally, we set the true HR α = 0.25, which corresponds to an increase in risk
due to the unit increase in the marker of approximately 30%.

• Missing process. As previously pointed out (subsec.6.3.4), the data amputation pro-
cess, basically, relies on the specification of three parameters to indicate the missing
rate (MR), a cutoff value and the odds. Within the simulations, we considered two
possible MR values, namely 30% and 40%; a single cutoff value equal to the 70th per-
centile of the overall distribution of the values taken by the markers of all subjects;
two different odds values, 4 and 6, which let that marker values above the cutoff have
an increasing probability to be missing.

6.4.2 Generated longitudinal data

Complete case

The simulated marker trajectories (N=400) with linear and quadratic functional form and
two different random effects distributions are displayed in the spaghetti plots below. Profiles
of those who were censored or still alive at the end of the follow-up are shown in light grey,
while of those who died in dark grey. The population-averaged trajectory, i.e. the dynamic
evolution of the longitudinal marker when the random effects are zero (and no baseline fixed
effects), is represented by the black dashed line.

(a) True markers (b) Markers with random meas. error

(c) True markers (d) Markers with random meas. error

Figure 6.3: True and random measurement error affected markers trajectories with linear

temporal trend with σ2
b0

= σ2
b1

= 0.25 (first line) and σ2
b0

= σ2
b1

= 2.25 (second line)
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(a) True markers (b) Markers with random meas. error

(c) True markers (d) Markers with random meas. error

Figure 6.4: True and random measurement error affected markers trajectories with quadratic

temporal trend with σ2
b0

= σ2
b1

= 0.25 (first line) and σ2
b0

= σ2
b1

= 2.25 (second line)

Intermittent missing and Lost Assessment

Within the simulations, we considered a great number of different settings so it would not
be feasible to show all the generated markers trajectories after amputation. Nevertheless,
we display here a few examples for the purpose of exposition. We graphically report the
spaghetti plots referring to the ”complete case” shown above (linear and quadratic, low and
high variability) after they underwent data amputation. Side by side, the markers in the
case of intermittent missing and ”lost assessment” are arranged. The MR missing rate was
30% and the missing odds ratio was 4. The population-averaged trajectory of the complete
case scenario is represented by the black dashed line.
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(a) Intermittent markers (b) ”Lost assessment” markers

(c) Intermittent markers (d) ”Lost assessment” markers

Figure 6.5: Intermittent missing and ”lost assessment” for linear marker trajectories with

σ2
b0

= σ2
b1

= 0.25 (first line) and σ2
b0

= σ2
b1

= 2.25 (second line) (MR= 30%, odds=4)

(a) Intermittent markers (b) ”Lost assessment” markers

(c) Intermittent markers (d) ”Lost assessment” markers

Figure 6.6: Intermittent missing and ”lost assessment” for quadratic marker trajectories

with σ2
b0

= σ2
b1

= 0.25 (first line) and σ2
b0

= σ2
b1

= 2.25 (second line) (MR= 30%, odds=4)
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6.4.3 Methods

The modeling approaches used throughout the simulations were: i) the ECM considering
the observed updated value of the marker; ii) three different JMs considering a piecewise
constant baseline hazard with 7 internal knots, an approximated baseline hazard considering
B-splines with 9 internal knots and a Weibull baseline hazard considering the updated value
of the marker. For the linear case, the ECM and the three types of JM corresponding to
the three different baseline hazards were fit on the simulated data; for the quadratic shape,
on the other hand, the ECM and just the JM with baseline hazard approximated by the
B-splines were deployed, by virtue of the fact that overall with this specification we had
better performances compared to the other options, thus obtaining a discount in terms of
computational time.

The ECM was run using the survival R package ([89]) and the JMs were fitted using
the R package JM ([90]). The JM package offers two options for numerical integration:
the standard Gauss-Hermite rule and the pseudo-adaptive Gauss-Hermite rule. It has been
shown that the latter can be more effective than the former in the sense that typically fewer
quadrature points are required to obtain an approximation error of the same magnitude and
computational burden is reduced ([8]), so that this procedure was used for the JMs fitted on
the simulated data. For all other options in JM as well as in ECM, the defaults were used
in the analyses. The R code used for simulations can be found in Appendix B.

6.4.4 Statistical indices to evaluate estimation performance

We summarized the results using: mean and median, bias and percentage bias, Mean-
Squared Error (MSE), Asymptotic Standard Error (ASE), Empirical Standard Error (ESE)
and 95% coverage probabilities (CP) of the simulation estimates of the association parameter
α, as recommended in [91]. The ASE was computed as the average of the estimated standard
errors, and the ESE as the standard deviation of the estimates of α.

Here we explicit the mathematical expressions of the simulations summary measures
in order to be accessible to the reader: α indicates the true parameter value linking the
longitudinal and event sub-models in the data generating process and α̂ the estimated α
parameter obtained after fitting ECM or JMs on each of the simulated datasets.

• Mean(α̂)

E[α̂] =
1

nsim

nsim∑
i=1

α̂i

• Bias

E[α̂]− α =
1

nsim

nsim∑
i=1

α̂i − α

• %Bias

Bias

α
× 100

• Asymptotic Standard Error (ASE)

1

nsim

nsim∑
i=1

Std.Err.(αi)

• Empirical Standard Error (ESE)

√
V ar(α̂) =

√√√√ 1

nsim − 1

nsim∑
i=1

(α̂i − E[α̂])2
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• Mean Squared Error (MSE)

E[(α̂− α)2] =
1

nsim

nsim∑
i=1

(α̂i − α)2

• CP

P[α̂low ≤ α ≤ α̂upp] =
1

nsim

nsim∑
i=1

1(α̂low ≤ α ≤ α̂upp)

where α̂low and α̂upp are the 95% CI boundaries of the estimated HRs.

The results of the simulations can be found in tables 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 at the end of
this chapter. The tables of results will report by rows the proportion of missing data (MR),
the actual proportion of missing data (eff. MR) different between ”intermittent” and ”lost
assessment” missing data patterns, indicated by the letters F and T in the ”Lost” column,
respectively, and the odds of missing (see subsec. 6.3.4).

6.5 Results

6.5.1 Low variability of longitudinal markers

In the ”low” biomarkers volatility case, achieved by considering small magnitudes for the
variances of the random effects (σ2

b0
= σ2

b1
= 0.25), looking at the simulations results there

was no evidence to declare a glaring superiority of one approach in terms of estimation of the
HR when the marker profiles followed a linear trajectory. In the quadratic case, however, the
two modeling techniques showed different performance, with JM more robust than ECM.
Distinguishing by the functional forms of the longitudinal markers, we had the following:

• Linear case (tables 6.1, 6.3): with complete case data, both ECM and JM estimated
correctly the HR in all the explored scenarios, for all different levels of missing rate,
whether ”intermittent” or ”Lost to Assessment” data, the two modeling strategies
showed good performances in terms of HR estimation (α), with a small amount of bias
in general and a coverage of the confidence intervals always near to the nominal value
of 95%. Overall, the JMs, showed slightly higher absolute bias in ”lost assessment”
case, than in the case of intermittent missing data at the same MR levels. With small
sample size (N=150) the JM, especially with a piecewise approximated baseline hazard,
had a mildly higher amount of bias than ECM but, this already small amount of bias
decreased, however, with a larger sample size (N=400). Hence, both ECM and JMs
were robust here and this suggested that using the LOCF method or an interpolation
of the individual trajectories, as done by JMs, had no substantial difference, from a
practical point of view, if the aim of the study was to estimate the average HR on
time. The results were fairly easy to discern, taking into account the fact that there
is no obvious difference between using a stepwise approximation of the profile or an
estimated trajectory obtained from the mixed-effects regression when there is a low
variability of the markers.

• Quadratic case (table 6.5): with complete case data, both ECM and JM estimated
well the HR. Overall when longitudinal marker data were intermittently missing, the
ECM performed worse than JM, with non negligible extents of bias in almost all cases.
In fact, in these cases, the ECM vastly underestimated the HR value, with very low
coverage probabilities, in contrast to JM which showed excellent performance, even
with high values of MR in the data. In the ”lost assessment” scenario, the JM did
not seem to be affected in terms of estimation ability; instead, ECM ”improved” its
performances. This latter result was not expected and, at the moment, we can only
justify it from an heuristic point of view (see section 6.6).
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Regarding the framework of low variability, when the longitudinal trends of the marker
resembled a linear shape, we found that ECM and JMs were robust in terms of estimation of
the association between the time-dependent covariate and the risk of event over time, both
in the case of intermittent missing data and ”lost assessment”. However, this result was not
confirmed in the quadratic case where only the JM showed good performances overall. ECM
obtained biased estimates of the HR, particularly in cases of intermittent missing data.

6.5.2 High variability of longitudinal markers

In the ”high” marker volatility case, achieved by considering larger values for the variances
of the random effects (σ2

b0
= σ2

b1
= 2.25), overall, the ECM and JM, showed fairly good

performances in the linear case of the longitudinal covariate but there was a relative ten-
dency in the coverage of both to decrease, below the 95% value, in both the intermittent
and the ”lost assessment” data scenarios. The performances deteriorated severely in the
quadratic case. Distinguishing by the functional forms of the longitudinal markers, we had
the following:

• Linear case (tables 6.2, 6.4): with complete case data, both ECM and JM showed
good performances in terms of HR estimation. Overall the JMs, as expected, had
better performances than the ECM in the case of intermittent data, for both sample
sizes. The robustness was less and less evident as the percentage of missing data
increased, although, especially for the JMs, evidently poor performances were only
observed in the case of MR of 40%: these results led us to conclude that, in such cases,
these models may exhibit less than satisfactory performance and, as expected, things
get worse considering increasing missing rates in biomarker values. Again, the ECM
surprisingly seemed to perform better with respect to expectations in the case of ”lost
assessment”, although with coverage values still below 95%.

• Quadratic case (table 6.6): in the scenario with complete data both approaches had
good performances. However, with intermittent longitudinal data, the coverage of
the confidence intervals of both approaches, presented overall lower values than in
the situations previously considered. The worst performances were recorded by the
ECM, whose coverage probabilities settled at values far away from 95% and under-
estimated more severely the α parameter, except that for one case. Also with JM
emerged a slight tendency to underestimate the α parameter: particularly, with MR
values around 30% and intermittent missing data this approach still retained some
degree of robustness but, increasing MR, the negative bias extended. In the ”lost as-
sessment” case the greatest inefficiencies were noticeable also for JM; with MR of 40%
its performance had become inadequate with non-negligible %bias values and very low
coverage probabilities. The ECM, on the other hand, again showed somewhat bet-
ter performance in the ”lost assessment” scenario than the corresponding intermittent
data cases: overall the α parameter was increasingly overestimated as MR and missing
data odds increased, absolute bias got smaller and coverage probabilities increased as
well.

Regarding the framework of high variability in the longitudinal markers, it might be con-
cluded that ECM and JM are less robust in terms of HR estimation with respect to the
low variability case, both in the case of intermittent missing data and ”lost assessment”
following the first missing value, when the temporal trends resemble a linear shape. In the
quadratic case we found certainly worse performances, both for ECM and for JM. In the
case of intermittent data, in particular, both methodologies have rather negative bias and
poor coverages. In the ”lost assessment” case, as expected, the JM performed even worse,
while the ECM tended to overestimate the HR, resulting in apparently better results.
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6.6 Discussion

In this simulation work, we set ourselves the objective of evaluating the robustness of the
ECM and the JM in estimating the level of association between a longitudinal marker and
the risk of event over time, through the HR, when the first one is affected by different missing
processes. Two functional forms for the longitudinal covariate, i.e. linear and quadratic time
trends were considered, collected on 400 individuals at different occasions. As a starting
point we also considered a lower sample size (N=150), only for the linear trajectory case.
In all the complete case scenarios, both ECM and JMs performed well independently of the
sample size and functional forms of the longitudinal trajectories, with very similar results,
validating the usage of both the modeling approaches from a practical point of view. We
then perturbed the complete case distribution of longitudinal observations by generating
missing data in different ways. We designed two possible scenarios considering different
ways on how missingness acted on longitudinal data: one in which the longitudinal profile
was subjected to intermittent amputations and, a second case, in which the marker was
no longer observed after the first missed measurement occasion, resulting in ”truncated”
versions of the longitudinal marker profiles. In both settings the missing probability was
higher for marker values higher than a certain level (i.e. 70th percentile of the overall
distribution) and we considered two global missing rates (MR), i.e. 30% and 40%.: then
just some of the longitudinal profiles were altered, but many other were unchanged.

Overall, the results of the simulations testified to a good degree of robustness, for both
ECM and JMs (independently of the specified baseline hazard shape), whenever the indi-
vidual trajectories followed a linear trend over time, with low variability in the observed
marker values, obtained by small values for the random effects distribution variance. Unlike
ECM, for which a consistent negative bias showed up with longitudinal quadratic profiles
with intermittent missing, the JM confirmed its good properties, regardless of the MR. Once
we shifted our attention to longitudinal markers with higher volatility, we observed some
tendency for both techniques to perform worse, even in the linear longitudinal functional
form case. This behavior was largely accentuated in the case of quadratic shape of the
longitudinal profiles, which led us to think that we witnessed a distinct estimation capabil-
ity due to some extent to the functional form of the trajectories. It is important to note
that in the case of intermittent missing data our findings were expected because an under-
estimation of α was coherent with ”misclassified” trajectories, as somehow shown for the
ECM in the presence of measurement error ([8],[92]), and, by analogy, with the effect of
non-differential misclassified exposures in epidemiological studies ([93],[94]). In fact, in the
case of non-differential misclassification a ”bias towards the null” is expected ([93],[94]).

In the case of ”lost assessment”, however, we obtained results regarding the ECM, that
often deviated from what we expected, and we had difficulty providing absolutely convinc-
ing justifications for the causes of these unexpected results. Nevertheless we are inclined to
believe that there was some degree of interplay between the underestimation due to mis-
classified longitudinal profiles and an overestimation because of the truncated trajectories.
We surmised that the reasons for these results were thus attributable to a kind of ”compen-
satory effect” because, for truncated trajectories, the LOCF approximation caused them to
settle to lower values, on average, resulting in less distinct and less scattered profiles between
events and non-events. This overall lowering of trajectories, that mainly affected those who
died being more likely to have profiles with large values by design, corroborated an expected
overestimation of HR. In fact, originally large marker values, because they were subsequently
missing, were approximated by smaller values, underestimating the (unobserved) trajecto-
ries while the same event process was observed throughout the time (and addressed in the
ECM estimation stage). If such a speculation found room already after we tried to inter-
pret the results in the linear trend cases, it was reinforced after conducting the simulations
for the quadratic case. Indeed, here we witnessed an even more serious underestimation of
HR in the case of intermittent data, but again with better results in the ”lost assessment”
scenarios. Therefore, it seemed sensible to assume that the truncation of the trajectories,
in the quadratic case, was followed by an even more tangible compensatory effect precisely
because, for the same time intervals, the biomarker would rise faster than in the linear case,
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and the LOCF approximation diverged more from the true value.
We are fully aware that such heuristic speculations are rather partial, but such insights

seemed reasonable and give us the opportunity to pave the way for future work. For this
reason, we are even more aware that further analysis should be done, to better understand
the matrix of these results and provide more robust and accurate explanations, and this goal
is deferred to future work.

6.6.1 Limitations

The simulation work has several limitations. Firstly, we considered only a few scenarios, as
the simulations were extensively time-consuming (∼ 2h for each data generation and ∼ 6h
for each JM fitting): two different sample sizes (N=150; N=400) for the linear longitudinal
sub-model, and only one sample size (N=400) when we specified a quadratic shape for the
longitudinal profiles.
Among the possible limitations of this work we can certainly mention the approach we used
to obtain the missing data. In fact, although through this methodology we managed to
obtain the two types of missing data patterns we wanted, the imposition of a single cutoff
may be seen as an inelegant solution as well as a limitation. Therefore it might have been
sensible to consider other cutoff values, but it would have been very time consuming and
we would not expect much differences in the results. Moreover, once the cutoff is set, all
marker observations that fall above and below it have the same probability of missing as other
observations in their own side without any possibility of further refining this mechanism.
However, this approach was chosen for its easy implementation thanks to the dedicated R
package (see subsec. 6.3.4) and still remains valid for reproducing a missing data generation
process. Also, it is worth noting that, although the problem of missing data is common in
longitudinal studies, the missing rate values we have chosen can be considered somewhat
extreme, especially in the case of 40%. However, it is true that although true MR is not
verifiable in practice with the available data, a 40% MR may simulate a situation where,
as in our motivating clinical ICU setting, monitoring and subsequent information gathering
may not be very frequent.

Another limitation of the work could be due to the fact that we considered only a single
value for the α parameter, linking the longitudinal and the survival sub-models in the JM,
but we limited ourselves to this single case both for reasons of time and because we do not
expect that if we had changed the true value of the HR we would have obtained widely
different results, although such scenarios remain unexplored at the moment.
Finally, we considered only two functional forms for the longitudinal profiles of the time-
dependent marker but if we had broadened the functional possibilities, in addition to having
to implement the new options, we would probably have complicated the scenarios too much
which would have given rise to additional difficulties that we already had with linear and
quadratic shapes in explaining some results. Finally, we set the effects of continuous and
binary covariates in the event sub-model equal to zero, in order to achieve some benefit
in terms of computational burden, leaving unexplored the case in which other baseline
covariates affected the risk of event over time. Nevertheless, this was probably not a true
limit since we did not expect different conclusions introducing other effects due to baseline
covariate in the event sub-model during the data generating process, but at most an increase
in the time needed to fit all the models.

6.6.2 Future works

In order to overcome the limitations of our simulations, we can think about future extensions
and refinements of this work. First, it might be useful to consider another methodology to
generate the missing longitudinal data: in particular, it might be useful to employ a marginal
model to build the missing data generation process, using the longitudinal marker as the
covariate responsible for assigning missing probabilities. This would give us greater control
over the entire process, potentially helping us to better understand the reasons for some
unexpected results. We are also interested in extending the simulation scenarios by consid-
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ering other sample sizes, different follow-up periods, and other values for the α parameter.
In particular it would be useful to see if the results in a mirror situation with negatively
trending marker profiles and/or negative HR to evaluate whether our speculation on the
interplay of under/overestimation was reasonable. In addition, we limited our simulations
to only two functional forms but it would be of interest to examine other forms to better
characterize the problem of missing data in longitudinal models.
Indeed, these are the goals we hope to achieve in the near future, as we believe that, despite
the obvious limitations of the work, improvements might lead to more robust results with
useful implications from a practical and methodological point of view.
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Table 6.5: nsim = 1000;N = 400; (true) quadratic marker profile µ(t) = 10− t− 0.10t2;

σ2
b0

= σ2
b1

= 0.25. Column ”Lost” (F,T) stands for (intermittent, ”lost assessment”) missing

data scenarios.

Extended Cox Model JM B-splines

MR
(%)

Eff.
MR
(%)

odds Lost
Est.

(mean)
Est.

(median)
Bias

Bias
%

MSE ASE ESE CP
Est.

(mean)
Est.

(median)
Bias %Bias MSE ASE ESE CP

0 0 - - 0.251 0.250 0.001 0.31 0.454 0.022 0.021 95.1 0.252 0.251 0.002 0.84 0.468 0.022 0.022 95.9

0.30
0.30

4
F 0.220 0.219 -0.030 -11.94 1.319 0.021 0.021 69.6 0.248 0.247 -0.002 -0.66 0.540 0.023 0.023 94.0

0.60 T 0.244 0.243 -0.006 -2.27 0.945 0.030 0.030 94.5 0.258 0.256 0.008 3.13 0.998 0.031 0.031 95.0

0.30
0.30

6
F 0.218 0.218 -0.032 -12.66 1.440 0.021 0.021 67.4 0.246 0.245 -0.04 -1.59 0.721 0.023 0.027 93.7

0.55 T 0.249 0.249 -0.001 -0.48 0.951 0.031 0.031 95.1 0.258 0.255 0.008 3.04 1.044 0.031 0.031 95.2

0.40
0.40

4
F 0.218 0.217 -0.032 -12.94 1.491 0.022 0.021 68.2 0.246 0.245 -0.004 -1.67 0.614 0.025 0.024 93.5

0.69 T 0.250 0.249 0.015 0.060 1.032 0.032 0.032 94.9 0.261 0.259 0.011 4.22 1.242 0.034 0.034 94.9

0.40
0.40

6
F 0.241 0.240 -0.010 -3.89 0.844 0.027 0.028 91.2 0.252 0.252 0.002 0.82 0.734 0.027 0.027 95.6

0.63 T 0.253 0.253 0.002 1.12 1.317 0.032 0.034 93.7 0.264 0.262 0.014 5.54 1.418 0.034 0.035 94.4

Table 6.6: nsim = 1000;N = 400; (true) quadratic marker profile µ(t) = 10− t− 0.10t2;

σ2
b0

= σ2
b1

= 2.25. Column ”Lost” (F,T) stands for (intermittent, ”lost assessment”) missing

data scenarios.

Extended Cox Model JM B-splines

MR
(%)

Eff.
MR
(%)

odds Lost
Est.

(mean)
Est.

(median)
Bias

Bias
%

MSE ASE ESE CP
Est.

(mean)
Est.

(median)
Bias %Bias MSE ASE ESE CP

0 0 - - 0.244 0.244 -0.006 -2.25 0.204 0.014 0.013 94.0 0.252 0.252 0.002 0.94 0.225 0.015 0.015 96.0

0.30
0.30

4
F 0.228 0.227 -0.022 -8.91 0.650 0.014 0.012 63.1 0.246 0.245 -0.004 -1.65 0.272 0.016 0.016 93.9

0.60 T 0.260 0.259 0.010 3.80 0.545 0.019 0.021 91.1 0.234 0.233 -0.016 -6.43 0.630 0.019 0.019 82.2

0.30
0.30

6
F 0.225 0.224 -0.025 -10.06 0.794 0.014 0.013 54.7 0.242 0.241 -0.008 -3.27 0.332 0.016 0.016 90.8

0.55 T 0.264 0.263 0.014 5.43 0.663 0.020 0.022 90.0 0.232 0.232 -0018 -7.18 0.701 0.019 0.019 80.5

0.40
0.40

4
F 0.224 0.224 -0.026 -10.37 0.859 0.014 0.014 56.0 0.233 0.231 -0.017 -6.91 0.567 0.017 0.016 79.0

0.68 T 0.268 0.267 0.018 7.25 0.844 0.021 0.023 87.9 0.229 0.227 -0.021 -8.56 0.905 0.020 0.021 74.4

0.40
0.40

6
F 0.245 0.244 -0.005 -1.97 0.383 0.017 0.019 89.9 0.222 0.221 -0.028 -11.26 1.099 0.017 0.018 58.4

0.63 T 0.269 0.268 0.019 7.43 0.890 0.022 0.024 87.1 0.227 0.226 -0.023 -9.07 0.964 0.020 0.021 71.5
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Chapter 7

Final remarks

The extensive adoption of information technology has impacted numerous aspects of life,
encompassing healthcare and the hospital environment. This has allowed for the collection
of enormous volumes of data regarding the clinical histories of individuals. Repeated mea-
surements on the same subject of a certain marker of interest provide more information than
a single assessment, thus obtaining a broader overview of the evolution of the phenomenon
being studied. During my doctoral period, I took part in several projects in the ICU context
in which data from different markers, measured over time, were available ([23],[24]). These
markers are constantly monitored but, often, their relationship to clinical outcome is not
fully known. Therefore the increasing availability of data offers a considerable volume of
information, and one of the goals is often to assess the association between temporal changes
in longitudinal profiles and a clinical end-point. The goal is then to quantify in a dynamic
context the intensity of this association, taking into account the correlation between indi-
vidual observations on the same subject. In addition, during the observation period, some
measurements may not be taken for various reasons, and often patients are not observed for
the same period of time, often due to the occurrence of a certain clinical end-point, inter-
rupting the measurement of the marker of interest, resulting in what are called unbalanced
datasets. These longitudinal profiles are thus affected by missing data over time or trunca-
tions due to the interruption of measurements, and these issues, while they may complicate
analyses, can be informative when examined through the use of appropriate techniques. All
these aspects were covered within the thesis work.
The second chapter then briefly reviewed the main state-of-the-art methods usually em-
ployed to model longitudinal profile trajectories. The mixed-effects model was presented
as the most relevant approach in this regard, since, unlike a classical regression model in
which observations are assumed to be independent, or a Generalized Estimating Equations
approach, which estimates a marginal model for the entire population under study, this
methodology allows for a conditional estimation of trajectories, taking into account the
correlation between observations on the same subject through the introduction of latent
variables, named random effects. Indeed, this modeling approach falls into the category
of conditional models and thus has both a marginal, overall, interpretation and a further
subject-specific interpretation, which is very useful, for example, in the context of precision
medicine. Moreover, the estimates obtained are valid even in a context affected by missing
data, as long as the nature of the missing process is properly assessed. We discussed in
detail from a theoretical point of view, the taxonomy of missing data types because, also
motivated by the clinical context in which I have worked, this condition is often present
also within prospective clinical studies. To assess the association between a biomarker and
an end-point, one of the approaches that is most widely used in practice is the Cox model,
which, in its extended version (ECM), allows for one or more time-dependent variables to be
taken into account. While this approach has several advantages over parametric regression
models that require proper specification of the baseline hazard, it also has several limitations,
especially in the way individual-specific observations that update over time are treated. In
particular, in addition to disregarding the likely correlation between individual measure-
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ments on the same subject, longitudinal trajectories of markers are assumed to be free of
measurement error, which is not always reasonable for endogenous variables, as biomarkers,
and are assumed to be constant between one visit and the next. This approximation, which
goes by the name of LOCF (Last Observation Carried Forward), may be trivial if not en-
tirely questionable, especially if the times considered are not so tight. Among the modeling
approaches that allow to overcome this limitation we can find the Joint Models (JM), the
origin of which dates back to the last century, but for which until a few years ago there
was a lack of software solutions capable of estimating all the parameters in reasonable times
and therefore being implemented in applications. JMs are composed of two sub-models:
an event sub-model, for which usually a proportional hazard model is specified (for which
the shape of the baseline hazard must also be specified), and a sub-model for the longitu-
dinal part that uses the mixed-effects models mentioned above. These two sub-models are
joined through the use the subject-specific random effects and the strength of the associa-
tion between dynamically observed marker and event risk over time is quantified through a
link parameter. The subject-specific random effects in the longitudinal sub-model are thus
shared with the event sub-model and, for this reason, this model belongs to the category of
”shared parameters models”. Thus one of the main differences between the two approaches
lies in the fact that the ECM extrapolates longitudinal trajectories using observed values,
whereas the JMs, use these to interpolate individual trajectories. This technique has sev-
eral advantages, especially in a context where data are affected by missingness, where the
ECM would struggle in certain situations to decently approximate the temporal trajectories
of biomarkers. However the benefits are not always free and interpolation of trajectories
presents several challenges, starting from the difficulty in finding the correct model. If in
fact the LOCF approximation may be inappropriate, it is equally true that the dynamic
predictions obtained from JMs, may suffer from several problems, such as falling outside the
range of a certain biomarker: therefore the use of one rather than the other approach has to
be evaluated on a context-dependent basis. Using data from the ORANGE study, a compar-
ative analysis was presented within the thesis that used the two approaches to evaluate the
association between mortality and the Neurological Pupil Index (NPi), a time-dependent
variable, in patients with ABI admitted to ICU. We have seen why in that case ECM might
have been a more reasonable approach to assess the association with death at 6 months,
while to assess the association with mortality over a shorter period, the use of the JM was
appropriate, although it had some limitations. The ORANGE (Outcome pRognostication
of Acute brain lesion with the NeuroloGical pupil indEx) study ([64]) was an international,
multicenter, prospective, observational study that enrolled adult patients admitted to the
Intensive Care Unit (ICU), requiring intubation and mechanical ventilation after traumatic
brain injury (TBI), subarachnoid hemorrhage (SAH) or intracranial hemorrhage (ICH), in
13 hospitals in Europe and the United States. Because pupillary abnormalities are associ-
ated to poor outcomes, particularly in the case of patients with acute brain injury (ABI),
the study required that patients underwent assessment of pupillary function about every
4 hours during the first 7 days after ICU admission, using an electronic device. Pupillary
examination is an essential component of neurological assessment, and patient observations
were quantified by an algorithm coded within the electronic pupillometer that compositely
took into account several parameters to measure pupillary reactivity and global midbrain
function, returning the NPi, a numerical value ranging from 0 to 5. The objectives of the
study were thus to evaluate the prognostic value of NPi in predicting neurological functional
outcome, measured by means of the GOSE - Glasgow Exteded Coma Scale and dichotomized
as unfavorable GOSE ≤ 4 vs. favorable (GOSE ≥ 5), and mortality, at 6 months. Logistic
regressions, adjusted for age, ABI diagnosis, and motor Glasgow Coma Scale at ICU admis-
sion, were used to assess the association between NPi and functional neurological outcome,
showing that increasing abnormal values (NPi< 3, NPi= 0) were statistically associated with
an unfavorable outcome. Different Extended Cox models adjusted for the same variables,
with NPi was included as a time-dependent variable, were used to evaluate the association
between NPi and 6-month mortality. From the results, presented in terms of Hazard Ratios
(HR), it was seen that an increase in the number of abnormal NPi measurements over time
was associated with an increased risk of death. It was also shown that two consecutive
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NPi measurements of zero or deterioration of NPi to a value of zero were associated with
a consistent increase in mortality risk. In contrast, mortality risk did not increase when an
NPi value of zero rose to a higher value. Our results also offered other valuable insights
into the interpretation of NPi values. Indeed, while the absence of pupillary reactivity (i.e.,
NPi=0) is an established indicator of unfavorable outcome, an abnormal NPi was previously
defined as less than 3. In this case, repeated NPi measurements improved the sensitivity
analysis and identified a range of NPi, between 3 and 4, that was already associated with
increased mortality risk. For that, in the context examined within the study, NPi monitoring
could identify an at-risk patient population that would benefit from careful and intensive
observation to manage secondary brain deterioration and target specific interventions before
irreversible damage occurs. Instead of focusing on a single measurement or cut-off, clinicians
should consider NPi as a tool for early quantification of the extent of midbrain dysfunction,
ranging from very severe (NPi= 0), to severe (NPi< 3) and moderate (NPi 3-4). These
results indicate the importance of NPi trajectories by providing evidence for routine use of
this tool. This is of considerable importance as including reliable, non-invasive neurological
monitoring in clinical practice is extremely beneficial, as it provides a safe alternative to
invasive procedures, reducing the associated risks and complications for the patient. The
study results were published in “The Lancet Neurology” ([51]).

We also performed a simulation study whose objective was to evaluate the capabilities
and robustness of ECM and JM in correctly estimating the association, in terms of HR, be-
tween a dynamic marker and a time-to-event, when the profile of the longitudinal covariate
was affected by specific missing processes, in different ways. For this purpose, we generated
both individual profiles of longitudinal markers, assuming two different possible functional
forms (linear and quadratic) and considering two different degrees of variability, obtained
through two different variances of the random effect distributions during the data generation
process, and the time-to-event of the subjects, starting from a JM specification. Then, once
we obtained the ”complete case” datasets, we were going to modify the trajectories of the
individual markers, simulating missing processes with a probabilistic approach, considering
two missing rates (MR), i.e., 30% and 40%: thus only some longitudinal profiles were mod-
ified, but many others remained unchanged. We drew two possible scenarios: in the first
case, the biomarker profiles lost some observations, resulting in intermittent patterns. In
this situation, the marker had some observed values, while others were unobserved. In the
second case, we considered a scenario in which subsequent values are not collected after the
first missing value in the biomarker profile, i.e., once a visit is missed. In such a situation,
which we called the ”lost assessment” case, the marker still had some observed values and
unobserved values but the resulting profile wad ”truncated.” Therefore, the distributions of
the ”complete case” marker profile and the resulting distributions following data amputation
were different and because the missingness depended on the biomarker value itself, we de-
signed a context equivalent to a Missing Not at Random (MNAR) scenario. In all cases, the
time-to-event data remained available for analysis, i.e., the simulated event status and time
per patient was observed during follow-up without being altered. In other words, missing
some values in the profiles of individual markers did not imply that the individual dropped
out of the study. Then on the simulated data we fit the extended Cox model and, for the
linear case, three JMs, different from each other according to the specified baseline hazard,
while for the quadratic case we used only the JM that seemed more robust in the linear
case, specifying an approximate baseline hazard with B-splines, to limit the computational
time, because the simulations were extremely time-consuming.

Results were presented by distinguishing the functional form of the longitudinal sub-
model and the variability of biomarkers by statistical summaries typically used to assess
outcomes in a simulation study ([91]). On the complete case data both approaches showed
good HR estimation abilities in all scenarios considered. In the linear case with intermittent
data, the two approaches showed a good degree of robustness in the case of low biomarker
variability, but the performance worsened when variability increased. In particular, the
ECM showed the worst performance already at a 30% MR, while the JMs lost their good
properties most noticeably only in the case of 40% MR. In the quadratic form case, on the
other hand, the ECM underestimated the HR, both with low and high biomarker variability,
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where the performance got even worse. In the ”lost assessment” case, on the other hand,
we obtained better results for the ECM, compared to the corresponding intermittent data
scenarios, while the JM was found to underestimate HR, predominantly in cases of higher
MR, as expected. The explanation of these results was addressed in the discussion in chapter
six by assuming a sort of ”compensatory effect” of different sources of bias. In conclusion, the
use of Cox and Joint models proved to be appropriate when the data were largely unaffected
by missingness, although the misclassification of trajectories by the ECM due to random
measurement error results in a deterioration of its ability to correctly estimate HR, while
the performance of the JM suffers a significant deterioration only in cases where the data
had a large missing rate. We therefore concluded that further work will be needed to better
understand the causes of some unexpected results in scenarios where many longitudinal
trajectories were truncated early.
From an applied point of view, in the context of the ICU, among the various objectives for
the next works there is that of deploying JMs for the identification of clusters of trajectories
of specific biomarkers to evaluate their prognostic validity in patients suffering from ABI,
using Joint Latent Class Mixed Models ([95]).
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Abstract 

Purpose:  To describe the management of arterial partial pressure of carbon dioxide (PaCO2) in severe traumatic 
brain-injured (TBI) patients, and the optimal target of PaCO2 in patients with high intracranial pressure (ICP).

Methods:  Secondary analysis of CENTER-TBI, a multicentre, prospective, observational, cohort study. The primary 
aim was to describe current practice in PaCO2 management during the first week of intensive care unit (ICU) after TBI, 
focusing on the lowest PaCO2 values. We also assessed PaCO2 management in patients with and without ICP moni-
toring (ICPm), and with and without intracranial hypertension. We evaluated the effect of profound hyperventilation 
(defined as PaCO2 < 30 mmHg) on long-term outcome.

Results:  We included 1100 patients, with a total of 11,791 measurements of PaCO2 (5931 lowest and 5860 high-
est daily values). The mean (± SD) PaCO2 was 38.9 (± 5.2) mmHg, and the mean minimum PaCO2 was 35.2 (± 5.3) 
mmHg. Mean daily minimum PaCO2 values were significantly lower in the ICPm group (34.5 vs 36.7 mmHg, p < 0.001). 
Daily PaCO2 nadir was lower in patients with intracranial hypertension (33.8 vs 35.7 mmHg, p < 0.001). Considerable 
heterogeneity was observed between centers. Management in a centre using profound hyperventilation (HV) more 
frequently was not associated with increased 6 months mortality (OR = 1.06, 95% CI = 0.77–1.45, p value = 0.7166), or 
unfavourable neurological outcome (OR 1.12, 95% CI = 0.90–1.38, p value = 0.3138).

Conclusions:  Ventilation is manipulated differently among centers and in response to intracranial dynamics. PaCO2 
tends to be lower in patients with ICP monitoring, especially if ICP is increased. Being in a centre which more fre-
quently uses profound hyperventilation does not affect patient outcomes.
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Introduction

Changes in the arterial partial pressure of carbon diox-
ide (PaCO2), by modifying the extravascular pH, modu-
late cerebrovascular tone, and hence cerebral blood flow 
(CBF) and cerebral blood volume (CBV) [1, 2]. Hypercap-
nia results in perivascular acidosis, which causes cerebral 
vasodilation, and consequently, an increase in intracranial 
volume. In patients with poor intracranial compliance, 
this could raise intracranial pressure (ICP). On the other 



hand, hyperventilation (HV) induced alkalosis reduces 
vascular calibre, and hence CBV, and can represent an 
effective measure to control intracranial hypertension, 
when ICP remains elevated despite first-line therapies 
[3–6]. However, hypocapnic cerebral vasoconstriction 
can also reduce CBF [7], thus posing the risk of second-
ary ischaemic insults [8]. In a survey across European 
trauma centers, the most frequently reported PaCO2 
target was 36–40  mmHg in the absence of intracranial 
hypertension, which was reduced to 30–35 mmHg when 
ICP was > 20 mmHg [9]. The most recent evidence-based 
guidelines on TBI management provide no definitive rec-
ommendations regarding target PaCO2 levels due to the 
low quality of evidence available on this issue [10, 11].

Consequently, although many patients with severe TBI 
undergo several days of mechanical ventilation, there is 
little evidence-based guidance on PaCO2 targets, and 
clinical practice remains highly variable. A recent con-
sensus on mechanical ventilation in patients with acute 
brain injury suggested aiming for a physiologic range 
of PaCO2 between 35 and 45  mmHg [12], and to only 
use hyperventilation (with an undefined PaCO2 tar-
get) as a short-term therapeutic option in patients with 
evidence of brain herniation. However, the document 
was unable to provide a recommendation on the use of 
hyperventilation in patients who showed significant ICP 
elevation, but no evidence of herniation. A manage-
ment algorithm for patients with intracranial hyperten-
sion, based on expert consensus, suggested the use of 
HV (PaCO2 32–35 mmHg) for controlling ICP only as a 
second-tier treatment, did not support lower PaCO2 lev-
els and recommended against routine hyperventilation to 
PaCO2 below 30 mmHg [13].

The objectives of this study were to assess, in a real-
world context, PaCO2 management and the lowest target 
of PaCO2 in a large cohort of mechanically ventilated TBI 
patients and practice variability between centres to eval-
uate the association between the use of profound HV and 
6-month clinical outcomes.

Methods
Study design and patients
The Collaborative European NeuroTrauma Effective-
ness in Research in Traumatic Brain Injury (CENTER-
TBI study, registered at clinicaltrials.gov NCT02210221) 
is a longitudinal, prospective collection of data from 
TBI patients across 65 centers in Europe. The study was 
conducted between December 19th, 2014, and Decem-
ber 17th, 2017 and details regarding the design and the 
results of the screening and enrolment process have been 
previously described [14–16].

The CENTER-TBI study was approved by the Medi-
cal Ethics Committees in all participating centers, and 

informed consent was obtained according to local 
regulations (https://​www.​center-​tbi.​eu/​proje​ct/​ethic​
al-​appro​val). This project on PaCO2 management was 
preregistered on the CENTER-TBI proposal platform 
and approved by the CENTER-TBI proposal review com-
mittee before starting the analysis (ESM Document 1). 
This report complies with the Strengthening the Report-
ing of Observational Studies in Epidemiology (STROBE) 
reporting guidelines (ESM Table S1).

We included all patients in the CENTER-TBI Core 
study who had a TBI necessitating ICU admission, 
required tracheal intubation and mechanical ventilation, 
had at least two PaCO2 measurements in the first 7 days 
and had been admitted to a study centre that enrolled at 
least ten patients.

Data collection and definitions
Detailed information on data collection is available on 
the study website (https://​www.​center-​tbi.​eu/​data/​dicti​
onary). For the first week in ICU, the daily lowest and 
highest PaCO2 values from arterial blood gases and, if an 
ICP device was inserted, the hourly ICP measures were 
used for analysis.

HV was defined as moderate for PaCO2 rang-
ing between 30 and 35  mmHg and profound for 
PaCO2 < 30 mmHg [10, 13]. Therapy intensity level (TIL) 
was calculated according to the most recent TIL scale 
[17]. Patients with invasive ICP monitoring during the 
first week of ICU stay were classified as ICPm, while those 
who did not receive ICP monitoring during ICU stay 
as no-ICPm. Intracranial hypertension was defined as 
ICP > 20 mmHg.

Objectives
The aims of this study are:

1.	 to describe the PaCO2 values in the first week from 
ICU admission in mechanically ventilated TBI 
patients, and to evaluate practice variability across 
centers, particularly focusing on the lowest targets of 
PaCO2;

Take‑home message 

The manipulation of arterial carbon dioxide levels (PaCO2) is easy, and 
hyperventilation (HV) has been a common ICP-lowering strategy for 
over half a century. However, hyperventilation-induced vasoconstric-
tion is a double-edged sword. It reduces cerebral blood volume and 
intracranial volume, and therefore, lowers ICP

We observed huge variability among centers in PaCO2 values and 
use of HV. Although causal inferences cannot be drawn from these 
observational data, our results suggest that, in patients with severe 
intracranial hypertension, HV is not associated with worse long-term 
clinical outcome



2.	 to assess at a center level the PaCO2 management 
in patients with/without ICP monitoring and with/
without intracranial hypertension;

3.	 to evaluate the association between patient outcomes 
and center propensity to use profound HV.

Outcomes
Mortality and functional outcome (measured as the 
Extended Glasgow Outcome Score, GOSE) were assessed 
at 6  months. All responses were obtained by study per-
sonnel from patients or from a proxy (where impaired 
cognitive capacity prevented patient interview), during 
a face-to-face visit, by telephone interview, or by postal 
questionnaire around 6 months after injury [18]. All eval-
uators had received training in the use of the GOSE. An 
unfavourable outcome was defined as GOSE ≤ 4, which 
includes both poor functional outcome and mortality.

Statistical methods
Patient characteristics were described by means 
(± standard deviation, SD), medians (I–III quartiles, 
Q1–Q3) and counts or proportions, as appropriate. The 
comparison of baseline features according to ICP moni-
toring was performed using Mann–Whitney U test, t test 
and Chi-square test as appropriate. We used the median 
odds ratio (MOR) to estimate the between-centre het-
erogeneity in targeting a PaCO2 of 35–45 mmHg. MOR 
was obtained from a longitudinal logistic mixed-effect 
model on daily lowest PaCO2 adjusted for the IMPACT 
core covariates [19], ICP monitoring, and daily evidence 
of elevated ICP (at least one ICP > 20 mmHg during the 
day); and with a hierarchical random intercept effect’s 
structure (i.e., patients within centers). The same model 
architecture was used to quantify between-centres het-
erogeneity in the use of profound HV.

We resorted to an instrumental variable approach to 
evaluate the association between HV and 6-month out-
comes, trying to minimize the potential measured and 
unmeasured confounding acting in this complex obser-
vational study [20]. This was done by considering the 
propensity of centres to apply profound HV, measured 
as the proportion of daily lowest PaCO2 < 30  mmHg, as 
an instrument in the logistic regression model with a 
random intercept for centers. This model was adjusted 
for some subject-specific covariates that included 
IMPACT core covariates at baseline, ICP monitor-
ing and dose of intracranial hypertension, calculated as 
the area under the ICP profile above 20  mmHg, named 
AUC ICP > 20[21]. The assumptions underlying the IV 
approach were assessed (ESM-Statistical methods).

Tests were performed with a two-sided significance 
level of 5%. All analyses were conducted using R statisti-
cal software (version 4.03).

Results
Of the 4509 patients included in the CENTER-TBI data-
set, 2138 patients with TBI from 51 centers in Europe 
were admitted to ICU. Among these, 1176 required 
mechanical ventilation and had at least two PaCO2 meas-
urements within the first 7 days from ICU admission. 
Excluding the centres that enrolled less than ten patients, 
1100 patients from 36 centers were available for the anal-
ysis (ESM Fig. 1). During the first week of ICU admission, 
a total of 11,791 measurements of PaCO2 were available 
(5931 lowest and 5860 highest daily values).

Patient characteristics
Patient characteristics at hospital admission in the over-
all population and stratified according to the presence 
(n = 751) or not (n = 349) of ICP monitoring, are sum-
marized in Table  1. The median age was 48  years (Q1–
Q3 = 29–64), and most patients were male (74%). 64.7% 
of patients presented with a severe TBI (Glasgow Coma 
Scale, GCS ≤ 8) and 12.5% of cases were complicated by 
thoracic trauma. In 727 (97%) ICPm patients, ICP was 
inserted by the second day of ICU admission.

In the overall population, the mean PaCO2 at ICU 
admission was 39.1 (± 6) mmHg, and the no-ICPm group 
had higher PaCO2 mean values compared to the ICPm 
patients (39.9 ± 6.8 vs 38.7 ± 5.6 mmHg, p < 0.002).

Lowest PaCO2 targets according to centers
Daily minimum PaCO2 distribution during the first week 
for the whole population, and separated by the centre, 
are presented in Fig. 1a. The overall mean lowest PaCO2 
was 35.2 ± 5.4  mmHg with substantial heterogeneity 
between centres, whose means ranged from 32.3 (± 3.7) 
to 38.7  mmHg (± 5.9). This result seems to be related 
more to different management strategies at the centre 
level, rather than reflecting national policies (Fig. 1b). For 
example, among the UK centers (in yellow), two centers 
had a mean PaCO2 value of 32.3 and 36.4 mmHg.

Only 144 (13%) patients had all PaCO2 measurements 
between 35 and 45 mmHg, while 588 (53%) patients had 
at least half of the total PaCO2 measurements in this 
range. Using MOR to quantify between-centre differences 
in targeting the suggested PaCO2 range of 35–45 mmHg, 
we found that, after correction for patient and trauma 
characteristics, there was a 1.72-fold difference in the 
odds of having a PaCO2 range of 35–45 mmHg between 
centres with the highest and lowest rates. After excluding 
390 patients with intracranial hypertension, the percent-
age of patients with all and at least half of the total PaCO2 
measurements between 35 and 45 mmHg raised to 19% 
(111/593) and 64% (380/593), while MOR decreased to 
1.4.



Lowest PaCO2 targets in the presence or not of ICP 
monitoring
Mean minimum PaCO2 values were significantly lower in 
ICPm patients compared to no-ICPm (34.7 ± 4.9  mmHg 
vs 36.8 ± 5.7  mmHg, p < 0.001). Large variability was 
observed among centers in the management of PaCO2 
targets in both subgroups (Fig. 2 and ESM Fig. 2). Some 
centres showed no differences in target PaCO2 when 
ICPm was used (i.e. data points near the line of identity in 
Fig. 2a), but most hospitals tended to adopt lower PaCO2 
targets when ICP was monitored (i.e. data points that 
deviate substantially from the line of identity in Fig. 2a). 
For example, three centers showed a reduction greater 
than 4  mmHg in the mean daily lowest PaCO2 when 
ICP monitoring was available (from 38–38.4 mmHg  to 
33.1–34.2 mmHg).

Lowest PaCO2 in the presence of intracranial hypertension
In the subgroup of patients with ICP monitoring, we 
also explored the attitude of centres in response to epi-
sodes of intracranial hypertension (n = 3646). Some cen-
tres showed no differences in target PaCO2 when ICP 
was elevated (i.e. data points near the line of identity in 
Fig. 2b), but most hospitals tended to adopt lower PaCO2 
targets when ICP was monitored (i.e. data points that 
deviate substantially from the line of identity in Fig. 2b). 
The mean minimum PaCO2 was significantly lower in 
398 patients with at least one episode of intracranial 
hypertension compared to the 240 who did not expe-
rience increased ICP (34.1 vs 35.6  mmHg, p < 0.001). 
Within the group of patients with ICP monitoring in 
place, significant inter-centre differences were observed 
in the mean lowest PaCO2, both in the absence and pres-
ence of intracranial hypertension (ESM Fig. 3).

Fig. 1  (a) Distributions of the daily lowest PaCO2 recorded in the first 7 days of ICU in each participating centre (coloured by country) and overall 
(grey area). These distributions were estimated by a Gaussian kernel density. (b) Centre-specific mean values (coloured by country) of daily lowest 
PaCO2 with the corresponding 95% confidence intervals. The solid vertical line represents the overall mean of daily lowest PaCO2 values, and the 
size of the dots is proportional to the number of patients in the centre. PaCO2 the partial pressure of carbon dioxide, AT Austria, BE Belgium, DE 
Germany, ES Spain, FI Finland, FR France, HU Hungary, IT Italy, LT Lithuania, NL Netherlands, NO Norway, SE Serbia, UK United Kingdom



Profound hyperventilation
An episode of profound HV (PaCO2 < 30  mmHg) was 
recorded on 727 occasions during the first week of ICU 
admission in 397 (36%) patients (57% had one, 22% two 
and 10% three occurrences). Results from the longitu-
dinal mixed-effects model show notable heterogeneity 
between centres on the use of HV, even after adjusting 
for patient and trauma characteristics, with a MOR of 
2.04 (Fig. 3, ESM Table 1). We found a significant posi-
tive association between the occurrence of increased 
ICP and the use of HV. Among ICPm patients, even 

after correction for covariates, the odds of HV in a day 
with elevated ICP was nearly three times that in a day 
with controlled ICP (OR = 4.34 95% CI = 4.25-4.44, 
p value <  0.0001 vs OR = 1.47  95% CI = 0.97-2.22, p 
value = 0.03167). Finally, HV was less applied from day 
1 to 7 (OR of HV per day = 0.83; 95% CI = 0.82–0.84, p 
value < 0.0001).

Neuromonitoring
Indirect CBF monitoring, using jugular bulb venous 
oxygen saturation or brain tissue oxygenation, was not 

Table 1  Baseline demographic and  clinical characteristics, including  trauma characteristics, clinical presentation, 
and  neuroimaging features at  ICU admission in  the overall population and  stratified according to  the presence or not 
of ICP monitoring

Hypotension was defined as a documented systolic blood pressure < 90 mmHg; hypoxia was defined as a documented partial pressure of oxygen (PaO2) < 8 kPa 
(60 mmHg), oxygen saturation (SaO2) < 90%, or both; PaCO2 data refer to values at ICU admission

PaCO2 the partial pressure of carbon dioxide, SD standard deviation, Q1–Q3 I and III quartiles, ISS injury severity score, TBI traumatic brain injury, GCS Glasgow Coma 
Scale, ICPm intracranial pressure monitored, ICU intensive care unit

Characteristic Overall (n = 1100) no-ICPm (n = 349) ICPm (n = 751) P value

Age (years), median (Q1–Q3) 48 (29–64) 53 (31–69) 46 (28–61)  < 0.001

Sex, n (%) Female 284 (25.8) 89 (25.5) 195 (26) 0.929

Thoracic trauma, n (%) Yes 138 (12.5) 42(12) 96 (12.8) 0.802

ISS, median (Q1–Q3) 34 (25–48) 34 (25–43) 34 (25–48) 0.011

Hypotension, n (%) Yes 178 (17.4) 60 (17.7) 118 (17.3) 0.936

Not available 78 10 68

Hypoxia, n (%) Yes 182 (17.9) 53 (15.6) 129 (19) 0.217

Not available 82 10 72

Severity TBI, n (%) GCS ≤ 8 367 (35.3) 147 (44.3) 220 (31)  < 0.001

GCS > 8 674 (64.7) 185 (55.7) 489 (69)

Not available 59 17 42

Pupillary reactivity, n (%) Both reactive 799 (75.8) 280 (82.8) 519 (72.5) 0.001

One reactive 89 (8.4) 22 (6.5) 67 (9.4)

Both unreactive 166 (15.7) 36 (10.7) 130 (18.2)

Not available 47 11 35

GCS motor, n (%) None 460 (42.7) 129 (37.7) 331 (45)  < 0.001

Extension 51 (4.7) 9 (2.6) 42 (5.7)

Abnormal flexion 60 (5.6) 10 (2.9) 50 (6.8)

Normal flexion 89 (8.3) 30 (8.8) 59 (8)

Localizes/obeys 418 (38.8) 164 (48) 254 (34.5)

Not available 22 7 15

Marshall CT classification, n (%) 1 63 (6.5) 48 (15.6) 15 (2.3) 0.0005

2 416 (42.9) 167 (54.2) 249 (37.7)

3 98 (10.1) 17 (5.5) 81 (12.3)

4 19 (2) 3 (1) 16 (2.4)

5 6 (0.6) 2 (0.6) 4 (0.6)

6 367 (37.9) 71 (23.1) 296 (44.8)

Not available 131 41 90

Overall PaCO2 (mmHg), mean (SD) 39.10 (6) 39.93 (6.8) 38.72 (5.6) 0.002

Lowest PaCO2 (mmHg), mean (SD) 34.66 (5.98) 35.92 (6.67) 34.09 (5.56)  < 0.001

Highest PaCO2 (mmHg), mean (SD) 43.68 (8.1) 44.07 (8.6) 43,5 (7.86) 0.287



used frequently. No differences were found in their use 
in patients receiving profoundly HV (jugular bulb venous 
oxygen saturation, SjvO2: 2.4% vs profound HV 3.5%, p 
value = 0.380; brain tissue oxygenation, PbtO2: 14.2% vs 
profound HV 13.9%, p value = 0.937). However, the use 
of profound HV was associated with significantly higher 
use of more aggressive treatment, expressed as mean TIL 
(9.7 vs 6.3 p value < 0.001). In particular, patients who 
received profound hyperventilation were more likely to 
have decompressive surgery (8.6 vs 4.8, p value < 0.001) 
and hyperosmolar therapy (low dose 12.7 vs 5.5, p 
value < 0.001; high dose 16.8 vs 5.7, p value < 0.001).

6 months mortality and neurological outcome
Overall, of the 1100 patient cohort, 165 died before ICU 
discharge (15%). Of the 970 patients for whom 6-month 
outcomes were available, 246 (25.4%) died, and 529 
(54.5%) experienced unfavourable functional outcomes 
(GOSE ≤ 4). The 6  months mortality rate was 29% in 
patients who had at least one episode of profound HV 
and 23% in those who did not (p value = 0.045), while 
the rates of unfavourable GOSE were 64% vs 49% in the 
two groups, respectively (p value < 0.001). The percentage 

of patients who received profound HV in the first seven 
days from admission ranged from 1 to 30% between hos-
pitals. In the IV analysis, the propensity to apply pro-
found HV (defined by the use of PaCO2 < 30  mmHg) 
did not significantly increase mortality or unfavourable 
functional outcome, after adjusting for the dose of intrac-
ranial hypertension. Patients in hospitals that used 10% 
more profound HV had 1.06 higher odds of mortality 
compared to hospitals where profound HV was applied 
less often (95% CI = 0.77–1.45, p value = 0.7166) and the 
OR for the same comparison was 1.12 (95% CI = 0.90–
1.38, p value = 0.3138) for an unfavourable functional 
outcome (Table 2).

Discussion
The current literature is inconclusive regarding the opti-
mal ventilatory strategy to adopt in patients with TBI 
and, though there is increasing caution surrounding the 
use of HV, the translation of expert consensus recom-
mendations into clinical practice remains uncertain. This 
study examined the PaCO2 management during mechan-
ical ventilation at a centre level in prospectively collected 

Fig. 2  (a): Scatterplot of the mean daily lowest PaCO2 values in no-ICPm vs ICPm patients in each participating centre (coloured by country). The 
dashed line represents the line of identity, and a data point on or close to the line indicates that PaCO2 targets in that centre were not affected by 
the presence of ICP monitoring. The gradient of grey zones on either side of the grey area indicates increasing deviations from this line of identity 
between values in no-ICPm vs ICPm patients. Each gradation in shade representing one unit change (mmHg). The size of the dots is proportional 
to the number of ICPm patients at a centre. The outlier centre from Hungary included only two no-ICPm patients, out of a total of 12 patients, with 
only two measurements each before ending ventilation. (b) Mean of the daily lowest PaCO2 values in ICPm patients with no episodes of elevated 
ICP (ICP ≤ 20 mmHg) vs ICPm patients with at least one episode of elevated ICP (> 20 mmHg) in each participating centre (coloured by country). The 
dashed line represents the line of identity, and the size of the dot is proportional to the number of ICPm patients with elevated ICP. PaCO2 the partial 
pressure of carbon dioxide, AT Austria, BE Belgium, DE Germany, ES Spain, FI Finland, FR France, HU Hungary, IT Italy, LT Lithuania, NL Netherlands, NO 
Norway, SE Serbia, UK United Kingdom



observational data from a large multicentre cohort of TBI 
patients, focusing on the use of HV.

Our main findings are:

 	• there is substantial practice variation among coun-
tries and centers regarding PaCO2 levels and the low-
est PaCO2 adopted in TBI patients;

 	• patients who received ICP monitoring were managed 
at lower PaCO2 compared to patients in whom such 
monitoring was not used;

 	• patients who did receive ICP monitoring and expe-
rienced episodes of increased ICP were managed at 
lower PaCO2 levels than those who did not have ICP 
elevations; profound HV was commonly used in such 
patients;

 	• we observed no association between the risk of 
mortality or unfavourable functional outcome and 
more frequent use of profound hyperventilation 
(PaCO2 < 30 mmHg).

Appropriate management of PaCO2 is a critical 
requirement in mechanically ventilated patients with 
TBI, since carbon dioxide is one of the major determi-
nants of cerebral vascular physiology, and therefore cer-
ebral blood flow and volume. The effect of the interplay 
between carbon dioxide and perfusion pressure on the 
cerebral circulation results in a sophisticated modula-
tion of cerebrovascular resistance and tone, with hyper-
capnia causing cerebral vasodilation, and hypocapnia, 
vasoconstriction.

The only randomized controlled trial [22] addressing 
the benefit of prophylactic hyperventilation was con-
ducted thirty years ago, and randomised TBI patients 
into three categories: control (n = 41), hyperventila-
tion (n = 36), and HV + tromethamine (an H+ accep-
tor used to treat metabolic acidosis; n = 36). This setting 
is different from the current context, as the putatively 
normoventilated controls had PaCO2 values in the 
hypocapnic range (35  mmHg), and the HV utilized was 

Fig. 3  Caterpillar plot of between-centre variation in using profound HV. The figure shows the predicted random intercepts for each centre, on the 
log-odds scale, along with their 95% prediction intervals. Higher values indicate a higher propensity to use profound HV. A longitudinal random 
effect logistic model was used to correct for random variation and adjusted for the core IMPACT covariates and elevated ICP. The MOR summarises 
the between-centre variation: a MOR = 1 indicates no variation, while the larger the MOR is, the larger the variation present. The median odds ratio 
(MOR = 2.04) refers to the odds of using profound HV between two randomly selected centres for patients with the same covariates and (compara-
ble) random effects



profound (PaCO2 25  mmHg). These discordances with 
current practice, the limited number of patients, and the 
low incidence of episodes of intracranial hypertension 
make the results difficult to interpret.

A recent consensus still recommends targeting a nor-
mal range of PaCO2 values in the absence of increased 
ICP [12]. However, in the case of increased ICP, no agree-
ment was achieved regarding the role of HV, provid-
ing evidence of the current uncertainty in this area [12]. 
Although induced hypocapnia is considered an efficient 
second line measure to reduce ICP, clinicians remain 
worried about potential cerebral ischemic complications 
of hyperventilation [8, 23]. Coles et  al. used positron 
emission tomography in a cohort of 30 patients to show 
that the acute application of HV resulted in a reduction 
of cerebral blood flow and an increase in oxygen extrac-
tion fraction and the ischemic brain volume [23]. These 
results have left an indelible imprint on the way HV is 
perceived by intensivists, but they do not represent a ran-
domized trial. Other authors suggest that mild HV may 
reduce ICP without leading to pathological changes of 
brain metabolism and oxygenation measured through 
cerebral microdialysis and PbtO2 [24] or energy failure. 
Moreover, Diringer et al. demonstrated that HV reduces 
global cerebral blood flow while increased oxygen extrac-
tion fraction leaving cerebral metabolic rate for oxygen 

unchanged, concluding that it is unlikely that HV causes 
neurological injury [25, 26].

Although some concerns still exist, PaCO2 reduction 
is still widely used in the clinical setting for ICP control. 
The most common PaCO2 target declared by clinicians in 
the absence of intracranial hypertension (35–40 mmHg) 
is higher than in the case of raised ICP (30–35  mmHg) 
[9]. Similarly, in a retrospective study of 151 patients with 
TBI, the PaCO2 target adopted in clinically stable ICP 
was 36 ± 5.7 mmHg, whereas in the case of increased ICP 
it was 34 ± 5.4  mmHg [27]. Besides, a recent consensus 
on ICP treatment suggested considering HV to PaCO2 
of 30–32  mmHg when ICP is elevated in patients not 
responding to Tier 1 and 2 treatment [13].

Our data document a divergence between suggestions 
from literature and practice: nearly half of the daily lowest 
PaCO2 measurements in the first week were < 35 mmHg. 
Moreover, in presence of ICP monitoring, clinicians use 
a lower target of PaCO2. However, we also saw wide vari-
ability in PaCO2 levels between centres, both in terms 
of the overall values, and the lowest levels of PaCO2 
observed. These differences were seen not just across 
the whole study cohort, but also in subgroups of patients 
with and without ICP monitoring, and those with and 
without episodes of intracranial hypertension in the first 
week. HV in presence of high ICP was frequently used, 

Table 2  Results of  the logistic mixed-effect model on  6-month outcomes by  the instrumental variable approach 
with complete data (n = 919)

OR Odds ratio, CI confidence intervals, SD standard deviation
*  Centre HV propensity is calculated as the percentage of daily lowest PaCO2 < 30 mmHg out of all available measures

°Standardized AUC ICP > 20 is the dose of intracranial hypertension calculated as the area under the ICP profile above 20 mmHg

Outcome 6-month GOSE 6-month mortality
OR (95% CI) p value OR (95% CI) p value

Centre HV tendency (per 10% change)* 1.12 (0.9–1.38) 0.3138 1.06 (0.77–1.45) 0.7166

Age 1.04 (1.03–1.05) < 0.0001 1.05 (1.04–1.06) < 0.0001

GCS Motor Score
 None 2.08 (1.46–2.95) < 0.0001 2.28 (1.44–3.62) 0.0004

 Extension 5.47 (2.39–12.51) < 0.0001 1.82 (0.74–4.48) 0.1886

 Abnormal flexion 3.29 (1.63–6.65) 0.0009 1.69 (0.65–4.37) 0.2794

 Normal flexion 1.45 (0.82–2.56) 0.1980 1.2 (0.55–2.64) 0.6421

 Localizes/obeys 1 1

Pupilar reactivity
 Both reacting 1 1

 One reacting 1.98 (1.14–3.43) 0.0146 2.18 (1.16–4.11) 0.0154

 Both unreacting 3.29 (2.05–5.27) < 0.0001 6.04 (3.69–9.87) < 0.0001

ICP monitoring
 No 1 1

 Yes 1.79 (1.27–2.51) 0.0008 1.00 (0.65–1.54) 0.9948

 AUC ICP > 20 (per one SD change)° 3.72 (1.94–7.15) < 0.0001 5.15 (2.86–9.25) < 0.0001



particularly in the first few days after admission, and was 
often combined with other ICP-lowering therapies such 
as osmotic agents and decompressive craniectomy. Inter-
estingly, centres that used HV more frequently were not 
more likely to routinely apply more advanced neuromon-
itoring techniques for early detection of impaired cer-
ebral blood flow and cerebral oxygen availability.

There is no strong evidence regarding the possible 
benefits or harms of profound HV on patient outcomes. 
However, a single retrospective analysis of 251 brain-
injured patients [28] reported that, when compared to 
controls, patients who underwent prolonged HV (PaCO2: 
25–30  mmHg; mean duration = 10, min–max = 5–41  h) 
experienced lower mortality (9.8 vs. 32.8%) but a higher 
rate of poor functional outcome.

We found that being treated in a centre where pro-
found hypocapnia is more frequently used compared to 
centers where it is rarely used was not significantly asso-
ciated with a higher rate of mortality or poor functional 
outcome.

In summary, our results suggest that moderate HV is 
widely used in severely brain-injured patients, especially 
when ICP is monitored, and in case of elevated ICP.

Limitations
Although our results may provide useful context with 
an important clinical message for physicians, we believe 
they should be interpreted with caution for several rea-
sons. First, 6 months GOSE and mortality are influenced 
by several other factors, such as systemic and ICU com-
plications, as well as post-ICU events. Therefore, based 
on observational data, it is speculative to draw a direct 
causal relationship between PaCO2 and outcome: fur-
ther randomized controlled studies are needed to assess 
the effect of PaCO2 more precisely and in particular HV, 
on the outcome. Second, this is an analysis of data from a 
large study, which primarily addressed the epidemiology, 
clinical care and outcome of TBI. However, as respiratory 
management was not a primary focus of the study, more 
specific data on ventilatory management of these patients 
are missing, and hence unavailable to strengthen our 
analysis. Data on the incidence and timing of pulmonary 
complications such as acute respiratory distress respira-
tory syndrome and ventilator-associated pneumonia, the 
use of ventilatory strategies used to manipulate PaCO2, 
and the ventilator settings used in our study population 
are unavailable. Third, the outcome was evaluated at 
6 months, which can be considered as an early measure-
ment of outcome after TBI, and further long-term evalu-
ations would have been desirable. Fourth, we did not 
specifically take into consideration the temperature man-
agement of the patients, which can importantly affect 
PaCO2 values. However, the measurements of PaCO2 are 

automatically corrected for temperature from the arterial 
blood gases machines, and we aimed to assess the targets 
of PaCO2 achieved, regardless of the effects of different 
factors on its final value.

Finally, in our dataset only the daily lowest and highest 
PaCO2 values were collected, thus missing possible changes 
in PaCO2 and pulmonary function parameters that may 
occur suddenly and repeatedly during the day. However, 
our analysis includes data on daily PaCO2, thus providing a 
longitudinal view of PaCO2 management over time.

Conclusions
In a large cohort of mechanically ventilated TBI patients, 
we found substantial between-centre variations in PaCO2, 
but with a large proportion of patients being managed at 
PaCO2 levels below those suggested by expert consensus 
statements. On average, patients who had ICP moni-
tors in place had significantly lower PaCO2 levels than 
those that did not, and amongst ICP monitored patients, 
PaCO2 levels were lower in patients who had episodes 
of intracranial hypertension—suggesting that HV is still 
used for ICP management. Profound hyperventilation 
(PaCO2 < 30  mmHg) was not uncommon. However, a 
centre that had a greater propensity to use profound HV 
did not worsen 6-month mortality or functional out-
come. Notwithstanding this, we believe that the available 
evidence still makes the case for caution in the use of HV, 
with careful consideration of risks and benefits on a case-
by-case basis. Our data provide no basis for dismissing 
continuing concerns regarding prophylactic or profound 
hyperventilation. We need randomized controlled trials 
and high-level evidence guidelines to support rational 
choices regarding optimal ventilation management and 
PaCO2 targets in patients with TBI.
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Abstract 

Purpose:  The effect of high arterial oxygen levels and supplemental oxygen administration on outcomes in trau-
matic brain injury (TBI) is debated, and data from large cohorts of TBI patients are limited. We investigated whether 
exposure to high blood oxygen levels and high oxygen supplementation is independently associated with outcomes 
in TBI patients admitted to the intensive care unit (ICU) and undergoing mechanical ventilation.

Methods:  This is a secondary analysis of two multicenter, prospective, observational, cohort studies performed in 
Europe and Australia. In TBI patients admitted to ICU, we describe the arterial partial pressure of oxygen (PaO2) and 
the oxygen inspired fraction (FiO2). We explored the association between high PaO2 and FiO2 levels within the first 
week with clinical outcomes. Furthermore, in the CENTER-TBI cohort, we investigate whether PaO2 and FiO2 levels may 
have differential relationships with outcome in the presence of varying levels of brain injury severity (as quantified by 
levels of glial fibrillary acidic protein (GFAP) in blood samples obtained within 24 h of injury).

Results:  The analysis included 1084 patients (11,577 measurements) in the CENTER-TBI cohort, of whom 55% had an 
unfavorable outcome, and 26% died at a 6-month follow-up. Median PaO2 ranged from 93 to 166 mmHg. Exposure to 
higher PaO2 and FiO2 in the first seven days after ICU admission was independently associated with a higher mortality 
rate. A trend of a higher mortality rate was partially confirmed in the OzENTER-TBI cohort (n = 159). GFAP was inde-
pendently associated with mortality and functional neurologic outcome at follow-up, but it did not modulate the 
outcome impact of high PaO2 levels, which remained independently associated with 6-month mortality.
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Introduction

In patients with traumatic brain injury (TBI), hypox-
emia is a major predictor of hospital and 6-month 
mortality [1]. Oxygen supplementation aims to reverse 
tissue hypoxia and, thus, improve cell viability, organ 
function, and survival in critically ill patients [2]. How-
ever, this may lead to administering more oxygen than 
needed to patients admitted to the intensive care unit 
(ICU) [3].

While hyperbaric oxygen is known to be neuro-
toxic [4], it is not clear whether high normobaric oxy-
gen levels may play a detrimental role in the brain [5]. 
Hyperoxia, i.e., high inspiratory oxygen fraction, may 
be associated with excitotoxicity in severe TBI [6]. 
Furthermore, hyperoxemia, i.e., high blood oxygen 
partial pressure levels, may potentially worsen organ 
injury and impact the case fatality rate of critically ill 
patients with TBI [7, 8]. Therefore, not only too low but 
even extreme hyperoxemia might cause injury in TBI 
patients, as David et al. showed [9]. Data on more than 
36,000 mixed ICU patients mechanically ventilated 
with early arterial partial pressure of oxygen (PaO2) 
suggested an independent U-shape association with 
hospital mortality [10]. A recent metanalysis of 32 stud-
ies in acute brain-damaged patients highlighted that 
hyperoxemia, differently defined across studies, was 
associated with an increased risk of poor neurological 
outcomes [11]. Patients with a poor neurological out-
come also had a significantly higher maximum PaO2 
and mean PaO2. These associations were present, espe-
cially in patients with subarachnoid hemorrhage and 
ischemic stroke, but not in traumatic brain injured.

Currently, there is no evidence to support the role of 
hyperoxemia or hyperoxia in a large real-world dataset 
of critically ill patients admitted to ICU with severe TBI 
[12–14].

Therefore, we described variability across centers in the 
blood oxygen levels (i.e., PaO2) and oxygen supplementa-
tion distributions (i.e., inspiratory oxygen fraction, FiO2) 

and investigated whether high PaO2 and FiO2 levels are 
associated with worse 6-month outcomes. We validated 
our findings in the multicenter Australian OzENTER-
TBI database [15]. Finally, we explored whether PaO2 and 
FiO2 levels may contribute differently to outcomes in the 
presence of increasing levels of glial fibrillary acidic pro-
tein (GFAP), a biomarker of brain injury severity.

The aims of this study are to:

1.	 Describe the values and the differences in PaO2 
and FiO2 in the first week from ICU admission in 
mechanically ventilated TBI patients across centers 
in CENTER-TBI;

2.	 assess whether high levels of PaO2 or FiO2 are inde-
pendently associated with 6-month mortality and 
unfavorable neurologic outcome in CENTER-TBI;

3.	 evaluate whether the impact of high levels of oxygen 
exposure or high levels of supplemental oxygen on 
6-month outcome could be worsened by increasing 
brain injury severity, as assessed by acute (first 24 h) 
serum levels of GFAP in the CENTER-TBI cohort.

All these objectives (except the last one) were subse-
quently validated in an external cohort of patients with 
traumatic brain injury from OzENTER-TBI. Hypotheses 
of the current analyses were that exposure to high oxygen 
and FiO2 levels in TBI patients mechanically ventilated 
and admitted to ICU may promote brain injury and have 

Conclusions:  In two large prospective multicenter cohorts of critically ill patients with TBI, levels of PaO2 and FiO2 
varied widely across centers during the first seven days after ICU admission. Exposure to high arterial blood oxygen or 
high supplemental oxygen was independently associated with 6-month mortality in the CENTER-TBI cohort, and the 
severity of brain injury did not modulate this relationship. Due to the limited sample size, the findings were not wholly 
validated in the external OzENTER-TBI cohort. We cannot exclude the possibility that the worse outcomes associated 
with higher PaO2 were due to use of higher FiO2 in patients with more severe injury or physiological compromise. 
Further, these findings may not apply to patients in whom FiO2 and PaO2 are titrated to brain tissue oxygen monitor-
ing (PbtO2) levels. However, at minimum, these findings support the need for caution with oxygen therapy in TBI, 
particularly since titration of supplemental oxygen is immediately applicable at the bedside.

Keywords:  PaO2, FiO2, Traumatic brain injury, GOSE, Mortality, GFAP

Take‑home message 

In two large prospective multicenter cohorts of traumatic brain 
injured patients, arterial and supplemental oxygen levels varied 
widely across centers during the first seven days after admission to 
the intensive care unit.

Exposure to high arterial blood oxygen or high supplemental oxy-
gen—a therapeutic gas immediately titratable at the bedside—was 
independently associated with 6-month mortality, regardless of 
brain injury severity.



a negative impact on both functional neurological dis-
ability and survival.

Methods
Study design and patients
The Collaborative European NeuroTrauma Effective-
ness in Research in Traumatic Brain Injury (CENTER-
TBI study, registered at clinicaltrials.gov NCT02210221) 
is a longitudinal, prospective data collection from TBI 
patients across 65 centers in Europe between December 
2014 and December 2017. The design and the results of 
the screening and enrollment process have been previ-
ously described [12, 13]. The Australia–Europe Neu-
roTrauma Effectiveness Research in Traumatic Brain 
Injury OzENTER-TBI Study was conducted in two des-
ignated adult major trauma centers in Victoria, Australia, 
between February 2015 and March 2017 [15]. The Medi-
cal Ethics Committees approved both studies in all par-
ticipating centers, and informed consent was obtained 
according to local regulations (https://​www.​center-​tbi. 
eu/project/ethical-approval). Therefore, the studies have 
been performed per the ethical standards of the Declara-
tion of Helsinki and its later amendments.

In the OzENTER-TBI Study, patients or families were 
allowed to opt out of data collection. OzENTER-TBI was 
used as an external validation cohort.

Before starting the analysis, this project on PaO2 man-
agement was preregistered on the CENTER-TBI proposal 
platform and approved by the CENTER-TBI proposal 
review committee.

We included all patients in the CENTER-TBI Core 
study who had:

	– a TBI necessitating ICU admission,
 	 – tracheal intubation and mechanical ventilation,
	– at least two PaO2 measurements in the first seven days.

These inclusion criteria were also applied to select 
patients from the OzENTER-TBI study for the validation 
cohort.

This report complies with the Strengthening the 
Reporting of Observational Studies in Epidemiology 
(STROBE) reporting guidelines.

Data collection and definitions
Detailed information on data collection is available on 
the study website (https://​www.​center-​tbi.​eu/​data/​dicti​
onary). The daily lowest and highest PaO2 and FiO2 val-
ues from arterial blood gases—that were collected as 
per the case report form—were evaluated in this study. 
Specifically, we investigated the role of variables repre-
senting different aspects of arterial oxygen levels and 

supplemental oxygen administration during the first 
week of ICU admission, including:

	– The highest PaO2 (PaO2max) and FiO2 (FiO2max) expo-
sures.

 	 – The mean of the highest daily PaO2 (PaO2mean) and 
FiO2 (FiO2mean).

	– The mean of the swings of PaO2 (ΔPaO2mean) and of 
FiO2 (ΔFiO2mean). The swings were calculated daily as 
the difference between the highest and the lowest PaO2 
and FiO2. They represent the average day-to-day vari-
ability of PaO2 and FiO2.

Mortality and functional neurological outcome meas-
ured as the 8-point Extended Glasgow Outcome Score 
(GOSE) were assessed six months post-injury. An unfa-
vorable outcome was defined as GOSE ≤ 4 (i.e., low 
and upper severe disability, vegetative state, or dead), 
including both poor functional outcome and mortality. 
All responses were obtained by trained study person-
nel—blinded to the PaO2 and FiO2 data—from patients 
or from a proxy (where impaired cognitive capacity pre-
vented patient interview), during a face-to-face visit, by 
telephone interview, or by postal questionnaire around 
six months after injury [16].

In CENTER-TBI, the severity of brain injury, tradition-
ally evaluated with clinical and neuroradiologic elements, 
was also gauged by serum brain injury biomarkers. 
For this study, a decision was made to use GFAP, a glial 
cytoskeletal protein, as a proxy measure of brain injury 
severity. GFAP was the brain injury biomarker with the 
highest discriminative performance on computed tomog-
raphy (CT) brain injury [17], and it is strongly associated 
with mortality and long-term outcomes after injury [18, 
19]. GFAP within 24 h after trauma was quantified by an 
ultrasensitive immunoassay using digital array technol-
ogy (Single Molecule Arrays, SiMoA)-based assay (Quan-
terix Corp., Lexington, MA).

Statistical methods
Patient characteristics were described by medians 
(interquartile range, IQR) or means (standard devia-
tions, SD) as appropriate and counts or proportions. 
The role of PaO2max, FiO2max, PaO2mean, FiO2mean or 
ΔPaO2mean, ΔFiO2mean (one at a time) on 6-month mor-
tality and unfavorable neurological outcome was evalu-
ated through mixed-effect logistic regression models, 
adjusting for the IMPACT core covariates (age, Glas-
gow Coma Scale (GCS) motor score and pupillary reac-
tivity) and injury severity score (ISS), with the center 
as a random effect. The assumption of linearity of the 
effect for continuous variables was evaluated using 



splines, and the results of the models were reported 
as odds ratios (OR) along with the corresponding 95% 
confidence intervals (CI). To simplify the clinical inter-
pretation of the OR of the exposure variables, PaO2 and 
FiO2 increases were referred to 10 mmHg and 0.1 each, 
respectively. Then, we enriched the models, includ-
ing GFAP, which was log-transformed to satisfy the 
linearity assumption. We also investigated a potential 
interaction between GFAP and the six variables rep-
resenting the oxygen status (one at a time) through a 
flexible approach based on restricted cubic splines and 
tensor-product splines. The final models were selected 
using standard statistical performance measures such 
as Akaike Information Criteria (AIC) and likelihood 
ratio tests for non-nested and nested models. Finally, 
we used data from the OzENTER-TBI cohort to vali-
date our findings through the same modeling approach 
used for CENTER-TBI. However, here we omitted 
the random term for centers, while including the only 
two centers in the study as a dummy variable. Analy-
ses were done on complete cases and using the MICE 
algorithm for multiple imputations of missing data (ten 
imputed datasets). Tests were performed two-sided 
with a significance alpha level of 5%. To protect from 
the risk of alpha inflation in testing the effect of arterial 
oxygen levels and supplemental oxygen administration 
on outcomes, we also adjusted the p values in the mod-
els according to the approach of Benjamini–Hochberg. 
All analyses were conducted using R statistical software 
(version 4.03).

Results
Of the 4509 patients included in the CENTER-TBI data-
set, 2138 subjects were admitted to ICU and, among 
these, 1084 (median age was 49 [29–65], and 75% male) 
from 51 centers fulfilled the inclusion criteria (Supple-
mental Fig.  1). Half of the population experienced tho-
racic trauma, which in 41.5% of the cases was major.

All 198 patients included in the OzENTER-TBI 
dataset were admitted to ICU and, among these, 159 
fulfilled the inclusion criteria (Supplemental Fig-
ure 1). In OzENTER-TBI, the median age was 39 [24–
65], and 77% of the population was male. Almost 55% 
of the population experienced thoracic trauma, which 
in 46.5% of the cases was severe or critical. A compre-
hensive description of the population of the CENTER-
TBI and OzENTER-TBI study is reported in Table  1. 
Patient characteristics stratified by 6-month mortal-
ity are described in Supplemental Table  1 (CENTER-
TBI) and Supplemental Table  2 (OzENTER-TBI). We 
focused on the highest PaO2 and FiO2 daily levels in 
the current analysis in both cohorts.

CENTER‑TBI
Arterial oxygen levels and supplemental oxygen 
administration
During the first week of ICU admission, a total of 11,577 
measurements of PaO2 were available (5747 lowest and 
5830 highest daily values), for an overall median of PaO2 
and FiO2 of 112  mmHg (IQR 86–144) and 0.4 (IQR 
0.3–0.5), respectively. A total of 526 (48.5%) patients had 
complete daily measurements of high PaO2 during the 
first week (median of 6 measures, IQR 4–7). The remain-
ing patients had, respectively, 6 (136, 12.5%), 5 (72, 6.6%), 
4 (89, 8.2%), 3 (94, 8.7%) and 2 (167, 15.4%) daily meas-
urements of PaO2. The median highest PaO2 level during 
the first seven days since ICU admission was 134 mmHg 
(IQR 113–167). The median of highest FiO2 levels during 
the first seven days since ICU admission was 0.45 (IQR 
0.40–0.5) (Supplemental Fig. 2). Mean PaO2max, PaO2mean 
and ΔPaO2mean were 231, 156 and 57 mmHg, respectively. 
PaO2max showed a strong correlation with ΔPaO2mean 
(TKendall = 0.51, 95% CI [0.48–0.53]) and with PaO2mean 
(TKendall = 0.66, 95% CI [0.64–0.68]). Mean FiO2max, 
FiO2mean and ΔFiO2mean were 0.59, 0.45 and 0.05 mmHg, 
respectively (Table  1). The highest PaO2 levels varied 
widely across centers, with the center-specific median 
ranging from 88 to 170 mmHg and the highest PaO2 lev-
els within center ranging from 162 to 612 mmHg. Simi-
larly, the highest median FiO2 levels during the first seven 
days since ICU admission varied widely across cent-
ers ranging from 0.21 to 0.96. Center variability in PaO2 
(panel A) and FiO2 levels (panel B) across centers is rep-
resented in Fig.  1. Of note, overall median PaO2 levels 
in patients with brain tissue oxygen monitoring (PbtO2) 
were similar compared to the patient population with 
no PbtO2 monitoring (133 versus 137  mmHg, data not 
shown) (Supplemental Fig. 3).

Arterial oxygen levels and outcomes in TBI patients
Data on mortality and neurological functional score 
GOSE at 6  months were available in 967 (89.2%) TBI 
patients. Five hundred and twenty-eight patients (54.6%) 
had an unfavorable GOSE at a 6-month follow-up, and 
252 died within that period (26.1%). After adjusting, we 
estimated the OR for a 10 mmHg increase in PaO2. We 
found that both PaO2max (OR 1.02, 95% CI 1–1.04) and 
ΔPaO2mean (OR 1.07, 95% CI 1.03–1.12) were indepen-
dently associated with an unfavorable functional neu-
rologic outcome as expressed by a GOSE score ≤ 4 at 
6-month follow-up (Model 1, Table  2 and Supplemen-
tal Table  3 for the estimates in the complete regression 
model). Furthermore, we observed that all the exposure 
variables to high PaO2 were positively associated with 
an increased risk of mortality (PaO2max, OR 1.03, 95% 
CI 1.01–1.05; PaO2mean, OR 1.08, 95% CI 1.04–1.13; 



Table 1  Characteristics of the study cohorts from CENTER-TBI and OzENTER-TBI

Variable Level CENTER-TBI (N = 1084) OzENTER-TBI (N = 159)

Demographic characteristics

Age, median [IQR] 49 [29–65] 39 [24–65]

Sex, n (%) Female 270 (25) 37 (23)

Male 814 (75) 122 (77)

Clinical presentation

Hypotension, n (%) No 843 (77.9) 116 (73)

Yes 239 (22.1) 43 (27)

NA (n) 2 0

Hypoxia, n (%) No 1030 (95) 157 (98.7)

Yes 54 (5) 2 (1.3)

Injury Severity Score, median [IQR] 34 [25–45] 29 [25–38]

NA (n) 3 0

pH, median [IQR] Lowest 7.34 [7.29–7.39] 7.33 [7.29–7.37]

NA (n) 20 0

Highest 7.43 [7.39–7.47] 7.41 [7.38–7.45]

NA (n) 6 0

Neurological presentation

Pupillary reactivity, n (%) Both reactive 790 (72.9) 119 (74.8)

One reactive 87 (8) 11 (7)

Both unreactive 157 (14.5) 25 (15.7)

NA 50 (4.6) 4 (2.5)

GCS Motor Score, n (%) Localizes/obeys 419 (38.7) 33 (20.7)

None/extension 493 (45.5) 117 (73.6)

Any flexion 151 (13.9) 8 (5)

NA 21 (1.9) 1 (0.7)

GCS score, n (%) GCS > 8 370 (34.1) 58 (36.5)

GCS ≤ 8 657 (60.6) 97 (61)

NA 57 (5.3) 4 (2.5)

ICP at ICU admission, median [IQR] 8 [4–14] 11 [7–15]

NA (n) 521 108

Mean ICP, median [IQR] 11 [6–15] 11 [8–15]

NA (n) 521 108

Brain injury severity

Marshall CT Classification, median [IQR] 3 [2–6] 2 [2–6]

NA (n) 105 21

GFAP, median [IQR] ng/mL 20.5 [7–50.8] /

NA (n) 198 159

Oxygenation

Day 1 PaO2overall, mean (SD) mmHg 207.17 (99.91) 328.18 (144.46)

PaO2mean, mean (SD) mmHg 155.79 (46.93) 197.79 (73.79)

PaO2max, mean (SD) mmHg 230.92 (102.95) 356.01 (134.47)

ΔPaO2mean, mean (SD) mmHg 57 (36.7) 98.20 (59.95)

Day 1—PaO2/FiO2, mean (SD) mmHg 412.48 (197.08) 453.59 (207.1)

Day 1 FiO2overall, mean (SD) 0.54 (0.21) 0.76 (0.26)

FiO2mean, mean (SD) 0.45 (0.15) 0.48 (0.15)

FiO2max, mean (SD) 0.59 (0.22) 0.82 (0.23)

ΔFiO2mean, mean (SD) 0.05 (0.08) 0.15 (0.11)

Functional neurologic outcome

GOSE 6-month follow-up, n (%)

 GOSE < = 4 528 (48.7) 53 (33.3)

 GOSE > 4 439 (40.5) 95 (59.7)

 NA 117 (10.8) 11 (7)



ΔPaO2mean, OR 1.14, 95% CI 1.08–1.2; all estimates for 
10 mmHg) (Model 1, Table 2 and Supplemental Table 4). 
A detailed description of all confounders estimates for 
both outcomes is described in Supplemental Tables 3 and 
4. The estimated probability of mortality from the regres-
sion model by arterial oxygen levels is depicted in Fig. 2 
(Panel A, B, C).

We also explored the role of exposure to high blood 
oxygen levels on the neurologic outcome by further 
adjusting the model for GFAP levels. GFAP was posi-
tively associated with a lower GOSE score and a higher 
mortality rate. Among the variables representing higher 
blood oxygenation, the ΔPaO2mean confirmed its positive 

association with a lower GOSE, while all the three high 
oxygenation variables remained positively associated 
with a higher mortality rate (Model 2, Table 2). A detailed 
description of all confounders estimates is reported in 
Supplemental Tables  5 and 6. We explored the interac-
tion between exposure to high PaO2max and GFAP levels 
on GOSE and mortality. We did not find any interaction 
between the studied variables, as shown in Fig. 3 (panels 
A and B), where the surfaces that represent the smoothed 
interactions (on log scale) are mainly flattened on zero.

Table 1  (continued)
Hypotension was defined as a documented systolic blood pressure < 90 mmHg; hypoxia was defined as a documented partial pressure of oxygen (PaO2) < 8 kPa 
(60 mmHg), oxygen saturation (SaO2) < 90%, or both

CT computed tomography, GCS Glasgow Coma Scale, GFAP gliofibrillar acid protein, GOSE Glasgow Outcome Scale Extended, ICP intracranial pressure, ICU intensive 
care unit, IQR interquartile range, NA not available, SD standard deviation

Fig. 1  Center-specific median values of daily highest PaO2 and FiO2. A Center-specific median values (colored by country flag) of daily highest PaO2 
with the corresponding interquartile range. The solid vertical line represents the overall CENTER-TBI median of daily highest PaO2 values, while the 
dashed one refers to OzENTER-TBI, and the size of the dots is proportional to the number of PaO2 measurements in the center. B Center-specific 
median values (colored by country flag) of daily highest FiO2 with the corresponding interquartile range. The solid vertical line represents the overall 
CENTER-TBI median of daily highest FiO2 values, while the dashed one refers to OzENTER-TBI, and the size of the dots is proportional to the number 
of FiO2 measurements in the center



Supplemental oxygen administration and outcome
After adjustment for confounders, FiO2max, FiO2mean 
and ΔFiO2mean had no significant association with neu-
rological outcomes. However, they showed a positive 
independent association with mortality at 6  months 
(Model 3, Table  2, and Supplemental Tables  7 and 8). 
The estimated mortality probability by administering 
supplemental oxygen is depicted in Fig. 2 (Panels D, E, 
and F).

Results concerning PaO2 and FiO2 were confirmed 
when the Benjamini–Hochberg method was applied 
to control the false discovery rate (results not shown). 
The sensitivity analyses accounting for missing data also 
corroborated the findings from the models on com-
plete cases for both PaO2 and FiO2 data (Supplemental 
Table 9). From the descriptive analysis reported in Sup-
plemental Table  10, patients with and without miss-
ing data have similar characteristics. As 5 patients died 
within 48  h with PaO2 levels beyond 450  mmHg and 

PaCO2 > 60  mmHg and may have undergone an apnea 
breath test, we performed a sensitivity analysis excluding 
these patients for all the explored outcomes in the origi-
nal analysis. No differences were observed as reported in 
Supplemental Table 11.

OzENTER‑TBI
Arterial oxygen levels and supplemental oxygen 
administration
During the first week of ICU admission, a total of 1651 
measurements of PaO2 were available (825 lowest and 
826 highest daily values) for an overall median value of 
PaO2 and FiO2 of 133 (IQR 109–212) and 0.3 (IQR 0.25–
0.4), respectively. During the first week, 43.4% had com-
plete daily measurements of PaO2 (median 6, IQR 3–7). 
The median of the highest PaO2 level during the first 
7 days since ICU admission was 133 (IQR 109–212) (Sup-
plemental Fig.  2). The highest median FiO2 levels dur-
ing the first 7  days since ICU admission was 0.35 (IQR 

Table 2  Multivariable models on GOSE and mortality at 6-month follow-up in CENTER-TBI (Models 1, 2 and 3)

Model 1. Adjusted odds ratio with 95% confidence intervals of exposure to high blood oxygen levels within 7 days of ICU admission on GOSE and mortality at 6-month 
follow-up in CENTER-TBI. Mixed-effect logistic regression models adjusted for age, pupillary reactivity (both reactive, one reactive, both unreactive), GCS motor (any 
flexion, none/extension, localizes/obey), Injury Severity Score, and, once at a time, PaO2max, PaO2mean and ΔPaO2mean for CENTER-TBI with center as a random effect. 
Model 2. Model 1 plus the degree of brain injury quantified as GFAP levels. Model 3. Adjusted odds ratio with 95% CI of GOSE and mortality at 6-month follow-up in 
TBI patients exposed to high supplemental oxygen administration within 7 days of ICU admission in CENTER-TBI. Mixed-effect logistic regression models adjusted for 
age, pupillary reactivity (reactive, one reactive, both unreactive), GCS motor (any flexion, none/extension, localizes/obey) and, once at a time, FiO2max, FiO2mean and 
ΔFiO2mean for CENTER-TBI with center as a random effect. Full models with all covariates estimates are reported in the Supplemental material
a  OR is for 10 mmHg increase in PaO2 covariate
b  1 patient did not have low PaO2
c  OR regards 0.1 increments in FiO2 covariate

CENTER-TBI 6-month GOSE
N = 912 patients, 489 GOSE ≤ 4

6-month mortality
N = 912 patients, 225 died

Model 1 ORa 95% CI p value ORa 95% CI p value

PaO2max (for 10 mmHg increase) 1.02 1–1.04 0.014 1.03 1.01–1.05 0.002

PaO2mean (for 10 mmHg increase) 1.03 1–1.07 0.059 1.08 1.04–1.13  < 0.001

ΔPaO2mean (for 10 mmHg increase)b 1.07 1.03–1.12 0.001 1.14 1.08–1.20  < 0.001

6-month GOSE
N = 764 patients, 407 GOSE ≤ 4

6-month mortality
N = 764 patients, 175 died

Model 2 ORa 95% CI p value ORa 95% CI p value

Logarithm GFAP 1.51 1.33–1.71 < 0.001 1.51 1.29–1.77 < 0.001

PaO2max (for 10 mmHg increase) 1.02 1–1.03 0.064 1.03 1.01–1.05 0.008

Logarithm GFAP 1.52 1.34–1.72  < 0.001 1.52 1.3–1.78 < 0.001

PaO2mean (for 10 mmHg increase) 1.03 0.99–1.07 0.092 1.09 1.04–1.14 0.001

Logarithm GFAP 1.52 1.34–1.72 < 0.001 1.53 1.3–1.81 < 0.001

ΔPaO2mean (for 10 mmHg increase) 1.05 1–1.11 0.031 1.14 1.08–1.21 < 0.001

6-month GOSE
N = 877 patients, 470 GOSE ≤ 4

6-month mortality
N = 877 patients, 212 died

Model 3 ORc 95% CI p value ORc 95% CI p value

FiO2max (for 0.1 increase) 1.03 0.96–1.1 0.453 1.18 1.08–1.29 < 0.001

FiO2mean, (for 0.1 increase) 1.02 0.92–1.14 0.694 1.31 1.13–1.51 < 0.001

ΔFiO2mean, (for 0.1 increase) 1.03 0.84–1.27 0.761 1.46 1.13–1.88 0.004



0.25–0.5) (Supplemental Fig. 2). Mean PaO2max, PaO2mean 
and ΔPaO2mean were 356, 197 and 98  mmHg, respec-
tively (Table 1). PaO2max showed a strong correlation with 
ΔPaO2mean (TKendall = 0.63, p = < 0.001) and with PaO2mean 
(TKendall = 0.71, p < 0.001). Mean FiO2max, FiO2mean and 
ΔFiO2mean were 0.82, 0.48 and 0.15 mmHg, respectively. 
Center variability in PaO2 (panel A) and FiO2 levels 
(panel B) across the 2 centers was represented in Fig. 1.

Arterial oxygen levels and outcomes in TBI patients
Data on mortality and neurological functional score 
GOSE at 6 months were available for 148 (93.1%) TBI 
patients. Ninety-five patients (64.2%) had an unfavora-
ble GOSE at 6-month follow-up, and 40 died within 
that period (27%). After adjusting for multiple con-
founders, including IMPACT core baseline covari-
ates, ISS and the 2 different centers (i.e., site code), we 
observed that none of the oxygen exposure variables 
was independently associated with GOSE (Model 1, 
Table 3 and Supplemental Table 12). After adjustment 

for the same confounders, we observed that ΔPaO2mean, 
(OR 1.08, 95% CI 1–1.18) trended toward a higher 
mortality rate (Model 1, Table  3 and Supplemental 
Table  13). A detailed description of all confounders 
estimates for both outcomes was described in Supple-
mental Tables 12 and 13.

Supplemental oxygen administration and outcome
After adjustment for confounders, FiO2max, FiO2mean and 
ΔFiO2mean confirmed the data of CENTER-TBI with no 
significant association with neurological outcome. How-
ever, increases in FiO2mean trended toward a higher mor-
tality rate (Model 2, Table 3). A detailed description of all 
confounders estimates for both outcomes was described 
in Supplemental Tables 14 and 15.

Discussion
In this study, we investigated whether exposure to high 
blood oxygen levels and high oxygen supplementation is 

Fig. 2  The model-based probability for mortality. A–C The probability for mortality estimated by Model 2 (i.e., Table 2) for PaO2max, PaO2mean and 
ΔPaO2mean vary through the corresponding spanned range of values, respectively, while continuous variables were set to median value and cat-
egorical variables to middle category. D–F The probability for mortality estimated by Model 3 (i.e., Table 2) for FiO2max, FiO2mean and ΔFiO2mean vary 
through the corresponding spanned range of values, respectively. At the same time, continuous variables were set to median value and categori-
cal variables to middle category. Below each panel there are boxplots of the corresponding PaO2 and FiO2 variables, with scattered points of all 
measurements



independently associated with outcomes in TBI patients 
admitted to ICU and undergoing mechanical ventilation.

The main findings can be summarized as follows:

1.	 TBI patients were largely exposed, with wide variabil-
ity between centers, to high levels of PaO2 during the 
first week of ICU admission.

2.	 Exposure to high PaO2 within seven days after ICU 
admission was an independent predictor of 6-month 

Fig. 3  Tensor cubic spline for the interaction between PaO2max and GFAP. In A on the left, we represented the tensor cubic spline with 4 degrees 
of freedom each, used for the interaction between PaO2max and GFAP in the logistic model with 6-month GOSE as outcome. In B on the right, we 
represented the tensor cubic spline with 4 degrees of freedom each, used for the interaction between PaO2max and GFAP in the logistic model with 
6-month mortality as outcome. All other continuous covariates were set to median values and mid-category for categorical ones

Table 3  Multivariable models on GOSE and mortality at 6-month follow-up in OzENTER-TBI (Model 1 and 2)

Model 1. Adjusted odds ratio with 95% confidence intervals effect of exposure to high blood oxygen levels within 7 days of ICU admission on GOSE and mortality at 
6-month follow-up. Validation on OzENTER-TBI. Standard logistic regression models adjusted for age, pupillary reactivity (both reactive, one reactive, both unreactive), 
GCS Motor (any flexion, none/extension, localizes/obey), Injury Severity Score, and, once at a time, PaO2max, PaO2mean and ΔPaO2mean for OzENTER-TBI with a dummy 
variable for center. Model 2. Adjusted odds ratio with 95% CI of GOSE and mortality at 6-month follow-up in TBI patients exposed to high supplemental oxygen 
administration within 7 days of ICU admission in OzENTER-TBI. Standard logistic regression models adjusted for age, pupillary reactivity (both reactive, one reactive, 
both unreactive), GCS Motor (any flexion, none/extension, localizes/obey) and, once at a time, FiO2max, FiO2mean and ΔFiO2mean for OzENTER-TBI with a dummy variable 
for center. Full models with all covariates estimates are reported in the Supplemental material
a  OR is for 10 mmHg increase in PaO2 covariate
b  OR regards 0.1 increments in FiO2 covariate

OzENTER-TBI 6-month GOSE
N = 141 patients, 92 GOSE ≤ 4

6-month mortality
N = 141 patients, 39 died

Model 1 ORa 95% CI p value ORa 95% CI p value

PaO2max (for 10 mmHg increase) 1.01 0.98–1.04 0.433 1 0.97–1.04 0.898

PaO2mean (for 10 mmHg increase) 1.01 0.96–1.07 0.656 1.05 0.99–1.11 0.118

ΔPaO2mean (for 10 mmHg increase) 1.03 0.96–1.12 0.376 1.08 1–1.18 0.054

6-month GOSE
N = 141 patients, 92 GOSE ≤ 4

6-month mortality
N = 141 patients, 39 died

Model 2 ORb 95% CI p value OR* 95% CI p value

FiO2max (for 0.1 increase) 1.06 0.89–1.26 0.492 1 0.83–1.23 0.963

FiO2mean (for 0.1 increase) 1.02 0.77–1.34 0.911 1.32 0.98–1.8 0.069

ΔFiO2mean (for 0.1 increase) 1.15 0.79–1.69 0.483 1 0.68–1.48 0.981



mortality in the CENTER-TBI cohort, even regard-
less of the severity of brain injury as defined by 
higher serum concentration of GFAP.

3.	 A higher average daily variability in PaO2 (ΔPaO2mean) 
predicts an unfavorable GOSE at 6  months in 
CENTER-TBI. These findings were not validated in 
the OzENTER-TBI cohort, where only ΔPaO2mean 
trended to a higher mortality rate.

4.	 Exposure to high levels of supplemental oxygen has 
an independent positive association with mortality 
in the CENTER-TBI cohort. In contrast, the associa-
tion between higher FiO2mean and worse mortality in 
the OzENTER-TBI cohort showed similar directional 
trends but did not achieve statistical significance.

The first insight of this study is that more than 50% 
of TBI patients are exposed to hyperoxemia, defined as 
PaO2 levels above 120  mmHg [20, 21], during the first 
week after ICU admission. Despite hyperoxemia being 
quite often defined as the presence of a PaO2 > 120 [20, 
22, 23], there is no agreement in the literature about a 
univocal threshold to define it [7, 8, 24–27]. Understand-
ing if there is a maximum dose of oxygen that may be 
harmful for the brain tissue and whether a prolonged 
time of exposure to high oxygen levels may impair brain 
function and have an impact on mortality is debated. 
The lack of a clear definition of hyperoxemia and a lim-
ited time of oxygen exposure may lead to underestimate 
an association with outcome in TBI patients [27–30], 
despite some reports of a higher mortality in TBI patients 
exposed to higher levels of oxygen [7–9, 24].

This clinical investigation highlights a relevant finding 
that might have a direct potential clinical implication.

We reported that increasing exposure to high blood 
oxygen levels within the first 7  days after ICU admis-
sion independently correlates with long-term mortality 
in patients with TBI. This association was observed by 
exploring either the highest PaO2 levels (interpreted for 
each 10-mmHg increase) or the daily highest PaO2 vari-
ability. This may suggest that clinicians should pay atten-
tion not just to the absolute values of PaO2 but also to the 
daily swings of blood oxygenation. We logically hypoth-
esized that PaO2 levels are driven by inappropriately high 
inspiratory levels of oxygen administered to TBI patients. 
When we explored the role of supplemental oxygen use 
(i.e., FiO2), similarly to the association reported between 
blood oxygenation and mortality, we showed that the 
highest the levels of FiO2 or the most elevated average 
daily swings of FiO2 within the first 7 days, the higher the 
mortality rate. These findings highlight a direct poten-
tial clinical implication for the management of oxygen 
administration in critically ill patients mechanically ven-
tilated and admitted to the ICU with TBI. The amount of 

oxygen delivered to TBI patients can be easily titrated by 
ICU physicians by setting FiO2 levels on the ventilator. In 
the presence of an isolated TBI, therefore not involving 
the lung parenchyma that may lead to impaired oxygena-
tion, high oxygen supplementation may be easily avoided 
on the ventilator by setting FiO2 levels to target a physi-
ological range of blood oxygenation.

Furthermore, avoiding major changes in daily FiO2—
if not needed to avoid hypoxemia—should prevent a 
major blood oxygenation variability and limit expo-
sure to high oxygen levels and its detrimental effects. 
Our findings are in line with the recent guidelines 
of the European Society of Intensive Care Medicine 
(ESICM) on the management of mechanical ventila-
tion in patients with an acute brain injury which, with 
a low level of evidence, recommend targeting normoxia 
(80–120 mmHg) regardless of the presence of intracra-
nial pressure (ICP) elevation while it remains unknown 
whether a certain threshold of high PaO2 should be 
considered safe in TBI patients [20]. The pathophysi-
ological mechanisms behind the role of oxygen toxic-
ity induced by hyperoxia (i.e., high FiO2) [31, 32] and 
hyperoxemia (i.e., high PaO2) [33, 34] in humans are 
widely recognized [5, 35]. On the one hand, hyperoxia 
has been shown to induce direct pulmonary toxicity by 
alveolar-capillary leak and fibrogenesis in healthy vol-
unteers [36] and to have cytotoxic properties [37–39]. 
On the other hand, hyperoxemia increases peripheral 
vascular resistances [40–43], and determines the pro-
duction of reactive oxygen species [44, 45] with the 
release of proinflammatory mediators [46]. In a cohort 
of severe TBI patients studied with advanced multimo-
dality monitoring, hyperoxia had variable effects on 
lactate and lactate/pyruvate ratio. Microdialysis did not 
demonstrate a constant increase in the cerebral meta-
bolic rate of oxygen in at-risk tissue [47]. Similar results 
have been shown in TBI patients exposed to high FiO2. 
Hyperoxia marginally reduced lactate levels in brain 
tissue after TBI. However, the estimated redox status 
of the cells did not change and cerebral O2 extraction 
seemed to be reduced. These data indicate that glucose 
oxidation was not improved by hyperoxia in cerebral 
and adipose tissue and might even be impaired [48].

In recent years, the role of oxygen on outcome has 
been explored in ICU patients to evaluate whether 
oxygen’s inflammatory and cytotoxic effects on organ 
viability might translate into a worse survival. Two ran-
domized controlled trials (RCTs) in critically ill (Oxy-
gen-ICU) [49] and in septic patients (HYPERS-2S) [50] 
showed that targeting higher levels of PaO2 or hyper-
oxia could cause a higher mortality rate. A large meta-
analysis including critically ill patients confirmed that a 



strategy targeting more elevated levels of PaO2 increased 
mortality [51].

In contrast, so far, 4 big RCTs (LOCO2 trial [52], 
ICU-ROX trial [53], HOT-ICU trial [54] and O2-ICU 
trial [55]) suggested no significant differences in terms 
of primary study outcome (i.e., mortality [52, 54]; ven-
tilator-free days [53]; and non-respiratory Sequential 
Organ Failure Assessment (SOFA) score [55]) between 
patients managed with lower versus higher oxygen tar-
gets. However, these trials showed differences in their 
study design in terms of targeted physiologic variables 
of oxygenation (i.e., PaO2, SpO2 and SaO2), targets of 
oxygenation, safety threshold for oxygen conservative 
therapy [52] and study outcomes. These trials were in 
broad populations of critically ill patients, and do not 
specifically address patients with TBI. Indeed, the one 
trial that specifically reported on patients with brain 
injury provided data suggesting that patients with 
neurological disease not due to hypoxic–ischemic 
encephalopathy may have had worse outcomes with 
conservative oxygen therapy [53]. In the meantime, the 
UK-ROX trial (ISRCTN13384956) and the Mega-ROX 
trial (ACTRN12620000391976)—two large RCTs aimed 
at exploring the role of oxygen targets on mortality in 
critically ill patients—are currently ongoing and will 
shed further light on the role of oxygen targets on out-
come in ICU.

We also investigated whether these negative asso-
ciations of hyperoxia with outcome were modulated 
by injury severity, as measured by GFAP levels [17, 56]. 
GFAP is a biomarker representing glial injury [56] and 
correlates well with the severity of brain injury evaluated 
by brain computed tomography [17]. Furthermore, GFAP 
is associated with outcomes in TBI patients [57]. How-
ever, we could not demonstrate an interaction between 
injury severity (as measured by GFAP levels) and the 
association between oxygen exposure variables and out-
come. This corroborates the idea that oxygen exposure 
may somehow influence the outcome in TBI patients 
regardless of the severity of brain injury. Therefore, pre-
venting exposure to high oxygen levels in TBI patients 
might be suggested even in milder TBI.

However, another potential explanation for the lack 
of interaction between oxygen levels and GFAP may be 
the temporal misalignment of GFAP and oxygen levels 
assessment. TBI is not an acute event but an evolving 
process. Hence, acute GFAP and sub-acute oxygen level 
measures may capture distinct complementary aspects 
providing independent prognostic information which 
can enable a more effective risk-stratification of patients 
with TBI. Moreover, it is conceivable that high blood oxy-
gen levels could have a differential effect based on the 
injury pattern/type rather than the severity of structural 

brain damage after TBI owing to distinct pathogenetic 
and pathobiological pathways. In support of such a pos-
sibility, robust experimental evidence has indicated spe-
cific therapeutic responses according to different injury 
models as also tracked by circulating GFAP [58, 59].

Strengths
Strengths of this work include the prospective nature 
of the two multicenter cohorts of patients, with the 
OzENTER-TBI validation cohort confirming a trend 
similar to the findings reported in the sizeable CENTER-
TBI cohort. Data comes from a large real-world dataset 
of patients with TBI representing a global population of 
TBI patients. Evaluating the effect of exposure to oxygen 
on the outcome is not episodic but integrated over the 
first week after ICU admission increases the association’s 
credibility. Furthermore, the exposure variables (i.e., 
PaO2 and FiO2) are not evaluated using a pre-set cut-
off. Still, their association with the outcome is explored 
by including them as continuous data, strengthening the 
findings in the multivariable models. The use of GFAP, 
which allowed to investigate whether oxygen expo-
sure could play a different contribution to the outcome 
because of a different degree of brain injury severity, 
make the results generalizable to most of the spectrum 
of TBI. Moreover, although we acknowledge that various 
models were performed, the strong associations we found 
on mortality were supported even when we accounted 
for multiple comparisons.

Limitations
Several limitations deserve mention. First, considering 
the observational nature of the data, it is speculative to 
draw a direct causal relationship between high arte-
rial oxygen levels and supplemental oxygen administra-
tion and their relationship with outcome. Therefore, our 
results should be taken with caution. Further randomized 
controlled studies are necessary to assess the effect of 
high arterial oxygen levels and supplemental oxygen 
administration on the TBI patients’ outcomes. Second, 
6-month GOSE and mortality are influenced by several 
other factors, such as systemic and ICU complications 
and post-ICU events. To overcome this limitation, we 
used an analytic model considering the effect of other 
available confounding factors, particularly patient clinical 
condition and neuroimaging features.

Besides, in these two cohorts, only a minority of 
patients had a brain tissue oxygen monitor. As docu-
mented by a phase-2 RCT, monitoring brain tissue 
(PbtO2) oxygenation could reduce brain tissue hypoxia 
with a trend toward more favorable outcomes compared 
to treatment driven by intracranial pressure monitoring 
only [60]. A recent consensus suggested the possibility, in 



the presence of low PbtO2 values, of elevating the PaO2 
up to 150  mmHg or higher in more severe cases, fine-
tuned to the patient’s PbtO2 values [61]. Some phase III 
randomized trials are ongoing to demonstrate the ben-
efit of exposing hypoxic brain patients to higher oxygen 
levels. Therefore, our findings are not focused on a pop-
ulation with brain tissue hypoxia but to the overall TBI 
population, with/without brain hypoxia. However, we did 
not observe a difference in the distribution of PaO2 levels 
between TBI with or without PbtO2 monitoring. We can-
not exclude the possibility that the worse outcomes asso-
ciated with higher PaO2 were due to use of higher FiO2 
in patients with more severe injury or physiological com-
promise. Further, these findings may not apply to patients 
in whom FiO2 and PaO2 are titrated to PbtO2 levels.

Moreover, the two cohorts were prospectively 
collected with the primary aim of assessing the 
epidemiology and clinical practice in the manage-
ment of TBI patients. As respiratory targets are not 
included in the primary outcome, more frequent 
daily data on gas exchange and more specific data 
on the ventilator management of these patients are 
missing and would have strengthened our analy-
sis. Further, we do not have detailed data about the 
presence of hyperoxemia in patients undergoing an 
apnea breath test. However, only five patients who 
died within 48 h had PaO2 levels beyond 450 mmHg 
with a PaCO2 > 60  mmHg in the CENTER-TBI data-
set, which may suggest an apnea breath test. Sensi-
tivity analyses excluding these patients confirmed 
the independent association with outcome of both 
PaO2 and FiO2 variables. Finally, our dataset is lim-
ited to the first week after TBI. However, our analy-
sis includes data that provides a longitudinal view of 
PaO2 management over time.

Conclusions
In two large prospective multicenter cohorts of critically 
ill patients with TBI arterial oxygen levels and supple-
mental oxygen, administration varied widely across cent-
ers during the first 7 days after ICU admission. Exposure 
to high arterial blood oxygen and high supplemental oxy-
gen were independently associated with 6-month mortal-
ity in the CENTER-TBI cohort. This was not driven by 
the severity of brain injury quantified by serum levels 
of GFAP within 24  h. The findings were not externally 
validated in the OzENTER-TBI cohort likely due to the 
limited sample size, although the effects were in the 
same direction of the ones from CENTER-TBI. Titra-
tion of supplemental oxygen in the presence of TBI is a 
practice immediately applicable at bedside. Randomized 
controlled trials and high-level evidence guidelines are 

warranted to help clinicians optimize oxygen exposure 
management in this cohort of patients.
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Appendix B

Simulations R code

## Complete case data generation

sim.data.joint<-function(old.results=list(),

file,

nSIM,#number of simulations

fixed_trajectory,

betaEvent_assoc, #True association parameter (log hazard

ratio) in the event submodel

n, #Number of individuals

max_fuptime, #The maximum follow-up time in whatever the

desired time units are.

betaLong_intercept, #True intercept in the longitudinal

submodel

betaLong_continuous, #True coefficient for the continuous

covariate in the longitudinal submode

betaLong_binary, #True coefficient for the binary

covariate in the longitudinal submode

betaLong_linear , #True coefficient for the fixed effect

linear term in the longitudinal submodel

betaLong_quadratic, #True coefficient for the fixed

effect quadratic term in the longitudinal submodel

when fixed_trajectory = "quadratic"

betaEvent_binary, #True coefficient (log HR) for the

binary covariate in the event submodel

betaEvent_continuous, #True coefficient (log HR) for the

continuous covariate in the event submodel

betaLong_aux,

mean_Z2, #mean of Normal distribution for continuous

baseline covariate

sd_Z2, # mean of Normal distribution for continuous

baseline covariate

max_yobs, #max number of obs. per patient

random_trajectory,#The desired type of trajectory in the

random effects part of the longitudinal model

balanced, # A logical, specifying whether the timings of

the longitudinal measurements should be balanced

across individuals

b_sd,#vector or matrix for variance of RE

b_rho,#scalar for correlation among RE

return_eta=T,

censor){
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data<-list()

for(s in c(1:nSIM)){

#creating the dataset

mdat1 <- simjm::simjm(M = 1,

fixed_trajectory = fixed_trajectory,

betaEvent_assoc = betaEvent_assoc,

n = n,

max_fuptime = max_fuptime,

betaLong_intercept = betaLong_intercept,

betaLong_continuous = betaLong_continuous,

betaLong_binary = betaLong_binary,

betaLong_linear = betaLong_linear,

betaLong_quadratic = betaLong_quadratic,

betaEvent_binary = betaEvent_binary,

betaEvent_continuous = betaEvent_continuous,

betaLong_aux =betaLong_aux ,

mean_Z2 = mean_Z2,

sd_Z2 = sd_Z2,

random_trajectory = random_trajectory,

balanced = balanced,

b_sd = b_sd,

b_rho = b_rho,

return_eta=T,

max_yobs = max_yobs)

#Random Censoring

if(censor){

mdat1[[1]] <- mdat1[[1]] %>%

mutate(random.cens=runif(id,0,max_fuptime*10),

tempoevento=pmin(eventtime,random.cens),

stato=ifelse((tempoevento < eventtime) & status==1,

stato<-0,

stato<-status),

status=stato,

eventtime=tempoevento)

mdat1[[2]] <- merge(mdat1[[2]],mdat1[[1]][,c("id","eventtime","status

")],by="id")

names(mdat1[[2]])[c(9,10)]<-c("eventtime","status")

mdat1[[2]] <- within(mdat1[[2]][mdat1[[2]]$tij <= mdat1[[2]]$eventtime
,], rm(eventtime.x,status.x))

}

##count number of observation for each pz

mdat1[[2]] <- mdat1[[2]] %>% group_by(id) %>% mutate(n = row_number())

data[[s]]<-list(mdat1[[1]],mdat1[[2]])

}

try(save(data,file= paste0("nSIM",nSIM,

"_n",n,

"_FU",max_fuptime,

"_nobs",max_yobs,

"_",fixed_trajectory,

86



"_alpha",ifelse(betaEvent_assoc>0,as.character(

gsub(’[.]’, ’_’, betaEvent_assoc)),paste0("

negative",as.character(gsub(’[.]’, ’_’, abs(

betaEvent_assoc))))),

"_beta0",ifelse(betaLong_intercept>0,as.character

(gsub(’[.]’, ’_’, betaLong_intercept)),paste0

("negative",as.character(gsub(’[.]’, ’_’, abs

(betaLong_intercept))))),

"_betaC",ifelse(betaLong_continuous>0,as.

character(gsub(’[.]’, ’_’,

betaLong_continuous)),paste0("negative",as.

character(gsub(’[.]’, ’_’, abs(

betaLong_continuous))))),

"_betaQ",ifelse(fixed_trajectory=="quadratic",as.

character(gsub(’[.]’, ’_’, betaLong_quadratic

)),"_"),

"_betaB",ifelse(betaLong_binary>0,as.character(

gsub(’[.]’, ’_’, betaLong_binary)),paste0("

negative",as.character(gsub(’[.]’, ’_’, abs(

betaLong_binary))))),

"_betaT",ifelse(betaLong_linear>0,as.character(

gsub(’[.]’, ’_’, betaLong_linear)),paste0("

negative",as.character(gsub(’[.]’, ’_’, abs(

betaLong_linear))))),

"_bal",as.character(balanced),

"_stdRE",as.character((gsub(’[.]’, ’_’, b_sd[1]))

),

"_sdMeasErr",betaLong_aux,

".RData")))

}

## Intermittent data generation

sim.data.joint.miss<-function(data,

file,

nSIM,#number of simulations

fixed_trajectory,

betaEvent_assoc, #True association parameter (

log hazard ratio) in the event submodel

n, #Number of individuals

max_fuptime, #The maximum follow-up time in

whatever the desired time units are.

betaLong_intercept, #True intercept in the

longitudinal submodel

betaLong_continuous, #True coefficient for the

continuous covariate in the longitudinal

submode

betaLong_binary,

betaLong_linear,

betaLong_quadratic,

betaEvent_binary,

betaEvent_continuous,

betaLong_aux,

mean_Z2,

sd_Z2,

max_yobs,

missing,
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MR,

odds,

cutoffquantile){

datamiss<-list()

data.2 <- list()

data.2.1 <- list()

for(s in 1:nSIM){

#creating the dataset

if(missing!="none"){

data.2[[s]] <- data[[s]][[2]][which(data[[s]][[2]]$n<=2),]
data[[s]][[2]]<-missMethods::delete_MNAR_1_to_x(data[[s]][[2]][which

(data[[s]][[2]]$n>2),], p=MR, cols_mis="Xij_1",cutoff_fun =

function(i){quantile(i,prob=cutoffquantile)},x = odds)

data.2.1[[s]]<- rbind(data.2[[s]],data[[s]][[2]])

data[[s]][[2]]<- data.2.1[[s]]

data[[s]][[2]] <-data[[s]][[2]][with(data[[s]][[2]] , order(id, tij)

), ]

#data[[s]][[2]]<-missMethods::delete_MNAR_1_to_x(data[[s]][[2]], p=

MR, cols_mis="Xij_1",cutoff_fun = function(i){quantile(i,prob=

cutoffquantile)},x = odds)

for(i in 1:nrow(data[[s]][[2]])){

if(is.na(data[[s]][[2]][i,"Xij_1"])){

data[[s]][[2]][i,"Yij_1"]<-NA

}

}

}

datamiss[[s]]<-list(data[[s]][[1]],data[[s]][[2]])

}

try(save(datamiss,file= paste0("nSIM",nSIM,

"_n",n,

"_FU",max_fuptime,

"_nobs",max_yobs,

"_",ifelse(fixed_trajectory=="quadratic","q","l")

,

"_alpha",ifelse(betaEvent_assoc>0,as.character(

gsub(’[.]’, ’_’, betaEvent_assoc)),paste0("

negative",as.character(gsub(’[.]’, ’_’, abs(

betaEvent_assoc))))),

"_beta0",ifelse(betaLong_intercept>0,as.character

(gsub(’[.]’, ’_’, betaLong_intercept)),paste0

("negative",as.character(gsub(’[.]’, ’_’, abs

(betaLong_intercept))))),

"_betaC",ifelse(betaLong_continuous>0,as.

character(gsub(’[.]’, ’_’,

betaLong_continuous)),paste0("negative",as.

character(gsub(’[.]’, ’_’, abs(

betaLong_continuous))))),

"_betaB",ifelse(betaLong_binary>0,as.character(

gsub(’[.]’, ’_’, betaLong_binary)),paste0("

negative",as.character(gsub(’[.]’, ’_’, abs(
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betaLong_binary))))),

"_betaT",ifelse(betaLong_linear>0,as.character(

gsub(’[.]’, ’_’, betaLong_linear)),paste0("

negative",as.character(gsub(’[.]’, ’_’, abs(

betaLong_linear))))),

"_stdI",as.character((gsub(’[.]’, ’_’, b_sd[1])))

,

"_stdS",as.character((gsub(’[.]’, ’_’, b_sd[2])))

,

"_sdMeasErr",betaLong_aux,

"_miss",missing,

"_MR",as.character((gsub(’[.]’, ’_’, MR))),

"_cutoff",as.character((gsub(’[.]’, ’_’,

cutoffquantile))),

"_odds",as.character((gsub(’[.]’, ’_’, odds))),

".RData")))

}

## "Lost assesment" data generation

sim.data.joint.carrymiss<-function(data,

file,

nSIM,

fixed_trajectory,

betaEvent_assoc,

n,

betaLong_intercept,

betaLong_binary,

betaLong_linear,

betaLong_quadratic,

betaEvent_continuous,

betaLong_aux,

mean_Z2,

sd_Z2,

max_yobs,

b_sd,#vector or matrix for variance of RE

b_rho,

missing,

MR,

odds,

cutoffquantile,

carried_miss){

data.miss.carried<-list()

for(s in (1:nSIM)){

#creating the dataset

if(carried_miss){

data[[s]][[2]]$cumsumNA <- ave(is.na( data[[s]][[2]]$Yij_1), data

[[s]][[2]]$id, FUN = cumsum)

data[[s]][[2]] <- data[[s]][[2]][-which( data[[s]][[2]]$cumsumNA
>0),]

}

print(paste(s))

data.miss.carried[[s]]<-list(data[[s]][[1]],data[[s]][[2]])
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}

try(save(data.miss.carried,file= paste0("nSIM",nSIM,

"_n",n,

"_FU",max_fuptime,

"_nobs",max_yobs,

"_",ifelse(fixed_trajectory=="quadratic","q","l")

,

"_alpha",ifelse(betaEvent_assoc>0,as.character(

gsub(’[.]’, ’_’, betaEvent_assoc)),paste0("

negative",as.character(gsub(’[.]’, ’_’, abs(

betaEvent_assoc))))),

"_beta0",ifelse(betaLong_intercept>0,as.character

(gsub(’[.]’, ’_’, betaLong_intercept)),paste0

("negative",as.character(gsub(’[.]’, ’_’, abs

(betaLong_intercept))))),

"_betaC",ifelse(betaLong_continuous>0,as.

character(gsub(’[.]’, ’_’,

betaLong_continuous)),paste0("negative",as.

character(gsub(’[.]’, ’_’, abs(

betaLong_continuous))))),

"_betaB",ifelse(betaLong_binary>0,as.character(

gsub(’[.]’, ’_’, betaLong_binary)),paste0("

negative",as.character(gsub(’[.]’, ’_’, abs(

betaLong_binary))))),

"_betaT",ifelse(betaLong_linear>0,as.character(

gsub(’[.]’, ’_’, betaLong_linear)),paste0("

negative",as.character(gsub(’[.]’, ’_’, abs(

betaLong_linear))))),

"_stdI",as.character((gsub(’[.]’, ’_’, b_sd[1])))

,

"_stdS",as.character((gsub(’[.]’, ’_’, b_sd[2])))

,b(’[.]’, ’_’, sd_Z2)),

"_sdMeasErr",betaLong_aux,

"_miss",missing,

"_MR",as.character((gsub(’[.]’, ’_’, MR))),

"_cutoff",as.character((gsub(’[.]’, ’_’,

cutoffquantile))),

"_odds",as.character((gsub(’[.]’, ’_’, odds))),

"_carried",carried_miss,

".RData")))

}

## Model fitting on generated data (we report the case of JMs with B-

splines approximated baseline hazard, but other specifications can be

achieved by changing the "method" in JM::jointmodel(), accordingly

sim.joint.spline<- function(old.results=list(),file=file,data,formulaLME,

nSIM,carried_miss,fixed_trajectory){

resultsJMspline <- old.results

nevent <- c()

nsubj <- c()

resultsCOX <- old.results

for(s in c(1:nSIM)){
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data[[s]][[2]] <- data[[s]][[2]] %>% tidyr::drop_na()

data[[s]][[1]] <- filter(data[[s]][[1]], data[[s]][[1]]$id %in% unique(

data[[s]][[2]]$id))
#####################################################

##COX##

resultsCOX[[s]]<-list()

resultsCOX[[s]]$estimatesCOX<-matrix(NA,nrow=1,ncol=1,dimnames=list(c("
COX"),c("alpha")))

resultsCOX[[s]]$lower<-matrix(NA,nrow=1,ncol=1,dimnames=list(c("COX"),c
("CIlower")))

resultsCOX[[s]]$upper<-matrix(NA,nrow=1,ncol=1,dimnames=list(c("COX"),c
("CIupper")))

temp2 <- survival::tmerge(data[[s]][[1]], data[[s]][[1]], id=id, endpt =

event(eventtime, status))

temp3 <- survival::tmerge(temp2,data[[s]][[2]],

id=id,

Yij_1 = tdc(tij,Yij_1))

Ex.Cox <- try(survival::coxph(survival::Surv(tstart, tstop, endpt) ~

Yij_1 ,data=temp3,x=T,y=T))# control = coxph.control(timefix = FALSE

)

if(class(Ex.Cox)!="try-error"){

resultsCOX[[s]]$estimatesCOX<-Ex.Cox$coefficients

resultsCOX[[s]]$sd<-sqrt(Ex.Cox$var)
sd<-sqrt(Ex.Cox$var)
resultsCOX[[s]]$lower<-Ex.Cox$coefficients-1.96*sd
resultsCOX[[s]]$upper<-Ex.Cox$coefficients+1.96*sd

}else{

resultsCOX[[s]]$estimatesCOX<-matrix(NA,nrow=1,ncol=1,dimnames=list(c
("COX"),c("alpha")))

resultsCOX[[s]]$lower<-matrix(NA,nrow=1,ncol=1,dimnames=list(c("COX"),
c("CIlower")))

resultsCOX[[s]]$upper<-matrix(NA,nrow=1,ncol=1,dimnames=list(c("COX"),
c("CIupper")))

}

resultsJMspline[[s]]<-list()

resultsJMspline[[s]]$LMM_int<-matrix(NA,nrow=1,ncol=1,dimnames=list(c("
LMM"),c("Intercept")))

resultsJMspline[[s]]$LMM_beta1<-matrix(NA,nrow=1,ncol=1,dimnames=list(c
("LMM"),c("tij")))

resultsJMspline[[s]]$LMM_betaBinary<-matrix(NA,nrow=1,ncol=1,dimnames=
list(c("LMM"),c("Z1")))

resultsJMspline[[s]]$LMM_betaContinuous<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("LMM"),c("Z2")))

resultsJMspline[[s]]$LMM_beta_1lower<-matrix(NA,nrow=1,ncol=1,dimnames=
list(c("LMM"),c("tij_lower")))

resultsJMspline[[s]]$LMM_beta_1upper<-matrix(NA,nrow=1,ncol=1,dimnames=
list(c("LMM"),c("tij_upper")))

resultsJMspline[[s]]$LMM_betaBinarylower<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("LMM"),c("Z1_lower")))
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resultsJMspline[[s]]$LMM_betaBinaryupper<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("LMM"),c("Z1_upper")))

resultsJMspline[[s]]$LMM_betaContinuouslower<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("LMM"),c("Z2_lower")))

resultsJMspline[[s]]$LMM_betaContinuousupper<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("LMM"),c("Z2_upper")))

resultsJMspline[[s]]$estimatesJM<-matrix(NA,nrow=1,ncol=1,dimnames=list(
c("joint"),c("alpha")))

resultsJMspline[[s]]$stderr<-matrix(NA,nrow=1,ncol=1,dimnames=list(c("
joint"),c("stderr")))

resultsJMspline[[s]]$stderralpha<-matrix(NA,nrow=1,ncol=1,dimnames=list(
c("joint"),c("stderralpha")))

resultsJMspline[[s]]$alphalower<-matrix(NA,nrow=1,ncol=1,dimnames=list(c
("joint"),c("alphalower")))

resultsJMspline[[s]]$alphaupper<-matrix(NA,nrow=1,ncol=1,dimnames=list(c
("joint"),c("alphaupper")))

resultsJMspline[[s]]$estimatesJM_beta0<-matrix(NA,nrow=1,ncol=1,dimnames
=list(c("joint"),c("beta0")))

resultsJMspline[[s]]$stderr_beta0<-matrix(NA,nrow=1,ncol=1,dimnames=list
(c("joint"),c("stderr_beta0")))

resultsJMspline[[s]]$beta_0lower<-matrix(NA,nrow=1,ncol=1,dimnames=list(
c("joint"),c("beta0_lower")))

resultsJMspline[[s]]$beta_0upper<-matrix(NA,nrow=1,ncol=1,dimnames=list(
c("joint"),c("beta0_upper")))

resultsJMspline[[s]]$estimatesJM_beta1<-matrix(NA,nrow=1,ncol=1,dimnames
=list(c("joint"),c("beta1")))

resultsJMspline[[s]]$stderr_beta1<-matrix(NA,nrow=1,ncol=1,dimnames=list
(c("joint"),c("stderr_beta1")))

resultsJMspline[[s]]$beta_1lower<-matrix(NA,nrow=1,ncol=1,dimnames=list(
c("joint"),c("beta1_lower")))

resultsJMspline[[s]]$beta_1upper<-matrix(NA,nrow=1,ncol=1,dimnames=list(
c("joint"),c("beta1_upper")))

resultsJMspline[[s]]$estimatesJM_betaBinary<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("joint"),c("betaBinary")))

resultsJMspline[[s]]$stderr_betaBinary<-matrix(NA,nrow=1,ncol=1,dimnames
=list(c("joint"),c("stderr_betaBinary")))

resultsJMspline[[s]]$betaBinarylower<-matrix(NA,nrow=1,ncol=1,dimnames=
list(c("joint"),c("betaBinary_lower")))

resultsJMspline[[s]]$betaBinaryupper<-matrix(NA,nrow=1,ncol=1,dimnames=
list(c("joint"),c("betaBinary_upper")))

resultsJMspline[[s]]$estimatesJM_betaContinuous<-matrix(NA,nrow=1,ncol
=1,dimnames=list(c("joint"),c("betaContinuous")))

resultsJMspline[[s]]$stderr_betaContinuous<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("joint"),c("stderr_betaContinuous")))

resultsJMspline[[s]]$betaContinuouslower<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("joint"),c("betaContinuous_lower")))

resultsJMspline[[s]]$betaContinuousupper<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("joint"),c("betaContinuous_upper")))

resultsJMspline[[s]]$estimatesJM_stdIntercept <- matrix(NA,nrow=1,ncol

=1,dimnames=list(c("joint"),c("stdIntercept")))

resultsJMspline[[s]]$estimatesJM_stdSlope <- matrix(NA,nrow=1,ncol=1,

dimnames=list(c("joint"),c("stdSlope")))

cox.fit<-survival::coxph(survival::Surv(time=eventtime,status) ~ 1, data

= data[[s]][[1]], x=TRUE)
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nevent <- c(nevent,cox.fit$nevent)
nsubj <- c(nsubj,cox.fit$n)
print(paste("sim ",s))

##fit the longitudinal submodel for the biomarker

if(fixed_trajectory=="quadratic"){

lme.fit<-try(lme(Yij_1 ~ I(tij^2)+tij + Z2 + Z1, random = ~ 1 + tij|

id, data = data[[s]][[2]],

control = lmeControl(opt = ’optim’,tolerance = 1e-16)

))

}

if(fixed_trajectory=="linear"){

lme.fit<-try(lme(Yij_1 ~ tij + Z2 + Z1, random = ~ 1 + tij| id, data

= data[[s]][[2]],

control = lmeControl(opt = ’optim’,tolerance = 1e-16)

))

}

resultsJMspline[[s]]$LMM_int<-lme.fit$coefficients$fixed["(Intercept)
"]

resultsJMspline[[s]]$LMM_beta1<-lme.fit$coefficients$fixed["tij"]
resultsJMspline[[s]]$LMM_betaBinary<-lme.fit$coefficients$fixed["Z1"]
resultsJMspline[[s]]$LMM_betaContinuous<-lme.fit$coefficients$fixed["

Z2"]

resultsJMspline[[s]]$LMM_beta_1lower<-lme.fit$coefficients$fixed["tij
"]-1.96*sqrt(diag(vcov(lme.fit)))["tij"]

resultsJMspline[[s]]$LMM_beta_1upper<-lme.fit$coefficients$fixed["tij
"]+1.96*sqrt(diag(vcov(lme.fit)))["tij"]

resultsJMspline[[s]]$LMM_betaBinarylower<-lme.fit$coefficients$fixed["
Z1"]-1.96*sqrt(diag(vcov(lme.fit)))["Z1"]

resultsJMspline[[s]]$LMM_betaBinaryupper<-lme.fit$coefficients$fixed["
Z1"]+1.96*sqrt(diag(vcov(lme.fit)))["Z1"]

resultsJMspline[[s]]$LMM_betaContinuouslower<-lme.
fit$coefficients$fixed["Z2"]-1.96*sqrt(diag(vcov(lme.fit)))["Z2"]

resultsJMspline[[s]]$LMM_betaContinuousupper<-lme.
fit$coefficients$fixed["Z2"]+1.96*sqrt(diag(vcov(lme.fit)))["Z2"]

resultsJMspline[[s]]$LMM_int<-lme.fit$coefficients$fixed["(Intercept)
"]

resultsJMspline[[s]]$LMM_beta1<-lme.fit$coefficients$fixed["tij"]

resultsJMspline[[s]]$LMM_beta_1lower<-lme.fit$coefficients$fixed["tij
"]-1.96*sqrt(diag(vcov(lme.fit)))["tij"]

resultsJMspline[[s]]$LMM_beta_1upper<-lme.fit$coefficients$fixed["tij
"]+1.96*sqrt(diag(vcov(lme.fit)))["tij"]

if(class(lme.fit)=="try-error"){

if(fixed_trajectory=="quadratic"){

lme.fit<-try(lme(Yij_1 ~ I(tij^2)+tij, random = ~ 1+tij| id, data

= data[[s]][[2]],control = lmeControl(opt = ’optim’,tolerance =

1e-16,msMaxIter=100)),silent = TRUE)#list(opt="optim")

}

if(fixed_trajectory=="linear"){

lme.fit<-try(lme(Yij_1 ~ tij, random = ~ 1+tij| id, data = data[[s

]][[2]],control = lmeControl(opt = ’optim’,tolerance = 1e-16,

msMaxIter=100)),silent = TRUE)#list(opt="optim")

}
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resultsJMspline[[s]]$LMM_int<-lme.fit$coefficients$fixed["(Intercept
)"]

resultsJMspline[[s]]$LMM_beta1<-lme.fit$coefficients$fixed["tij"]

resultsJMspline[[s]]$LMM_beta_1lower<-lme.fit$coefficients$fixed["
tij"]-1.96*sqrt(diag(vcov(lme.fit)))["tij"]

resultsJMspline[[s]]$LMM_beta_1upper<-lme.fit$coefficients$fixed["
tij"]+1.96*sqrt(diag(vcov(lme.fit)))["tij"]

resultsJMspline[[s]]$LMM_betaBinarylower<-lme.fit$coefficients$fixed
["Z1"]-1.96*sqrt(diag(vcov(lme.fit)))["Z1"]

resultsJMspline[[s]]$LMM_betaBinaryupper<-lme.fit$coefficients$fixed
["Z1"]+1.96*sqrt(diag(vcov(lme.fit)))["Z1"]

resultsJMspline[[s]]$LMM_betaContinuouslower<-lme.
fit$coefficients$fixed["Z2"]-1.96*sqrt(diag(vcov(lme.fit)))["Z2
"]

resultsJMspline[[s]]$LMM_betaContinuousupper<-lme.
fit$coefficients$fixed["Z2"]+1.96*sqrt(diag(vcov(lme.fit)))["Z2
"]

}

}

jointFit.simjm.pc.spline <- try(JM::jointModel(lme.fit, cox.fit, timeVar

= "tij", method = "spline-PH-aGH"))

if(class(jointFit.simjm.pc.spline)!="try-error"){

resultsJMspline[[s]]$estimatesJM <- jointFit.simjm.pc.

spline$coefficients$alpha
resultsJMspline[[s]]$estimatesJM_beta0 <- jointFit.simjm.pc.

spline$coefficients$betas["(Intercept)"]
resultsJMspline[[s]]$estimatesJM_beta1 <- jointFit.simjm.pc.

spline$coefficients$betas["tij"]
resultsJMspline[[s]]$estimatesJM_betaBinary <- jointFit.simjm.pc.

spline$coefficients$betas["Z1"]
resultsJMspline[[s]]$estimatesJM_betaContinuous <- jointFit.simjm.pc.

spline$coefficients$betas["Z2"]
resultsJMspline[[s]]$estimatesJM_stdIntercept <- sqrt(jointFit.simjm.

pc.spline$coefficients$D[1,1])
resultsJMspline[[s]]$estimatesJM_stdSlope <- sqrt(jointFit.simjm.pc.

spline$coefficients$D[2,2])

resultsJMspline[[s]]$stderr<-try(sqrt(diag(solve(jointFit.simjm.pc.
spline$Hessian))),silent = TRUE)

resultsJMspline[[s]]$stderralpha<-resultsJMspline[[s]]$stderr["T.alpha
"]

resultsJMspline[[s]]$alphalower<- tryCatch(jointFit.simjm.pc.

spline$coef$alpha-1.96*resultsJMspline[[s]]$stderralpha,error=
function(err) NA)

resultsJMspline[[s]]$alphaupper<- tryCatch(jointFit.simjm.pc.

spline$coef$alpha+1.96*resultsJMspline[[s]]$stderralpha,error=
function(err) NA)

resultsJMspline[[s]]$stderr_beta0 <- resultsJMspline[[s]]$stderr["Y.(
Intercept)"]
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resultsJMspline[[s]]$beta_0lower <- tryCatch(jointFit.simjm.pc.

spline$coef$betas["(Intercept)"]-1.96*resultsJMspline[[s]]
$stderr_beta0, error=function(err) NA)

resultsJMspline[[s]]$beta_0upper <- tryCatch(jointFit.simjm.pc.

spline$coef$betas["(Intercept)"]+1.96*resultsJMspline[[s]]
$stderr_beta0, error=function(err) NA)

resultsJMspline[[s]]$stderr_beta1 <- resultsJMspline[[s]]$stderr["Y.
tij"]

resultsJMspline[[s]]$beta_1lower <- tryCatch(jointFit.simjm.pc.

spline$coef$betas["tij"]-1.96*resultsJMspline[[s]]$stderr_beta1,
error=function(err) NA)

resultsJMspline[[s]]$beta_1upper <- tryCatch(jointFit.simjm.pc.

spline$coef$betas["tij"]+1.96*resultsJMspline[[s]]$stderr_beta1,
error=function(err) NA)

resultsJMspline[[s]]$stderr_betaBinary <- resultsJMspline[[s]]$stderr
["Y.Z1"]

resultsJMspline[[s]]$betaBinarylower <- tryCatch(jointFit.simjm.pc.

spline$coef$betas["Z1"]-1.96*resultsJMspline[[s]]
$stderr_betaBinary, error=function(err) NA)

resultsJMspline[[s]]$betaBinaryupper <- tryCatch(jointFit.simjm.pc.

spline$coef$betas["Z1"]*resultsJMspline[[s]]$stderr_betaBinary,
error=function(err) NA)

resultsJMspline[[s]]$stderr_betaContinuous <- resultsJMspline[[s]]

$stderr["Y.Z2"]
resultsJMspline[[s]]$betaContinuouslower <- tryCatch(jointFit.simjm.pc

.spline$coef$betas["Z2"]-1.96*resultsJMspline[[s]]
$stderr_betaContinuous, error=function(err) NA)

resultsJMspline[[s]]$betaContinuousupper <- tryCatch(jointFit.simjm.pc

.spline$coef$betas["Z2"]+1.96*resultsJMspline[[s]]
$stderr_betaContinuous, error=function(err) NA)

}else{

resultsJMspline[[s]]<-list()

resultsJMspline[[s]]$estimatesJM<-matrix(NA,nrow=1,ncol=1,dimnames=
list(c("joint"),c("alpha")))

resultsJMspline[[s]]$stderralpha<-matrix(NA,nrow=1,ncol=1,dimnames=
list(c("joint"),c("stderralpha")))

resultsJMspline[[s]]$alphalower<-matrix(NA,nrow=1,ncol=1,dimnames=list
(c("joint"),c("alphalower")))

resultsJMspline[[s]]$alphaupper<-matrix(NA,nrow=1,ncol=1,dimnames=list
(c("joint"),c("alphalower")))

resultsJMspline[[s]]$estimatesJM_beta0<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("joint"),c("beta0")))

resultsJMspline[[s]]$stderr_beta0<-matrix(NA,nrow=1,ncol=1,dimnames=
list(c("joint"),c("stderr_beta0")))

resultsJMspline[[s]]$beta_0lower<-matrix(NA,nrow=1,ncol=1,dimnames=
list(c("joint"),c("beta0_lower")))

resultsJMspline[[s]]$beta_0upper<-matrix(NA,nrow=1,ncol=1,dimnames=
list(c("joint"),c("beta0_upper")))

resultsJMspline[[s]]$estimatesJM_beta1<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("joint"),c("beta1")))
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resultsJMspline[[s]]$stderr_beta1<-matrix(NA,nrow=1,ncol=1,dimnames=
list(c("joint"),c("stderr_beta1")))

resultsJMspline[[s]]$beta_0lower<-matrix(NA,nrow=1,ncol=1,dimnames=
list(c("joint"),c("beta1_lower")))

resultsJMspline[[s]]$beta_1upper<-matrix(NA,nrow=1,ncol=1,dimnames=
list(c("joint"),c("beta1_upper")))

resultsJMspline[[s]]$estimatesJM_betaBinary<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("joint"),c("betaBinary")))

resultsJMspline[[s]]$stderr_betaBinary<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("joint"),c("stderr_betaBinary")))

resultsJMspline[[s]]$beta_Binarylower<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("joint"),c("betaBinary_lower")))

resultsJMspline[[s]]$beta_Binaryupper<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("joint"),c("betaBinary_upper")))

resultsJMspline[[s]]$estimatesJM_betaContinuous<-matrix(NA,nrow=1,ncol
=1,dimnames=list(c("joint"),c("betaContinuous")))

resultsJMspline[[s]]$stderr_betaContinuous<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("joint"),c("stderr_betaContinuous")))

resultsJMspline[[s]]$beta_Continuouslower<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("joint"),c("betaContinuous_lower")))

resultsJMspline[[s]]$beta_Continuousupper<-matrix(NA,nrow=1,ncol=1,
dimnames=list(c("joint"),c("betaContinuous_upper")))

resultsJMspline[[s]]$estimatesJM_stdIntercept <- matrix(NA,nrow=1,ncol

=1,dimnames=list(c("joint"),c("stdIntercept")))

resultsJMspline[[s]]$estimatesJM_stdSlope <- matrix(NA,nrow=1,ncol=1,

dimnames=list(c("joint"),c("stdSlope")))

}

}

try(save(resultsJMspline,

nevent,

nsubj,

resultsCOX,

file = file))

}
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