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ABSTRACT
After GW170817, kilonovae have become of great interest for the astronomical, astrophysics and nuclear physics communities,
due to their potential in revealing key information on the compact binary merger from which they emerge, such as the fate of
the central remnant or the composition of the expelled material. Therefore, the landscape of models employed for their analysis
is rapidly evolving, with multiple approaches being used for different purposes. In this paper, we present xkn, a semi-analytic
framework which predicts and interprets the bolometric luminosity and the broadband light curves of such transients. xknmodels
the merger ejecta structure accounting for different ejecta components and non-spherical geometries. In addition to light curve
models from the literature based on time scale and random-walk arguments, it implements a new model, xkn-diff, which is
grounded on a solution of the radiative transfer equation for homologously expanding material. In order to characterize the variety
of the ejecta conditions, it employs time and composition dependent heating rates, thermalization efficiencies and opacities. We
compare xkn light curves with reference radiative transfer calculations, and we find that xkn-diff significantly improves over
previous semi-analytic prescriptions. We view xkn as an ideal tool for extensive parameter estimation data analysis applications.
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1 INTRODUCTION

The detection of electromagnetic counterparts of gravitational wave
signals represents one of the key aspects of gravitational wave astro-
physics and, more in general, of multimessenger astronomy. While
the gravitational wave signal produced by a coalescing compact bi-
nary encodes many properties and information about the merging
system (e.g. the chirp mass, the masses of the two compact objects
or their tidal deformation, if at least one of the two is not a black
hole), the electromagnetic signal can provide complementary infor-
mation, including for example the amount of matter expelled during
the merger and its chemical composition. Other aspects of the merger,
such as the nature of the coalescing objects or of the remnant that
forms after the merger, could affect both the gravitational and the
electromagnetic emission. In this case, the presence of more than
one signal can provide tighter constraints and help discriminating
between ambiguous or degenerate situations (see e.g. Radice & Dai
2019; Hinderer et al. 2019; Barbieri et al. 2019b, 2021; Dietrich et al.
2020; Raaĳmakers et al. 2021).

The potential of multimessenger astrophysics was recently re-
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vealed by GW170817 (Abbott et al. 2017a,b, 2019). Just from the
analysis of the gravitational wave signal, it was impossible to exclude
that the coalescing objects were two black holes, since the posterior
of the binary tidal deformability was extending down to 0 (Abbott
et al. 2017a, 2019), the value expected for a binary black hole. The
identification of the system as a binary neutron star was mostly based
on the values of the masses of the merging bodies and, more impor-
tantly, on the detection of two electromagnetic counterparts, namely
a short gamma-ray burst and a kilonova (Chornock et al. 2017; Cow-
perthwaite et al. 2017; Coulter et al. 2017; Drout et al. 2017; Evans
et al. 2017; Goldstein et al. 2017; Hallinan et al. 2017; Kasliwal
et al. 2017; Murguia-Berthier et al. 2017; Nicholl et al. 2017; Smartt
et al. 2017; Soares-Santos et al. 2017; Tanvir et al. 2017; Troja et al.
2017; Villar et al. 2017; Waxman et al. 2018; Ghirlanda et al. 2019).
Such a combination of signals was indeed very useful in providing
constraints on the equation of state of nuclear matter or in shedding
light on the central engine of gamma-ray bursts (see e.g. De et al.
2018; Abbott et al. 2018; Coughlin et al. 2019). On the other hand,
in the case of the subsequent binary neutron star merger, GW190425
(Abbott et al. 2020), or in the first observed black hole-neutron star
systems (Abbott et al. 2021a,b), no electromagnetic counterparts
were observed (see e.g. Coughlin et al. 2020). In these cases, the
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nature of the binary was deduced only from the inferred masses,
while the gravitational signal alone was not informative on the tidal
deformability of the system, due to the lower expected values and to
the not sufficiently high signal-to-noise ratio.

Among the different electromagnetic counterparts, the kilonova
is one of the most peculiar transients associated to compact binary
mergers involving at least one neutron star (Li & Paczynski 1998;
Metzger et al. 2010). It arises when the merger and its remnant expel
a non-negligible amount of neutron-rich matter, which undergoes
𝑟-process nucleosynthesis (Lattimer & Schramm 1974; Eichler et al.
1989; Freiburghaus et al. 1999); see also Cowan et al. (2021); Perego
et al. (2021) for recent reviews. The decay of the freshly produced
radioactive elements moving from the neutron-rich side towards the
bottom of the nuclear valley of stability releases nuclear energy that,
despite the fast expansion, keeps the expanding ejecta hot. Due to ex-
pansion the matter opacity to the electromagnetic radiation decreases
until photons can eventually diffuse out, producing a kilonova (see
Metzger 2020, for a recent review and references therein). Depending
on the mass of the ejecta, on their expansion velocity and composi-
tion, the peak of the kilonova emission is expected to occur between
a few hours and several days after the merger (see, for example, Ar-
nett 1982; Pinto & Eastman 2000; Barnes & Kasen 2013; Tanaka &
Hotokezaka 2013; Radice et al. 2018; Kawaguchi et al. 2020). At the
same time, the emission is expected to evolve, moving from bluer
to redder frequencies as a consequence of the photospheric expan-
sion, of the decrease in the nuclear energy input and in the opacity
of matter, as well as of the viewing angle (see e.g. Metzger & Fer-
nández 2014; Perego et al. 2014; Martin et al. 2015; Rosswog et al.
2017; Wollaeger et al. 2018; Kasen & Barnes 2019; Korobkin et al.
2021). As long as the opacity of the innermost ejecta is large enough,
the kilonova is characterized by the presence of a photosphere and
the resulting emission can be described, in good approximation, as
quasi-thermal. Non-thermal and non-local thermodynamics equilib-
rium effects become more and more relevant as time increases, until
the transient enters its nebular phase. In the case of AT2017gfo (the
kilonova associated to GW170817) the transition from a full photo-
spheric regime to the nebular phase happened between a few days
to a week after merger (see, for example, Smartt et al. 2017; Watson
et al. 2019; Wu et al. 2019; Pognan et al. 2022a,b; Gillanders et al.
2023).

The modelling of kilonovae is extremely challenging. It requires
the solution of a radiative transfer (RT) problem in a fast expanding,
radioactive and radiation dominated medium. Not only the composi-
tion of matter changes with time due to nuclear reactions and decays,
but due to the expansion and to the interaction between matter and
radiation, atoms inside the ejecta (which are initially fully ionized
due to the large matter temperature) span different ionization lev-
els, following the progressive electron recombination. The presence
of heavy elements, and in particular, of lanthanides and actinides,
largely increase the photon opacity due to bound-bound and bound-
free transitions involving the 𝑓 electron shells (Roberts et al. 2011;
Kasen et al. 2013; Tanaka & Hotokezaka 2013). For most of the
heavy elements, opacities due to ionized species and for matter in
the thermodynamics regime relevant for kilonovae are experimen-
tally unknown and their values are usually provided by non-trivial
atomic structure calculations (see, for example, Fontes et al. 2020;
Tanaka et al. 2020; Banerjee et al. 2022, 2023). Furthermore, large
uncertainties still affect the calculation of the detailed nuclear energy
released by 𝑟-process elements (Rosswog et al. 2018; Barnes et al.
2020; Zhu et al. 2020, 2022; Lund et al. 2023), as well as the esti-
mation of the fraction of the energy that the expanding matter is able
to thermalize (Hotokezaka et al. 2016; Barnes et al. 2016; Kasen &

Barnes 2019). In addition to the difficulties related with the problem
of transporting photons inside an expanding, radioactive medium, an
additional challenge is represented by the fact that a binary neutron
star merger or a black hole-neutron star merger can expel matter with
different properties and, possibly, with a high degree on anisotropy
(see, e.g., Wanajo et al. 2014; Just et al. 2015; Sekiguchi et al. 2016;
Foucart et al. 2016; Perego et al. 2017). This implies that the medium
inside which the photons are produced, diffused and emitted can have
a non-trivial stratification, as well as angular distribution.

It is not surprising that, given the complexity of the kilonova
scenario and the variety of aspects involved, so far the problem
of predicting or producing kilonova light curves and spectra has
been tackled by a large variety of models, employing very differ-
ent levels of sophistications and approximations. Some models solve
the photon transport problem in an expanding medium considering
wavelenght- and composition-dependent opacities, computed con-
sistently and coupled to the calculation of the abundances of the
different ion species, assuming local thermodynamics equilibrium
(see, e.g., Tanaka & Hotokezaka 2013; Kasen et al. 2017; Wollaeger
et al. 2018; Shingles et al. 2023). These models are the most sophis-
ticated and reliable ones, but they necessarily require large computa-
tional resources, especially in three dimensions. Other examples of
kilonova models include TARDIS (Kerzendorf & Sim 2014), which
solves the 1D photon transport problem in the optically thin atmo-
sphere above a predefined photosphere, POSSIS (Bulla 2019, 2023),
which uses pre-computed wavelenght- and time-dependent opacities
on a 3D Cartesian grid, or SNEC (Morozova et al. 2015; Wu et al.
2022), which solves radiation hydrodynamics in spherical symmetry
through a gray flux-limited diffusion approach. These more approxi-
mated approaches clearly reduce the computational effort, especially
if some symmetry is invoked.

At the opposite extreme, kilonova light curves have also been
computed by using simplified kilonova models that avoid the direct
solution of the RT problem, since they are often based on the so-
lution of the energy conservation equation inside the ejecta or on
time scale arguments mimicking the mean features of the photon
diffusion problem (see, e.g., Grossman et al. 2014; Martin et al.
2015; Hotokezaka & Nakar 2020). They usually employ gray, con-
stant opacities and can reproduce some of the most relevant features
of the kilonova emission, at least at a qualitative level. The extremely
reduced computational costs of these models allows their usage in
multi-dimensional parameter estimate analysis, which requires the
evaluation of millions, if not billions of kilonova light curves (as
done, e.g., by Breschi et al. 2021).

With the increase of the number and sensitivity of gravitational
wave detectors, the amount of multimessenger signals, and in particu-
lar, of kilonova counterparts of gravitational wave events, is expected
to significantly grow in the years to come. For example, during the
fourth observational campaign of LIGO, Virgo and KAGRA, the
number of detected binary neutron star merger is expected to be a
few tens per year (Petrov et al. 2022; Colombo et al. 2022). Addi-
tionally, the careful (re)analysis of the afterglow signals of close-by
gamma-ray bursts can reveal signatures of kilonova emission, as in
the case of the exceptionally bright GRB211211A (Troja et al. 2022),
or more recently also in the case of the long GRB230307A (Levan
et al. 2023). Given the present scenario, characterized by a growing
number of kilonovae, which could significantly differ in terms of
intrinsic properties, as well as in the quality and quantity of the data,
it is still imperative to improve on the accuracy of fast and approx-
imated kilonova models. The latter can be complementary to more
sophisticated models, since they can be used for extensive parame-
ter estimations, and to provide a robust and reliable framework to
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analyze coherently kilonova emissions coming from very different
events. They can also be coupled to gravitational wave data analysis
in the quest for coherent and genuine multimessenger analysis.

In this paper, we present xkn, a semi-analytic framework to per-
form analysis of kilonova emission, both in terms of bolometric
luminosity and broadband light curves. xkn inherits the possibility
of adding several ejecta components and of prescribing non-trivial
ejecta geometries from previous implementations (Martin et al. 2015;
Perego et al. 2017). However, with respect to the latter, it aims to im-
prove on the accuracy and on the reliability of the resulting light
curves by replacing the kilonova model grounded on time scale ar-
guments with a different model, xkn-diff, based on a semi-analytic
solution of the diffusion equation for homologously expanding ejecta.
Such a solution was presented in Wollaeger et al. (2018), and based
on works reported in Pinto & Eastman (2000). Here, we expand
the class of solutions, by considering time dependent heating rates,
thermalization efficiencies and opacities. Moreover, we improve the
physical input, by including composition dependent heating rates and
opacities.

The paper is structured as follows: in Sec. 2 we present in detail the
spherically symmetric, kilonova emission model xkn-diff, distin-
guishing between the optically thick (Sec. 2.1) and the optically thin
(Sec. 2.2) part. The general multi-component, anisotropic framework
of xkn to compute light curves is presented in Sec. 3, while in Sec. 4
we detail the input physics entering the model, listing the heating
rates (Sec. 4.1) and the opacity (Sec. 4.2) prescriptions. In Sec. 5 we
compare the results of the various xknmodels with the ones obtained
using a RT code (Tanaka & Hotokezaka 2013; Kawaguchi et al. 2018,
2021), taken as reference, in order to address the degree of accuracy
and the limitations of our approach. We provide a summary and the
conclusions of our work in Sec. 6.

2 SEMI-ANALYTIC 1D KILONOVA MODEL

Our kilonova model is based on a one-dimensional model for the
diffusion and emission of photons from homologously expanding,
radioactive matter. More specifically, the kilonova emission is cal-
culated as the combination of two contributions, one emitted at the
ejecta photosphere, i.e. the surface delimiting the optically thick bulk
of the ejecta and from which photons can escape and move inside the
atmosphere, and one coming from the optically thin layers above it.
In the following, we separately present these two contributions.

2.1 Optically thick ejecta treatment

The contribution to the luminosity arising from the photosphere
is computed starting from the semi-analytic formula originally
proposed by Pinto & Eastman (2000) with the intent to treat the
ejecta from Type Ia supernovae (SNe Ia), and later adapted by
Wollaeger et al. (2018) to model kilonovae. In spite of its simplifying
assumptions, this formula can qualitatively reproduce the thermal
evolution of the ejecta. In the following, we report in broad lines its
derivation.

The ejecta fluid is assumed to be optically thick throughout its
entire depth and the radiation field properties are evolved on the
basis of the time-dependent equation of RT. In particular, we consider
the first two frequency-integrated moments of such equation in the

comoving frame, calculated to order 𝑂 (𝑣/𝑐):

𝐷𝐸

𝐷𝑡
+ 1
𝑟2

𝜕

𝜕𝑟
(𝑟2𝐹) + 𝑣

𝑟
(3𝐸 − 𝑃) + 𝜕𝑣

𝜕𝑟
(𝐸 + 𝑃) =

=

∫ ∞

0
(4𝜋𝜂𝜈 − 𝑐𝜒𝜈𝐸𝜈)𝑑𝜈 ,

(1)

1
𝑐2
𝐷𝐹

𝐷𝑡
+ 𝜕𝑃
𝜕𝑟

+ 3𝑃 − 𝐸
𝑟

+ 2
𝑐2

(
𝜕𝑣

𝜕𝑟
+ 𝑣

𝑟

)
𝐹 = −1

𝑐

∫ ∞

0
𝜒𝜈𝐹𝜈𝑑𝜈 , (2)

where 𝑣 is the fluid velocity field, 𝑟 the radial coordinate, 𝜒𝜈 the
extinction coefficient and 𝜂𝜈 the volume emissivity, while the sub-
script 𝜈 indicates the frequency dependence. Here 𝐸 , 𝐹 and 𝑃 are
the energy density, flux and radiation pressure of the radiation field,
respectively. 𝐷/𝐷𝑡 indicates the comoving (Lagrangian) derivative.
The solution of this set of equations is found by adopting a series of
hypotheses.

(i) We assume a homologous expansion of the fluid, i.e. each fluid
element expands with constant radial speed. Under this assumption,
the ejecta maintain their proportions while expanding with an ex-
ternal radius 𝑅(𝑡) ≃ 𝑣max𝑡, where 𝑣max is the maximum outflow
velocity. The homologous expansion hypothesis is consistent as long
as the energy heating the fluid does not affect the fluid motion in a
significant way.

(ii) We resort to the Eddington approximation, wherein the radi-
ation field is isotropic and the relation 𝐸 = 3𝑃 holds. The latter is
valid since the outflow is optically thick, as one can expect at least in
the early stages of its evolution. When the fluid becomes transparent
at later times, even if this approximation breaks down, the error has
still little effect on the bolometric luminosity.

(iii) Regarding the energy balance, we assume that the gas internal
energy, that is its thermal kinetic energy as well as the ionization
energy, is subdominant with respect to the radiation field energy, and
therefore we ignore the former (radiation dominated conditions).

(iv) Additionally, we assume that the absorbed heat is immediately
re-radiated as thermal emission, and thus:∫ ∞

0
(4𝜋𝜂𝜈 − 𝑐𝜒𝜈𝐸𝜈)𝑑𝜈 = ¤𝐸heat , (3)

where ¤𝐸heat is the energy deposition rate per unit volume.

In light of the above considerations, we act on Eq. (1) and Eq. (2)
with the aim to simplify them. Eq. (1) is an equation for the energy
density field, 𝐸 (𝑟, 𝑡), and in order to ensure the correct radiation
energy balance we retain all terms to the order 𝑂 (𝑣/𝑐), as 𝐸 (𝑟, 𝑡)
changes considerably on the hydrodynamic timescale. Eq. (2) is in-
stead an equation for the radiation momentum 𝐹 (𝑟, 𝑡) and we solve it
at lower order by discarding all time and velocity-dependent terms.
This choice is appropriate on the fluid-flow timescale as we assumed
that 𝐹 (𝑟, 𝑡) is not relevant for the outflow dynamics. Hence by in-
verting Eq. (2) we obtain:

𝐹 = − 𝑐

3𝜒
𝜕𝐸

𝜕𝑟
, (4)

with 𝜒 a properly defined frequency-averaged inverse mean free path.
The above expression for the flux can be inserted in Eq. (1), resulting
in:

𝐷𝐸

𝐷𝑡
− 𝑐

3𝑟2
𝜕

𝜕𝑟

(
𝑟2

𝜒

𝜕𝐸

𝜕𝑟

)
+ 4 ¤𝑅
𝑅
𝐸 = ¤𝐸heat , (5)

where ¤𝑅 denotes the derivative with respect to time. We now in-
troduce 𝜅 as an absorption opacity, homogeneous in space (but not
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necessarily in time), such that 𝜒 = 𝜅𝜌, with 𝜌 the fluid density. More-
over, we express ¤𝐸heat as ¤𝐸heat = ¤𝜖 𝑓th, where ¤𝜖 is the energy release
rate per unit mass and 𝑓th a thermalization efficiency coefficient,
and both are function of time. From the assumption of homologous
expansion, we recall that:

𝑣 =
𝑟

𝑡
, 𝑣 = 𝑣max𝑥 , (6)

where 𝑥 ∈ [0, 1] is the dimensionless radius coordinate. Moreover, in
the radiation transport equation we adopt the following single-zone
homologous solution for the expansion profile:

𝜌(𝑡) = 𝜌0
( 𝑡0
𝑡

)3
, (7)

with 𝑡0 the initial time of the expansion, and 𝜌0 the density at 𝑡0. We
approximate the latter as:

𝜌0 =
𝑀ej

4
3𝜋(𝑣max𝑡0)3

, (8)

where 𝑀ej is the ejecta mass.
Furthermore, from the hypothesis of radiation dominated gas, we
employ the polytropic equation of state in the Eddington approxima-
tion to obtain 𝐸 ∝ 𝑡−4. If we assume that the residual dependences of
𝐸 can be separated into a spatial profile 𝜓(𝑥) and a temporal profile
𝜙(𝑡), we can write:

𝐸 (𝑥, 𝑡) = 𝐸0
( 𝑡0
𝑡

)4
𝜓(𝑥)𝜙(𝑡) , (9)

where 𝐸0 is treated as a free parameter. In particular, assuming that
the radiation field has a black-body spectrum, we relate it to an initial
black-body temperature:

𝑇0 =

(
𝐸0
𝑎

) 1
4
, (10)

with 𝑎 = 4𝜎SB/𝑐 = 7.5657×10−15 erg cm−3K−4 being the radiation
constant and 𝜎SB the Stefan-Boltzmann constant. Using Eq. (6),
Eq. (7) and Eq. (9), the transport equation Eq. (5) becomes:(
𝐸0𝑡0
𝜌0

)
1
𝑡

[
𝜓(𝑥)𝜙′ (𝑡) − 𝑡

𝑡0𝜏
𝜙(𝑡) 1

𝑥2

(
𝑥2𝜓′ (𝑥)

)′]
= 𝑓th ¤𝜖𝑟 , (11)

with the prime superscript on a function indicating the derivative
with respect to its variable and where

𝜏 ≡ 3𝜅𝜌0
𝑐

(𝑣max𝑡0)2 . (12)

The latter is a comprehensive factor comparable to the diffusion
time scale that carries a possible dependence on 𝑡 through 𝜅. The
homogeneous form of Eq. (11) can be solved by means of variable
separation, according to which the resulting two functions in 𝑥 and 𝑡
must be identically equal to the same separation constant, 𝜆:

1
𝑥2𝜓(𝑥)

(
𝑥2𝜓′ (𝑥)

)′
= −𝜆 , 𝜏0

( 𝑡0
𝑡

) 𝜙′ (𝑡)
𝜙(𝑡) = −𝜆 . (13)

resulting in two ordinary differential equations to be solved. The
equation for the spatial profile can be expressed as an eigenvalue
equation for the operator 𝐴:

𝐴𝜓(𝑥) ≡ − 1
𝑥2

(
𝑥2𝜓′ (𝑥)

)′
= 𝜆𝜓(𝑥) . (14)

The eigenfunctions of Eq. (14) can be determined by imposing suit-
able boundary conditions to the problem. While for the temporal
profile of the energy density 𝐸 (𝑥, 𝑡) we naturally assume 𝜙(𝑡0) = 1

and 𝜙(∞) = 0, for the spatial part it is reasonable to consider a re-
flection symmetry at 𝑥 = 0 and a radiative-zero condition at 𝑥 = 1,
being the outflow optically thick:

𝜓′ (0) = 0 , 𝜓(1) = 0 . (15)

Eq. (15) can be directly translated into identical conditions for the
eigenfunctions of Eq. (14). If we impose the normalization require-
ment:

⟨𝜓𝑛 |𝜓𝑚⟩ = 𝛿𝑛,𝑚 , (16)

as we adopt the notation:

⟨ 𝑓 |𝑔⟩ =
∫ 1

0
𝑓 (𝑥)𝑔(𝑥)𝑥2𝑑𝑥 , (17)

the resulting homogeneous spatial eigenfunctions are:

𝜓𝑛 (𝑥) =
√

2
sin(𝑛𝜋𝑥)

𝑥
, (18)

with 𝜆 = 𝑛2𝜋2 and 𝑛 any positive integer.
Eq. (18) represents a complete orthonormal basis on the interval of
interest, and therefore we can expand the general solution of Eq. (11)
on the latter:

𝐸 (𝑥, 𝑡) =
∞∑︁
𝑛=1

𝑐𝑛 (𝑡)𝜓𝑛 (𝑥) . (19)

Here the coefficients 𝑐𝑛 (𝑡) retain a generic time dependence, and we
can conveniently redefine them in the form:

𝑐𝑛 (𝑡) = 𝐸0
( 𝑡0
𝑡

)4
𝜙𝑛 (𝑡) , (20)

thus obtaining:

𝐸 (𝑥, 𝑡) = 𝐸0
( 𝑡0
𝑡

)4 ∞∑︁
𝑛=1

𝜙𝑛 (𝑡)𝜓𝑛 (𝑥) . (21)

Using Eq. (21) in Eq. (11), we can exploit the orthonormality of
𝜓𝑛 (𝑥) integrating over 𝑥 ∈ [0, 1] to find:

𝜙′𝑛 (𝑡) +
(
𝑡

𝑡0𝜏

)
(𝑛2𝜋2)𝜙𝑛 (𝑡) =

(−1)𝑛+1𝜌0
√

2
𝑛𝜋𝐸0

(
𝑡

𝑡0

)
¤𝜖 𝑓th . (22)

Finally, the bolometric luminosity is found by employing Eq. (4) and
Eq. (21) to compute the flux at the surface of the ejecta:

𝐿 (𝑡) = 4𝜋𝑅2 (𝑡)
[
𝑥2𝐹 (𝑥, 𝑡)

]
𝑥=1

=
4𝜋 (𝑣max𝑡0)3 √2𝐸0

𝜏

∞∑︁
𝑛=1

(−1)𝑛+1𝑛𝜋𝜙𝑛 (𝑡) ,
(23)

where 𝜙𝑛 (𝑡) are the solutions of Eq. (22), that can be obtained once
the time-dependence of ¤𝜖 , 𝑓th and 𝜅 has been specified. If the formal
solution of Eq. (22) is complex, when we compute the luminosity
through Eq. (23) we take only the real part of it.

Since this model is valid in the limit of optically thick matter, the
outcome of Eq. (23) is rescaled by a factor 𝑀thick/𝑀ej, where 𝑀thick
is the mass of the optically thick portion of ejecta, defined as the
region enclosed by the photosphere:

𝑀thick = 4𝜋
∫ 𝑅ph (𝑡 )

0
𝜌(𝑡, 𝑟)𝑟2𝑑𝑟 . (24)

Differently from the single-zone approximation adopted in the so-
lution of the RT equation, here we choose a more accurate space-
dependent density profile such as the self-similar homologous solu-
tion (Wollaeger et al. 2018):

𝜌(𝑡, 𝑥) = 𝜌0
( 𝑡0
𝑡

)3 (
1 − 𝑥2

)3
. (25)
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The photospheric radius evolution 𝑅ph (𝑡) can be found analytically
by imposing the condition

𝜏𝛾 (𝑅ph) = 2/3 , (26)

with 𝜏𝛾 the optical depth of the material:

𝜏𝛾 (𝑡, 𝑥) = 𝜅
∫ 1

𝑥
𝜌(𝑡, 𝑥′)𝑑𝑥′ , (27)

and 𝜌(𝑡, 𝑥) the density of Eq. (25). The determination of 𝑅ph (𝑡)
implies the solution of a seventh order polynomial equation. How-
ever, regardless of the ejecta parameters, the temporal evolution of
𝑅ph resembles a parabolic behaviour. Then, we approximate it as a
parabolic arc with extremes fixed by the condition 𝑅ph = 0 applied
to Eq. (26), i.e.:

𝑡1 = 0 , 𝑡2 =

√︄
27𝑀ej𝜅

8𝜋𝑣2
max

, (28)

and curvature fixed by a third point, 𝑡3, taken in the proximity of 𝑡1,
where Eq. (26) can be solved by assuming

(
𝑅max − 𝑅ph

)
/𝑅max ≪ 1.

By adopting this approximate solution, the error on the photosphere
position with respect to that provided by the exact solution of Eq. (26)
is contained within 8%.

We characterize the emission at the photosphere by assuming a
Plankian black-body spectrum, and thus we compute the associated
photospheric temperature 𝑇ph (𝑡) by means of the Stefan-Boltzmann
law:

𝑇ph (𝑡) = max


©­« 𝐿thick (𝑡)

4𝜋𝜎𝑅2
ph (𝑡)

ª®¬
1
4

, 𝑇floor

 , (29)

with 𝐿thick (𝑡) the luminosity of the thick part of the ejecta. A tem-
perature floor 𝑇floor is applied in order to approximately account
for the electron-ion recombination during the ejecta expansion (see
e.g. Barnes & Kasen 2013; Villar et al. 2017). When 𝑇ph (𝑡) reaches
the temperature floor, 𝑅ph (𝑡) is thus recomputed solving the im-
plicit equation obtained from the Stefan-Boltzmann law. The value
of 𝑇floor, generally treated as model parameter, is in fact dependent
on the ejecta opacity and therefore closely linked to its composition.
For this reason, we also include the possibility to interpolate the floor
temperature between two model parameters𝑇Ni and𝑇La, correspond-
ing to characteristic recombination temperatures in a Lanthanides-
poor (𝑌𝑒 ≳ 0.3) and a Lanthanides-rich (𝑌𝑒 ≲ 0.2) environment,
respectively.

In the following, we discuss a few cases for which the solutions of
Eq. (22) can be obtained analytically, based on temporal dependence
of 𝜅, 𝜖 and 𝑓th.

2.1.1 Constant opacity, constant thermalization efficiency and
power-law heating rate

We first consider the case in which 𝜅 is not only uniform in space, but
also constant in time, i,.e. 𝜅 = 𝜅0. In this case, the quantity 𝜏 becomes
a constant, 𝜏0 = 3𝜅0𝜌0 (𝑣max𝑡0)2/𝑐. Additionally, we consider 𝑓th to
be a constant, 𝑓th,0, while

¤𝜖 = ¤𝜖0
(
𝑡

𝑡0

)−𝛼
. (30)

In this case, the solutions of Eq. (22) take the explicit form:

𝜙𝑛 (𝑡) = exp
(
−𝜋

2𝑛2𝑡2

2𝑡0𝜏0

) [
𝐾𝑛 + 𝐴𝑛Γ

(
1 − 𝛼

2
,−𝜋

2𝑛2𝑡2

2𝑡0𝜏0

)]
, (31)

where Γ(𝑠, 𝑥) is the upper incomplete gamma function, defined as:

Γ(𝑠, 𝑥) ≡
∫ ∞

𝑥
𝑡𝑠−1𝑒−𝑡𝑑𝑡 , (32)

while 𝐴𝑛 are constants:

𝐴𝑛 = (−1)𝑛+1+ 𝛼
2 (𝑛𝜋)𝛼−3 √2

1−𝛼
(
𝜌0 𝑓th,0 ¤𝜖0𝜏0

𝐸0

) (
𝑡0
𝜏0

) 𝛼
2
, (33)

and 𝐾𝑛 are integration constants fixed by the boundary conditions.
In order to find the latter, we exploit the assumptions over the tem-
poral profile of the energy density. While 𝜙(∞) = 0 is automatically
satisfied by the form of 𝜙𝑛 (𝑡), one needs to translate 𝜙(𝑡0) = 1 into
a condition on 𝜙𝑛 (𝑡). We choose to assign 𝜙𝑛 (𝑡0) = 𝛿𝑛,1 to ensure
the convergence of Eq. (23):

𝐾𝑛 = 𝛿𝑛,1 exp
(
−𝜋

2𝑛2𝑡0
2𝜏0

)
− 𝐴𝑛Γ

(
1 − 𝛼

2
,−𝜋

2𝑛2𝑡0
2𝜏0

)
. (34)

2.1.2 Constant opacity, power-law thermalization efficiency and
heating rate

The previous solution can be trivially generalized to the case in which
both the specific heating rate and the thermalization efficiency follow
a power-law evolution:

¤𝜖 = ¤𝜖0
(
𝑡

𝑡0

)−𝛼
, 𝑓th = 𝑓th,0

(
𝑡

𝑡0

)−𝛽
. (35)

In this case, Eq. (31)-Eq. (33) are still a solution of Eq. (22), once 𝛼
has been replaced by 𝛼′ and 𝛼′ ≡ 𝛼 + 𝛽.

2.1.3 Constant opacity, constant thermalization efficiency and
power-law heating rate with exponential terms

We then consider the case in which the opacity and the thermalization
efficiency are constant in time, while the specific heating rate can be
written as

¤𝜖 = ¤𝜖0
(
𝑡

𝑡0

)−𝛼
+ 𝐵𝑒−𝑡/𝛽 . (36)

The solutions of Eq. (22) becomes:

𝜙𝑛 (𝑡) = exp
(
−𝜋

2𝑛2𝑡2

2𝑡0𝜏0

) [
𝐾𝑛 + 𝐴𝑛Γ

(
1 − 𝛼

2
,−𝜋

2𝑛2𝑡2

2𝑡0𝜏0

)
+

+ 𝐵𝑛erfi

(
𝑡0𝜏0 − 𝜋2𝑛2𝛽𝑡
√

2𝜋𝑛
√
𝑡0𝜏0𝛽

)]
+ 𝐶𝑛𝑒−𝑡/𝛽 ,

(37)

where erfi(𝑥) ≡ −𝑖 erf (𝑖𝑥) is the imaginary error function and the
error function is defined as

erf (𝑧) ≡ 2
√
𝜋

∫ 𝑧

0
𝑒−𝑡

2
d𝑡 . (38)

The 𝐵𝑛, 𝐶𝑛 and 𝐾𝑛 coefficients read

𝐵𝑛 = (−1)𝑛 exp
(
− 𝑡0𝜏0

2𝜋2𝑛2𝛽2

) √
𝑡0𝜏

3/2
0 𝜌0𝐵

𝜋7/2𝐸0𝛽𝑛4 , (39)

𝐶𝑛 = (−1)𝑛+1
√

2𝜏0𝜌0𝐵

𝜋3𝐸0𝑛3 , (40)

𝐾𝑛 = 𝛿𝑛,1 exp
(
−𝜋

2𝑛2𝑡0
2𝜏0

)
− 𝐴𝑛Γ

(
1 − 𝛼

2
,−𝜋

2𝑛2𝑡0
2𝜏0

)
+

− 𝐵𝑛erfi

(
𝑡0𝜏0 − 𝜋2𝑛2𝛽𝑡0√

2𝜋𝑛
√
𝑡0𝜏0𝛽

)
− 𝐶𝑛 exp

(
𝜋2𝑛2𝑡0

2𝜏0
− 𝑡0
𝛽

)
.

(41)
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This solution can be trivially generalized to the case in which more
than one exponential term is added to the power law term in Eq. (36).

2.1.4 Power-law opacity, thermalization efficiency and heating rate

Finally, we consider the case in which the opacity, the thermalization
efficiency and the specific heating rate have a temporal power-law
dependence:

¤𝜖 = ¤𝜖0
(
𝑡

𝑡0

)−𝛼
, 𝑓th = 𝑓th,0

(
𝑡

𝑡0

)−𝛽
, 𝜅 = 𝜅0

(
𝑡

𝑡0

)−𝛾
. (42)

In this case, 𝜏 can be expressed as 𝜏 = 𝜏0 (𝑡/𝑡0)−𝛾 so that Eq. (22)
becomes:

𝜙′𝑛 (𝑡) +
(
𝑡

𝑡0

)1+𝛾 (𝑛2𝜋2)
𝜏0

𝜙𝑛 (𝑡) = (−1)𝑛+1 𝜌0
√

2 ¤𝜖0 𝑓th,0
𝑛𝜋𝐸0

(
𝑡

𝑡0

)1−𝛼′

.

(43)

In this case, the solution of Eq. (43) becomes:

𝜙𝑛 (𝑡) = exp ©­«− 𝜋2𝑛2𝑡2+𝛾

(2 + 𝛾)𝑡 (1+𝛾)0 𝜏0

ª®¬×
×

𝐾𝑛 + 𝐴𝑛Γ ©­«2 − 𝛼′
2 + 𝛾 ,−

𝜋2𝑛2𝑡2+𝛾

(2 + 𝛾)𝑡1+𝛾0 𝜏0

ª®¬
 ,

(44)

where 𝐴𝑛 and 𝐾𝑛 are defined as

𝐴𝑛 = (−1)𝑛
√

2𝜌0 𝑓th,0 ¤𝜖0𝑡0
𝐸0𝑛𝜋(𝛾 + 2)

(
− 𝑡0
𝜏0

𝑛2𝜋2

(𝛾 + 2)

) 𝛼′−2
𝛾+2

(45)

and

𝐾𝑛 = 𝛿𝑛,1 exp
(
𝜋2𝑛2𝑡0
(2 + 𝛾)𝜏0

)
− 𝐴𝑛Γ

(
2 − 𝛼′
𝛾 + 2

,− 𝜋2𝑛2𝑡0
(2 + 𝛾)𝜏0

)
. (46)

2.2 Optically thin ejecta treatment

At the times relevant for the kilonova, we expect the r-process ma-
terial outside of the ejecta photosphere to provide a non-negligible
contribution to the heating powering the emission, especially when
a proper photosphere will eventually not be identifiable anymore.
However this contribution is expected to be considerably different
with respect to the one provided by the same portion of the ejecta if
the latter were optically thick, i.e. if we assumed 𝑅ph (𝑡) = 𝑅max (𝑡).
Therefore, in addition to the radiation emitted at the photosphere, we
approximate the bolometric luminosity 𝐿thin (𝑡) from the thin region
outside of it, following the prescription of Grossman et al. (2014);
Martin et al. (2015); Wu et al. (2019). We thus divide this region
into 𝑁thin layers of equal mass d𝑀𝑖 assuming local thermodynamics
equilibrium within each layer, and we express such contribution as:

𝐿thin (𝑡) =
𝑁thin∑︁
𝑖=1

𝑓th,𝑖 (𝑡) ¤𝜖 (𝑡)d𝑀𝑖 , (47)

where the sum runs over the discrete thin shells, while ¤𝜖 (𝑡) and
𝑓th,i (𝑡) are the specific radioactive heating rate and the space-
dependent binned thermalization efficiency, respectively, as de-
scribed in Sec. 4.1.

The total bolometric luminosity of the ejecta is simply obtained
by summing the contributions from the two separate regions:

𝐿 (𝑡) = 𝐿thick (𝑡) + 𝐿thin (𝑡) . (48)
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Figure 1. Bolometric luminosity per unit of ejecta mass and its two contri-
butions from the optically thick and thin ejecta as a function of time, for a
spherically symmetric model with 𝑀ej = 0.01 𝑀⊙ , 𝑣ej = 0.2 𝑐 and 𝜅 = 5
cm2 g−1. Also shown in red is the specific radioactive heating rate powering
the emission and its thermalized fraction. The heating curve was obtained
following the procedure described in Sec. 4.1 using an entropy of 𝑠 = 10
𝑘B baryon−1 and an expansion timescale of 𝜏exp = 5 ms.

In Fig. 1, the total luminosity is displayed together with its com-
ponents for a simple spherically symmetric model. As visible, the
early light curve is dominated by the thick ejecta, which constitutes
the majority of the total mass. In this phase most of the energy
provided by the radioactive decays is trapped within the ejecta
due to the high optical depths. After a few days, the ejecta density
has decreased enough for this energy to escape, enhancing the
emission up to be instantaneously greater than the thermalized
heating rate. Meanwhile, a second contribution to the luminosity
steps in, as a relevant portion of optically thin mass emits radiation
as well. Finally, after several days, the thick bulk of the ejecta
disappears, and the luminosity is completely determined by the
optically thin matter. Since the latter is transparent to thermal
radiation, the thermalized decay energy escapes without further
processing, and the luminosity is equal to the thermalized heating
rate. However, the latter is now only a small fraction of the total decay
energy rate, since the lower densities make the thermalization pro-
cess inefficient. Thus, the thermal emission will eventually fade away.

Along with the temperature of the photosphere 𝑇ph, we want to
characterize also the temperature in the layers outside of it. For this
purpose, we assign to each bin a temperature 𝑇𝑖 (𝑡) on the basis of the
radial profile proposed by Wollaeger et al. (2018) and derived for a
radiation dominated ideal gas using Eq. (25):

𝑇 (𝑡, 𝑥) = 𝑇0 (𝑡)
(
1 − 𝑥2

)
. (49)

For each time, we fix the factor 𝑇0 (𝑡) by requiring the continuity of
the profile with the photospheric temperature 𝑇ph (𝑡). Therefore, for
every bin 𝑖 we obtain:

𝑇𝑖 (𝑡) = 𝑇ph (𝑡)
1 − 𝑥2

𝑖

1 − 𝑥2
ph (𝑡)

, (50)

where 𝑥𝑖 is the position of the bin and 𝑥ph (𝑡) = 𝑅ph (𝑡)/𝑅max (𝑡) is
the position of the photosphere.
Recently, Pognan et al. (2022a) showed that a synthetic non-local
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thermodynamics equilibrium evolution of the temperature in the late
expanding ejecta features a re-increase from a minimum reached
around a few tens of days post merger. This result was obtained by
taking into account the material excitation and ionization states in a
more careful calculation of the ejecta heating and cooling processes,
using the spectral synthesis code SUMO. In light of the above com-
putations, we expect the temperature to remain roughly constant at
the late times still relevant for the first kilonova phase. Therefore, in
order to describe the thermal emission, here we find sufficient to set a
unique time-independent minimum temperature value 𝑇floor for both
the thick and the thin part of the ejecta.

3 MULTI-COMPONENT ANISOTROPIC SEMI-ANALYTIC
KILONOVA MODEL

Ejecta from compact binary mergers are expected to occur in dif-
ferent components, characterized by different properties. Moreover,
the ejection mechanisms can result in a anisotropic structure of the
ejecta. Motivated by this, we set up a multicomponent, anisotropic
kilonova framework. In particular, we closely follow the set-up first
proposed by Perego et al. (2017), originally based on Martin et al.
(2015) and reprised by Barbieri et al. (2019a, 2020); Camilletti et al.
(2022).

The framework assumes axial symmetry around the rotation axis
of the binary (denoted as 𝑧), as well as reflection symmetry about
the 𝑧 = 0 plane. The polar angle 𝜃 is discretised in a series of 𝑁𝜃
bins which can be equally spaced either in the angle itself or in cos 𝜃.
A kilonova model is specified once the polar distribution of all the
relevant quantities (i.e. mass, velocity, opacity or electron fraction,
entropy, expansion time scale) are given for each of the ejecta com-
ponents. Inside each angular bin and for each component, the radial
kilonova model described in Sec. 2 (or alternatively the model from
Grossman et al. (2014)) can be employed to compute the contribution
to the luminosity emerging from that angular bin. Being an exten-
sive quantity, the mass inside the bin needs to be scaled by the factor
4𝜋/ΔΩ, whereΔΩ is the bin solid angle. All the other input quantities
are otherwise intensive and do not need any rescaling. Once com-
puted, the isotropic luminosity resulting from the 1D model is scaled
again based on the actual emitting solid angle, i.e. it is multiplied by
ΔΩ/4𝜋. Within the same angular bin and in the presence of more
than one ejecta component, the corresponding luminosity contribu-
tions are summed together, assuming that photons emitted from the
innermost components irradiate the outermost ones and are subse-
quently re-processed and re-emitted on a time scale smaller than the
expansion one. Moreover, at each time we locate the photosphere of
the overall ejecta at the position of the larger individual photosphere.
This approach assumes that the different components are nested and
that they do not cross each other significantly during the kilonova
emission. We expect these hypotheses to be appoximately verified
once the homologous expansion phase has been reached and if the
late time ejecta are systematically slower than the first expelled ones.

The present implementation includes characteristic analytic func-
tional forms for the angular dependences: uniform distributions, step
functions, sin 𝜃, sin2 𝜃, cos 𝜃 and cos2 𝜃 dependences. Despite their
simplicity, some of these distributions were demonstrated to be
remarkably valid in broadly reproducing the outcomes of general-
relativistic hydrodynamical simulations, accounting for the preferen-
tial equatorial direction of the dynamical component, as well as the
excursion in the electron fraction caused by high-latitudes neutrino
irradiation. Additionally, the code can interpolate on its angular grid
arbitrary distributions, such as azimuthally-averaged angular profiles

extracted from numerical simulations (see, for example, Camilletti
et al. 2022).

Typical kilonova models employed in the past used up to three
different components (Perego et al. 2017; Breschi et al. 2021, see,
e.g.,). In the case of two components, the fastest one usually refers to
the dynamical ejecta, while the slowest one to the disc wind ejecta of
viscous origin. A third, intermediate component is sometimes used,
possibly originated by magnetic- (see e.g. ) or neutrino-driven wind
components (e.g. Perego et al. 2014), as well as from spiral wave
wind ejecta (e.g. Nedora et al. 2019, 2021).

In the source frame, the emission is assumed to be thermal and
the spectral fluxes are described by a Planckian spectral distribution
𝐵𝜈 (𝑇), i.e.:

𝐵𝜈 (𝑇) =
2𝜋ℎ𝜈3

𝑐2
1

exp
(
ℎ𝜈
𝑘B𝑇

)
− 1

, (51)

with 𝑘B the Boltzmann constant and ℎ the Planck constant, both at
the photosphere as well as within each thin external layer. In the
former case, 𝑇 is the photospheric temperature, while in the latter it
is the temperature inside each mass shell.

If the source is located at a luminosity distance 𝐷𝐿 , corresponding
to a redshift 𝑧, for an observer on Earth characterized by a viewing
angle 𝜃𝑣iew, the radiant flux at frequency 𝜈 and time 𝑡 (measured
in the observer frame) will be the sum over the angular bins of the
contributions from the thick ejecta 𝐹thick

𝜈,𝑘
and the thin ejecta 𝐹thin

𝜈,𝑘
(computed in the source frame), once the redshift correction has been
applied to the time, frequency and luminosity:

𝑓𝜈 (𝑡) =
(1 + 𝑧)
4𝜋𝐷2

𝐿

𝑁𝜃∑︁
𝑘=1

{
𝑝𝑘 (𝜃𝑣iew)

4𝜋
ΔΩ𝑘

[
𝐹thick
(1+𝑧)𝜈,𝑘

(
𝑡

1 + 𝑧

)
+𝐹thin

(1+𝑧)𝜈,𝑘

(
𝑡

1 + 𝑧

)]}
, (52)

with:

𝐹thick
𝜈,𝑘

(𝑡′) =
𝐿thick,𝑘 (𝑡′)
𝜎SB𝑇

4
ph,𝑘 (𝑡

′)
𝐵𝜈 (𝑇ph,𝑘 (𝑡′)) , (53)

and:

𝐹thin
𝜈,𝑘

(𝑡′) =
∑︁
𝑖

𝑓th,𝑖,𝑘 (𝑡′) ¤𝜖𝑘 (𝑡′)d𝑀𝑖,𝑘
𝜎SB𝑇

4
𝑖,𝑘

(𝑡′)
𝐵𝜈 (𝑇𝑖,𝑘 (𝑡′)) . (54)

where 𝐿thick,k is the photospheric luminosity of the bin 𝑘 , charac-
terized by a photospheric temperature 𝑇ph,𝑘 . The factors 𝑝𝑘 (𝜃𝑣iew)
in Eq. (52) account for the effective emission area as seen by the
observer (Martin et al. 2015), and are calculated using the formula:

𝑝𝑘 (𝜃𝑣iew) =
1
𝜋

∫
®𝑞 (𝜃𝑣iew ) · ®𝑛𝑘>0

®𝑞(𝜃𝑣iew) · d ®Ω , (55)

where ®𝑞(𝜃𝑣iew) is the unit vector in the observer direction, while ®𝑛𝑘
is the unit vector pointing radially outwards from the surface of the
bin 𝑘 .
Finally, we compute the AB magnitude at a photon frequency 𝜈 as:

𝑚AB,𝜈 (𝑡) = −2.5 log10 ( 𝑓𝜈 (𝑡)) − 48.6 . (56)

4 INPUT PHYSICS

4.1 Heating rates

The heating rate powering the kilonova originates from the many
decays of heavy elements produced in the r-process nucleosynthesis,
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and as such it can be computed by employing a nuclear reaction
network. The latter calculates the time evolution of the nuclides
abundances while keeping track of the energy released in the process.
Results obtained by nuclear network calculations retain a strong
dependence on the properties of the ejecta, and in particular on the
entropy, electron fraction and expansion timescale at the freeze-out
from nuclear statistical equilibrium (NSE) (see, e.g., Hoffman et al.
1997; Lippuner & Roberts 2015). Furthermore, nuclear network
calculations also depend on the nuclear physics employed, e.g. on
the choice of the theoretical nuclear mass model, the reaction rates
or the fission fragment distribution. This sensitivity is particularly
strong at low electron fractions and the nuclear physics uncertainties
can lead to changes in the predicted heating rates of about one order
of magnitude (Mendoza-Temis et al. 2015; Rosswog et al. 2017; Zhu
et al. 2020).

With the purpose to provide our kilonova model with a heating
rate valid for arbitrary initial conditions, we consider the results
of the broad nucleosynthesis calculations reported in Perego et al.
(2022). In that work, the nuclear composition evolution of a set of
Lagrangian fluid elements is computed using the nuclear reaction
network SkyNet (Lippuner & Roberts 2017) with the finite-range
droplet macroscopic nuclear mass model (FRDM) (Möller et al.
2016). Each SkyNet run is initialized at a temperature of 6 GK in
NSE, and identified by the values of the initial electron fraction 𝑌𝑒,
entropy 𝑠, and expansion timescale 𝜏exp. The latter are considered
as initial parameters and later evolved consistently by the network.
More details about these nucleosynthesis calculations can be found
in Perego et al. (2022). In particular, the heating rates we employ are
computed over a comprehensive grid of ∼ 11700 distinct trajectories
with 0.01 ≤ 𝑌𝑒 ≤ 0.48 linearly spaced, 1.5 𝑘B baryon−1 ≤ 𝑠 ≤ 200
𝑘B baryon−1 and 0.5 ms ≤ 𝜏exp ≤ 200 ms logarithmically spaced.
These intervals are expected to bracket the properties of the ejecta
from BNS and NSBH mergers. We fit the heating rate trajectories
obtained with SkyNet over the time interval 0.1 days ≤ 𝑡 ≤ 50 days
after merger, using the following power-law dependence:

¤𝜖 = ¤𝜖1d

(
𝑡

1 day

)−𝛼
, (57)

where ¤𝜖1d and 𝛼 are fit parameters, with typical values 𝛼 ∼ 1.3 and
¤𝜖1d ∼ 1010 erg s−1 g−1. Such a temporal dependence in the heating
rate is expected from the decay of large sample of unstable nuclei
(Metzger et al. 2010; Korobkin et al. 2012). Moreover, it is equivalent
to Eq. (30), one of the functional forms used in the optically thick
kilonova model described in Sec. 2, provided a conversion factor
between the fit reference time (1 day) and 𝑡0. The quality of each
single fit is evaluated using a mean fractional log error as employed
in Lippuner & Roberts (2015), defined as:

Δ( ¤𝜖) =
〈
| ln( ¤𝜖𝑜 (𝑡)) − ln( ¤𝜖 (𝑡)) |

ln( ¤𝜖𝑜 (𝑡))

〉
, (58)

where ¤𝜖𝑜 (𝑡) is the original SkyNet heating rate trajectory, while the
mean is performed over the fit time window without weighing over
the time steps, in order to account for the original SkyNet resolution.
For most trajectories we find the average relative errors to be smaller
than∼ 1%. The largest errors are found at the boundary of the SkyNet
grid, where the relative error can be as large as ∼ 5%.
In Fig. 2, the values of the fitting coefficients are plotted against𝑌𝑒, 𝑠
and 𝜏exp for representative sections of the SkyNet grid. As shown in
the left column, for a fixed𝑌𝑒 the fit parameters are generally smooth
functions of the two other thermodynamic variables, and in particular
the value of 𝛼 remains roughly constant (for 𝑌𝑒 ≲ 0.2 it hardly

deviates from ∼ 1.3, as already found in Korobkin et al. (2012)),
while the value of ¤𝜖0 varies within a factor of a few. On the other
hand, the variability of the fit parameters increases as the electron
fraction is left free to vary. This strong and non-trivial dependence
of the heating rate on the electron fraction is more evident for high
𝑌𝑒 values, where the radioactive heating can be dominated by the
decay of individual nuclear species, depending on the specific ejecta
conditions. However, we find that the continuity in the fit parameters
endures at least in the region which is more relevant to our study, i.e.
for 𝑌𝑒 ≤ 0.36, 𝑠 ≤ 90 𝑘B baryon−1 and 𝜏exp ≤ 30 ms. We therefore
adopt a trilinear interpolation of the fitting coefficients as functions
of 𝑌𝑒, 𝑠, and 𝜏exp in that region, while isolated points or boundary
areas for which the continuity of the fitting coefficients is poor are
treated by using a nearest-point interpolation.

In order to account for the efficiency with which decay products
thermalize in the ejecta, we apply a thermalization efficiency factor
to the heating rate as follows. For the thick core of the ejecta, we
consider both a constant thermalization efficiency (compatible with
all the analytic solutions presented in Sec. 2) and a thermalization
efficiency with a time evolution 𝑓th = 𝑓th,0 (𝑡/𝑡0)−𝛽 , as described in
Sec. 2.1.2, and Sec. 2.1.4. The latter formula approximately mimics
the decreasing in the thermalization behaviour expected during the
first day in the optically thick ejecta. The values of 𝑓th,0 and 𝛼th
can be fixed by imposing, for example, a thermalization efficiency of
∼ 0.7 and 0.4 at 0.1 days and 1 day, respectively. For the thin layers
of the ejecta instead, we model a thermalization efficiency profile
starting from the analytic formula proposed in Barnes et al. (2016)
and fitted on the properties of the ejecta:

𝑓th (𝑡, 𝑥) = 0.36

exp(−𝑎𝑋) +
ln

(
1 + 2𝑏𝑋𝑑

)
2𝑏𝑋𝑑

 , (59)

where 𝑎, 𝑏 and 𝑑 are the fit parameters. In that work, this expression
was obtained by assuming Eq. (7), and 𝑋 (𝑡, 𝑥) = 𝑡. Here instead,

we adopt Eq. (25), and 𝑋 (𝑡, 𝑥) = 𝑡

(
1 − 𝑥2

)−1
. We interpolate the

fit parameters in Eq. (59) on the tabulated grid reported in Barnes
et al. (2016), which spans the intervals 1 × 10−3 𝑀⊙ < 𝑀ej <

5 × 10−2 𝑀⊙ for the total ejecta mass and 0.1 𝑐 < 𝑣ej < 0.3 𝑐

for its average velocity. This combination of different efficiencies is
motivated by the fact that, on one hand, we expect the decay energy in
the thick bulk to thermalize in a similar way as long as the density is
sufficiently high. In particular, roughly ∼ 35% of the energy escapes
in the form of neutrinos, ∼ 45% is constituted by 𝛾-rays which
efficiently heat the material only within the first day post-merger, and
the remaining∼ 20% is carried by 𝛽-particles, 𝛼-particles and fission
yields (Barnes et al. 2016). On the other hand, the thermalization
efficiency drops significantly in the outer layers of the ejecta, where
the lower density makes it harder for the decay products to deposit
their energy through thermal processes. Fig. 3 shows the modeled
thermalization efficiency profile for different times after merger. By
construction, the efficiency in the thin ejecta rapidly declines to values
< 20% after a few days post merger. Concurrently, the photosphere
radius receeds inward until it disappears. Despite being an artifact,
the discontinuity in the efficiency profile at the photosphere radius
is not inconsistent with our photosphere model, which assumes a
sharp difference in the properties of matter between the thick and the
thin ejecta regions. However, we acknowledge the crudeness of the
overall thermalization treatment, which does not rigorously account
for the dependency on the ejecta conditions of the specific deposition
processes involved. Therefore, we leave for a future investigation the
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Figure 2. Heating rate fit parameters as functions of the initial electron fraction𝑌𝑒 and entropy 𝑠, for fixed values of the expansion timescale 𝜏exp. The dashed line
separates the region where we interpolate the parameters linearly (left) from the region where the continuity of the parameters is poor and we use a nearest-point
interpolation (right).
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Figure 3. Constructed thermalization efficiency radial profile at different
days post-merger. The ejecta density radial profile from Eq. (25) is shown as
reference.

impact of more detailed thermalization descriptions on the resulting
kilonova light curves.

4.2 Opacities

In our framework, we can consider the opacity for the r-process
material in the ejecta as a free parameter of the model. Alterna-
tively, we can also provide composition-dependent opacity values
following the work of Tanaka et al. (2020), in which systematic
atomic structure calculations on each element between Fe (𝑍 = 26)
and Ra (𝑍 = 88) are performed using the integrated code HULLAC
(Bar-Shalom et al. 2001). That study mainly focuses on the ejecta
conditions around 1 day after the merger, where the temperature is
low enough (𝑇 ≲ 20000 K) to find the heavy elements ionization
stages typically between I-IV. At this time, the density is assumed to
be 𝜌 = 1× 10−13 g cm−3 (which is a typical value for an ejecta with
mass 𝑀ej ∼ 0.01 𝑀⊙ and velocity 𝑣ej ∼ 0.1 𝑐), and from here on
the opacity in the IR, optical and UV is dominated by bound-bound
transitions (Kasen et al. 2013).
Bound-bound opacities on a fixed wavelength grid for the homolo-
gously expanding material are computed using the widely employed
expansion opacity formalism:

𝜅(𝜆) = 1
𝑐𝑡𝜌

∑︁
𝑙

𝜆𝑙

Δ𝜆
(1 − 𝑒−𝜏𝑙 ) , (60)

where the sum runs over all the transitions in the RT simulations
within the bin Δ𝜆. Planck mean opacities are then computed for
a representative ejecta model with different mixtures of heavy ele-
ments, characterized by the value of the initial electron fraction 𝑌𝑒
(see Sec. 4.1).
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Figure 4. Grey opacity values derived by Tanaka et al. (2020) for temperatures
5000 K < 𝑇 < 10000 K and densities 𝜌 ∼ 10−13 g cm−3 and for different
ejecta compositions characterized by a specific value of electron fraction. The
mass fraction of Lanthanides and Actinides is reported for every considered
composition.

In Fig. 4 we report the grey opacity values derived by Tanaka et al.
(2020) for ejecta temperatures of 5000 K < 𝑇 < 10000 K, whereas a
stronger temperature dependence is found for 𝑇 < 5000 K. We note
that in more recent works (see, e.g., Banerjee et al. 2023, 2022, 2020)
such opacity calculations are extended to the ionization stages V-XI
of the elements up to Ra, which are expected to be present for ejecta
temperatures up to ∼ 105 K at times shorter than 1 day post-merger.
We therefore leave the corresponding suggested grey opacities as a
possible alternative to the Tanaka et al. (2020) dataset.
In general, around 1 to a few days, if the electron fraction is low
enough (𝑌𝑒 ≲ 0.25), the grey opacity is dominated by lanthanides
and actinides, with values 𝜅 ≳ 10 cm2 g−1. Instead, an increase in
the electron fraction between 0.25 ≲ 𝑌𝑒 ≲ 0.35 causes a general
decrease of the opacity to values 𝜅 ∼ 1− 10 cm2 g−1, as the fraction
of 𝑓 - valence shell elements present in the ejecta decreases, leav-
ing room for the 𝑑-shell atoms to provide the leading contribution.
Finally, at even higher electron fractions 𝑌𝑒 ≳ 0.4, the contribution
from Fe-like elements dominates the opacity, which reaches values
𝜅 ∼ 0.1 − 1 cm2 g−1. In this instance, we interpolate the values in
Fig. 4 to uniquely determine the ejecta opacity on the basis of the
input 𝑌𝑒.

5 COMPARISON WITH RADIATIVE TRANSFER
CALCULATIONS

5.1 Radiative transfer code

In order to assess the level of reliability of our model, we set up a
comparison between the light curves obtained by our semi-analytical
model and the ones obtained by a RT kilonova simulation. For the
latter, we refer to Kawaguchi et al. (2018, 2021), who employ the
wavelength-dependent Monte Carlo RT code originally presented
in Tanaka & Hotokezaka (2013). For a given density structure and
abundance distribution, the code computes the time evolution of
the photon spectrum in the UVOIR wavelength range, together
with multicolor light curves. Differently from the first 3D version,

Kawaguchi et al. (2018, 2021) assume the ejecta to be axisymmetric.
This allows for an increase in the simulation spatial grid resolution,
and for the inclusion of special-relativistic effects in the photon
transport. Photon-matter interaction is described by considering
elastic scattering off electrons, together with free-free, bound-free
and bound-bound transitions. The contribution to the opacity from
the latter is computed using the expansion opacity formalism
described in Sec. 4.2, while the atomic transition line list employed
in the code is the one already used in Tanaka et al. (2017); Tanaka
et al. (2020). Since these atomic data concern the ionization stages
I-III, the code is used only for temperatures up to ∼ 10000 K, below
which further ionization stages are subdominant. Nuclear heating
rates and elemental abundances are directly imported from the
nucleosynthesis calculations of Wanajo et al. (2014), based on the
post-processing of Lagrangian tracer particles obtained by a fully
general relativistic simulation of a BNS merger with approximate
neutrino transport. Each reaction network calculation starts from
a representative thermodynamic trajectory with an initial electron
fraction in the range 𝑌𝑒 = 0.09 − 0.44. The fraction of thermalized
energy is computed using the analytic formulae reported in Barnes
et al. (2016) for the different decay products. These formulae depend
on the mass and velocity of the ejecta in a similar fashion to Eq. (59).
In particular, while the velocity parameter in the thermalization
formulae is fixed to 𝑣ej = 0.3 𝑐, the mass parameter is set starting
from the local density and considering a uniform sphere of radius 𝑣ej𝑡.

5.2 Comparison setup

We prepare our comparison by setting the same ejecta properties
in both codes. We consider two ejecta configurations, namely
a lighter anisotropic dynamical component and a more massive
spherically symmetric secular component. This choice is motivated
by the general necessity of modelling multiple components of
matter ejection, which are required in order to reproduce the
color bands of observed kilonovae, as in the case of AT2017gfo
(Cowperthwaite et al. 2017; Tanvir et al. 2017; Tanaka et al. 2017).
Regarding the secular component, we assume a total mass of
𝑀sec = 2.64 × 10−2 𝑀⊙ , an average velocity of 𝑣rms = 0.06 𝑐

and constant values for the electron fraction and specific entropy,
i.e. 𝑌𝑒 = 0.2 and 𝑠 = 10 kB baryon−1. We compute the associated
expansion time scale as 𝜏exp = 𝑐/𝑣rms ≈ 17 ms. These values are
representative of the outcomes of simulations that investigate the
evolution of disks emerging as remnants of compact binary mergers
and accreting onto the central object. In these simulations, a fraction
between ∼ 20 − 40% of the disk mass is expelled during the secular
evolution, with the initial disk mass 𝑀disk ∼ 10−4 − 10−1 𝑀⊙ (see,
e.g., Fahlman & Fernández 2022; Fujibayashi et al. 2020; Fernández
et al. 2019; Hotokezaka et al. 2013). Instead, for the dynamical
component, we use the properties of the dynamical ejecta extracted
from one GRHD simulation of a BNS merger with M0 neutrino
transport approximation, chosen among those performed by Perego
et al. (2019) and compatible with the GW170817 event. Despite
the simulations considered in that work include different EOSs,
they all lead to similar ejecta angular distributions, and therefore
we arbitrarily select the simulation employing the HS(DD2) EOS
(Hempel & Schaffner-Bielich 2010). The dynamical ejecta are
identified with the matter unbound within the end of the simulation
according to the geodesic criterion, i.e. the matter for which |𝑢𝑡 | ≥ 𝑐,
with 𝑢𝑡 the time-component of the four-velocity. For an equal-mass
binary with masses 𝑀1,2 = 1.364 𝑀⊙ , a total dynamical ejecta mass
𝑀dyn = 2.7×10−3 𝑀⊙ was found. The properties of this component
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Table 1. Fit parameters boundaries considered in the fitting procedure. The wider intervals adopted for the parameters associated to the secular ejecta reflect the
major variability in composition of such component, based on the outcome of different numerical simulations.

Secular wind NR dynamical ejecta
𝜅 [cm2 g−1] 𝑇floor [K] 𝜅high lat [cm2 g−1] 𝜅low lat [cm2 g−1] 𝑇Ni [K] 𝑇LA [K]

min 0.5 0 0.1 5 0 0
max 50 6000 10 50 6000 3000
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Figure 5. Density and electron fraction distributions in the velocity space
for the dynamical ejecta at 𝑡 = 100 s post-merger. The density radial profile
follows the analytic prescription of Eq. (25), while a radially constant electron
fraction is assumed. Angular distributions are extracted from the GRHD
simulation of an equal-mass BNS system with masses 𝑀1,2 = 1.364 𝑀⊙
using the DD2 EOS (Perego et al. 2019).

are recorded as matter crosses a extraction spherical surface charac-
terized by a coordinate radius 𝑟E = 294 km, and are then reduced
to an axisymmetric configuration by averaging over the azimuthal
angle. In particular, xkn is informed with the angular distributions of
the ejecta mass, average electron fraction and entropy, and average
velocity at infinity, calculated as 𝑣∞rms = 𝑐

√︁
1 − (𝑐/𝑢𝑡 )2. We choose

the profile given by Eq. (25) to describe the radial density structure
of each ejecta component both in the RT simulation and in xkn.
Moreover, we assume a radially constant electron fraction in order
to fix the composition. The resulting configuration of the dynamical
ejecta as depicted in Fig. 5 reflects the general characteristics of this
component as obtained in many merger simulations: neutron-rich
matter is expelled preferentially across the equatorial plane partially
through tidal forces, while shock-heated material subject to stronger

neutrino irradiation and thus less neutron-rich escapes also at small
polar angles.

The input profiles described above uniquely determine all the com-
ponents of both the models, including energy deposition rates, ele-
mental abundances and opacities, with the only exception of one
remaining free parameter in xkn, that is the photospheric floor tem-
perature 𝑇floor. We remark that the employed radioactive heating
rates, as well as the prescription for the thermalization efficiency, are
not coincident between the two models, although derived from the
same initial conditions. However, the final energy deposition rates
agree within a factor of a few, and we account for this discrepancy
as being part of the general difference between the kilonova mod-
els. Furthermore, we acknowledge that the opacity treatment in our
xkn model is significantly approximated: in addition to the adoption
of grey values, we assume the opacity to be constant in time or at
most to evolve according to a power-law, when characterizing the
ejecta through their entire evolution and depth. In reality we expect
the Planck mean opacity to vary by at least one order of magnitude
between different regions and epochs. Therefore, the adoption of
the opacity values derived by Tanaka et al. (2020) and described in
Sec. 4.2 is not more physically motivated than treating the opacity as
a free parameter, and, for this reason, in the comparison we consider
both possibilities.

The RT data employed in the comparison consist of the bolo-
metric luminosity, 𝐿RT

bol (𝑡), and of the AB magnitudes, 𝑚RT
AB,𝜆, 𝜃 (𝑡)

at different wavelengths 𝜆, observed from multiple viewing angles
𝜃𝑣iew ∈ [0◦, 90◦]. We thus fit our free parameters to both sets of data
separately, considering a logarithmically spaced time mesh, from 0.5
to 15 days. Within this time frame, we assume that the assumptions
of our model are better verified, and that the RT calculations are more
reliable, whereas temperatures throughout the ejecta are well below
10000 K, justifying the employed atomic data.
We define two error functions in order to establish the fit procedure.
For the bolometric luminosity, we compute the absolute logarithmic
error between our model luminosity, 𝐿M

bol, and the RT result, 𝐿RT
bol,

averaged over all 𝑁𝑡 data points in the considered time frame:

err𝐿 =
1
𝑁𝑡

∑︁
𝑡𝑖

�����log

(
𝐿M

bol,𝑖

𝐿RT
bol,𝑖

)����� . (61)

For the AB magnitudes, we consider three representative broadband
filters, namely the 𝐾 (𝜆 = 2157 nm), 𝑧 (𝜆 = 972 nm) and 𝑔 (𝜆 =

475 nm) filters. The light curves are calculated assuming a source
luminosity distance of 𝐷𝐿 = 40 Mpc, corresponding to the estimated
distance for the merger associated to the AT2017gfo signal. Since our
kilonova model is better suited to reproduce the light curve behaviour
around the emission peak, only data points such that 𝑚RT

AB,𝑖 < 30
are considered, in order to avoid having the fits influenced by too
dim values. In a similar fashion to the bolometric luminosity, we
compute the absolute error between the magnitudes across the three
different wavebands and two different viewing angles, i.e. 0◦ and
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90◦, averaging over all 6 × 𝑁𝑡 data points in the same time interval:

err𝑚 =
1

6𝑁𝑡

∑︁
𝑡𝑖 :𝑚RT

AB,𝑖<30

©­«
∑︁
𝑔,𝑧,𝐾

©­«
∑︁

𝜃=0◦ ,90◦
|𝑚M

AB,𝑖 − 𝑚
RT
AB,𝑖 |

ª®¬ª®¬ . (62)

We perform two sets of runs, one for each ejecta configuration,
i.e. one for the secular isotropic ejecta and one for the dynamical
anisotropic ejecta. Furthermore, for each set, we take into account
two possibilities. In one case we allow the opacity in our model to
vary freely, and in particular for the anisotropic setup we assume it
to follow a step function, i.e. we adopt a higher value, 𝜅low lat, at
low latitudes (𝜃 ≳ 45◦) in correspondence of a neutron-rich environ-
ment with 𝑌𝑒 ≲ 0.25, and a lower value, 𝜅high lat, at high latitudes
(𝜃 ≲ 45◦) where 𝑌𝑒 ≳ 0.25. In the other case instead we compute
the opacity using the 𝑌𝑒 parametrization from Tanaka et al. (2020),
leaving us with only the photospheric floor temperature to be fitted.
To be consistent with the opacity prescription, for the anisotropic
ejecta setup we consider a 𝑌𝑒-dependent floor temperature param-
eterized by the two values 𝑇Ni and 𝑇LA. In Table 1 we report the
adopted ranges for the parameters included in the fit procedure. Fi-
nally, each calculation is repeated using the semi-analytic kilonova
model presented in Perego et al. (2017) for comparison purposes.
The latter shares the same multicomponent, anisotropic framework
as the model presented in this work. However, the underlying kilo-
nova model is not based on the solution of the diffusion equation, but
it is a phenomenological description based on timescale arguments,
presented in Grossman et al. (2014) and Martin et al. (2015). Due to
this distinction, we name the previous model as xkn-ts, as opposed
to our new xkn-diff model.

5.3 Comparison results

The results for all the different models and configurations considered
are summarized in Table 2. As visible, the fit procedure returns
reasonable fit parameters values falling in the prior intervals, with
the exception of a minor number of cases useful to let the modelling
limits emerge. In general, both the fits on the bolometric luminosities
and the magnitudes derived from the RT simulation show an overall
improved fit quality when using xkn-diff with respect to the
previous xkn-ts model.

In particular, when fitting on the bolometric luminosity, xkn-ts is
limited by having only the degree of freedom associated to the ejecta
opacity (when the latter is left free to vary), since the temperature
floor does not enter the luminosity calculation, as opposed to the
xkn-diff case. This difference arises because the floor temperature
affects the late time photospheric radius in both models, but while
in xkn-ts the latter is used only for the magnitudes computation
through the Stefan-Boltzmann law and does not modify the volume
of the radiative zone, in the xkn-diff case the photosphere posi-
tion has a feedback on the allocation of mass to the optically thick
and optically thin regimes, thus altering the bolometric luminosity
as well. As a result, for the case in which the opacity is prescribed
using the value of the electron fraction, the bolometric luminosity in
xkn-ts is completely fixed for both the secular and the dynamical
component configurations, and the correspondent fit errors are the
worst in the set.
On the other hand, in the xkn-diff model the floor temperature is
adjusted in such a way to increase the late time agreement. Indeed
such parameter can ultimately affect light curves only when tem-
peratures in the ejecta have decreased enough, as it is commonly
assumed to be the case around a few days post-merger. Specifically,

in the secular component configuration this dependency drives the
floor temperature to almost rail against the upper boundary, in order
to accelerate the photosphere recession and maximize the amount of
thin ejecta contributing to the late time emission. One can note that
in all cases, and more rapidly for the faster dynamical component,
both semi-analytic models converge to the same curve, since in the
xkn-diff model the treatment of the thin ejecta, which eventually
constitutes the totality of the outflow, is analytically equivalent to
the one used for the entire ejecta in xkn-ts. Furthermore, since this
treatment does not properly model the material opacity outside of the
photosphere, varying the latter cannot affect the computed luminos-
ity around 10 days, thus not improving the late time matching.
As visible in Fig. 6, in all the investigated configurations xkn-ts is
sistematically underestimating the early time luminosity with respect
to both the RT simulation and xkn-diff of a factor from a few to
even multiple orders of magnitude depending on the specific case.
This evidence establishes qualitatively the error hierarchy in using
an approximate scheme based on the calculation of the diffusion
timescale of photons, versus an analytic solution of the simplified
RT problem, with respect to a full RT simulation. Therefore, once
the opacity is left free to vary, the physiologic behaviour of xkn-ts
is to compensate this systematic by lowering the latter to very small
values in order to increase the emission brightness especially before
∼ 1 day, even incurring in the opacity boundaries in the dynamical
component case. Also the xkn-diffmodel is partially subject to the
same mechanism, as visible specifically in the secular component
case. This result suggests a general limitation on using the bolo-
metric luminosity to fit parameters related to local features of the
ejecta configuration. However, we also note that, especially for the
dynamical component, the magnitude and shape of the bolometric
luminosity are in good agreement with the ones derived from the RT
calculations.

With respect to the fit on the bolometric luminosity, when
the same procedure is applied to the AB magnitudes, the overall
qualitative results remain roughly unaltered. However, in such a
case we include by construction more information, coming from
different wavebands and viewing angles. In addition, the temperature
floor has a direct role in determining the color bands, since they
strongly depend on the photosphere effective temperature, and thus
this parameter influences the fit outcome regardless of the model
employed. Therefore, we obtain best fit values not necessarily close
to the ones found in the previous case.
Both in the secular and the dynamical component configurations,
we find the same error hierarchy as in the bolometric luminosity fits,
with xkn-ts tipically underestimating the overall brightness up to a
few days in all bands with respect to xkn-diff. Furthermore, Fig. 7
shows how magnitudes confirm the trend already evident for the
bolometric luminosity, by which xkn-diff tends to underestimate
the emission brightness at early times ≲ 1 day, indicating a model
limitation.
The retrieved opacities are now generally higher for both models,
with values which can also be closer to the ones fixed by the atomic
calculations. The fact that the opacity values differ significantly from
the previous fits is not surprising, since in this case they are informed
with the light curves in multiple filters as seen in edge-on and face-on
configuration: especially in the dynamical ejecta configuration, the
latter is valuable information in determining the opacity angular
distribution with a better accuracy. In addition, we recall that color
bands in the model are derived by composing a sprectrum mainly
based on pure black-body emission, which is therefore not able to
reproduce the black-body deviations found in the RT calculations.
In particular, as pointed out in Gillanders et al. (2022), we note that
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Table 2. Best fit parameters obtained in the case of the bolometric luminosity (top) and magnitudes (bottom) with corresponding fit errors for the dynamical
(right) and the secular (left) component configurations, as obtained by using xkn-diff and xkn-ts models, with and without a fixed opacity. Cases for which
the fit rails against the chosen boundaries are highlighted in gray. (*) is used to indicate that the parameter value is fixed, either manually for the secular ejecta
or from the NR simulation for the dynamical ejecta. (-) is placed when the value does not affect the fit outcome.

Bolometric luminosity
Secular wind NR dynamical ejecta

Model 𝜅 [cm2 g−1] 𝑇floor [K] err𝐿 𝜅high lat [cm2 g−1] 𝜅low lat [cm2 g−1] 𝑇Ni [K] 𝑇LA [K] err𝐿
xkn-ts 0.7 - 0.32 0.1 5.0 - - 0.32
xkn-ts (fixed opacity) 22.3* - 1.21 * * - - 0.44
xkn-diff 4.9 154 0.12 1.0 10.7 5848 2150 0.12
xkn-diff (fixed opacity) 22.3* 5999 0.31 * * 4183 2112 0.14

AB magnitudes
Secular wind NR dynamical ejecta

Model 𝜅 [cm2 g−1] 𝑇floor [K] err𝑚 𝜅high lat [cm2 g−1] 𝜅low lat [cm2 g−1] 𝑇Ni [K] 𝑇LA [K] err𝑚
xkn-ts 5.6 1026 1.49 1.8 6.0 1857 1019 0.91
xkn-ts (fixed opacity) 22.3* 3242 3.25 * * 3424 946 1.01
xkn-diff 19.0 797 1.06 0.2 49.4 1516 433 0.74
xkn-diff (fixed opacity) 22.3* 984 1.08 * * 1556 591 1.05
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Figure 6. Bolometric luminosity correspondent to the best fit parameters in the dynamical and the secular component configurations, as obtained by using
xkn-diff and xkn-ts models, with and without a fixed opacity. Curves are shown in comparison to the data on which the fits are performed, derived from the
RT calculations obtained with the code developed in Tanaka & Hotokezaka (2013); Kawaguchi et al. (2018, 2021).
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Figure 7. AB magnitudes in the 𝑔, 𝑧 and 𝐾 filters as seen from a viewing angle 𝜃𝑣iew = 45◦, calculated for the best fit parameters in the dynamical and the
secular component configurations, using xkn-diff and xkn-tsmodels, with and without a fixed opacity. Curves are shown in comparison to the data on which
the fits were performed, derived from the RT calculations obtained with the code developed in Tanaka & Hotokezaka (2013); Kawaguchi et al. (2018, 2021).

realistically part of the UV radiation is reprocessed by the heavy
elements into the optical and NIR bands, thus shifting the emitted
energy distribution significantly, without an heavy alteration in the
bolometric luminosity. As a consequence, the more sensitive fits on
the magnitudes retrieve opacity values which are increased in order
to compensate for the lack of such feature in the model. The floor
temperatures derived from the magnitudes are substantially different
from the ones derived from the bolometric luminosity. This is due a
combination of effects, whereby the floor temperature is not trivially
connected to the final magnitudes and its value is subject to stronger
variability.
On one side, higher floor temperatures are associated to stronger
radiation fluxes at late times and, for a given energy emission rate, to
smaller photospheric radii, with a net increase in the late broadband
magnitudes. Being this the only effect in xkn-ts, the magnitude
fit finds the best temperature floor parameter value up to ∼ 3400
K, in order to compensate for the systematic underestimation of the
model, partially relieving the opacity parameter from such burden.
This behaviour has also to be ascribed to our fit procedure, which
tries to minimize quantitatively the separation between different

curves, rather than trying to reproduce the same shape. For this
reason, the detailed values of floor temperature that we obtain are
not meant to be reliable, but they can nevertheless highlight the
internal structure of the model.
On the other side, on top of the above effect, as already pointed out for
the bolometric luminosity fits, in the xkn-diff model higher floor
temperatures also cause a faster decrease in the amount of optically
thick ejecta at late times. In particular, in this case the temperature
floor recovery which results from such interplay cures the drift to-
wards the upper boundary that is found in the bolometric luminosity
fit for the secular ejecta configuration with fixed opacity. As a gen-
eral consequence, for xkn-diff, values are almost systematically
and significantly lower than both xkn-ts and their counterparts
in the previous fits, being in some cases down to only a few
hundreds Kelvin degrees, and indicating a tendency to decrease the
overall radiation fluxes in order to match color bands after a few days.
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6 CONCLUSIONS

In this work we presented the new framework xkn for the computa-
tion of the kilonova emission from compact binary mergers, starting
from the characterization of the merger ejecta. The framework allows
for non-trivial ejecta structures as can be inferred from numerical rel-
ativity merger simulations, and it employs the results of recent efforts
in nuclear astrophysics and atomic physics in terms of inputs for the
kilonova model, such as radioactive heating rates from nuclear reac-
tion network calculations (Perego et al. 2022) and grey opacities from
systematic atomic structure calculations (Tanaka et al. 2020). With
respect to previous iterations, xkn includes the model xkn-diff,
which encapsulate different possible semi-analytic solutions of the
diffusion equation for the radiation energy density field, derived from
the RT problem under the assumption of homologously expanding
material (Wollaeger et al. 2018). xkn-diff constitutes an improve-
ment with respect to previous semi-analytic models based on simpler
laws of energy conservations and approximate radiation diffusion
timescale estimations. In addition, the model tracks the position of
the ejecta photosphere in time in order to distinguish between the op-
tically thick internal bulk and the optically thin external layers. The
latter are treated with a simplified shell model, which approximately
accounts for the non-negligible contribution to the total luminosity
coming from this region from a few days post-merger on.
We tested xkn models by comparing their results with the ones
obtained from two-dimensional RT simulations obtained with the
code developed in Tanaka & Hotokezaka (2013); Kawaguchi et al.
(2018, 2021), which are based on the same ejecta configurations. In
particular, we considered two representative scenarios, i.e. a lighter
anisotropic dynamical component and a more massive spherical sec-
ular component, and we fit the free parameters of the model to the
bolometric luminosity and the AB magnitudes in different filters,
as seen from multiple viewing angles. We found that xkn-diff is
able to reproduce the overall behaviour of the light curves obtained
from the RT simulations, with a better agreement with respect to the
previous semi-analytic model, despite the simplified treatment of the
decay energy thermalization process and of the ejecta opacity. How-
ever, as highlighted by the fit procedure, the latter still constitutes a
limitation to this modelling approach and it will be the subject of
future improvements. In particular, the average constant grey opac-
ity values that the model employs are a crude approximation of the
real effective opacity inside the ejecta, which significantly varies of
more than one order of magnitude with time and across the different
regions of the outflow, depending on the local temperature, density
and composition. As a result, the emission brightness at early times,
i.e. around a few hours post-merger, predicted by the model in the
fit procedure, can be systematically lower with respect to the RT
calculation, of a factor of a few in the bolometric luminosity and of
up to 2 magnitudes in the color bands. We also note that the tem-
perature floor, a secondary parameter in xkn which often appears in
other semi-analytic models, is not easily constrained, since it is not
trivially connected to the final magnitudes.
We conclude that xkn constitutes a valid tool to model the kilonova
emission from compact binary mergers, with the main strength being
its computational efficiency, which allows for extensive explorations
of the ejecta parameter space in a reasonable time frame. This is par-
ticularly useful in the context of the now thriving multi-messenger
astronomy, whereas the kilonova is only one of the possible elec-
tromagnetic counterparts of the merger event. Coupling this model
with information from other sources, such as the GRB afterglow or
the GW signal, in a statistical framework, can sinergically help to
constrain the properties of the original binary, the central remnant or

the merger ejecta, and thus to shed light on the nature of the detected
event itself.
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