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We present a recently introduced strategy to study non-perturbatively thermal QCD up to tem-
peratures of the order of the electro-weak scale, combining step scaling techniques and shifted
boundary conditions. The former allow to renormalize the theory for a range of scales which spans
several orders of magnitude with a moderate computational cost. Shifted boundary conditions
avoid the need for the zero temperature subtraction in the Equation of State. As a consequence,
the simulated lattices do not have to accommodate two very different scales, the pion mass and
the temperature. Effective field theory arguments guarantee that finite volume effects can be kept
under control safely. As a first application of this strategy, we present the results of the compu-
tation of the hadronic screening spectrum in QCD with 𝑁 𝑓 = 3 flavours of massless quarks for
temperatures from 𝑇 ∼ 1 GeV up to ∼ 160 GeV.
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1. Introduction
Quantum Chromodynamics (QCD) at very high temperatures plays a pivotal rôle in particle and

nuclear physics as well as in cosmology. In order to have a reliable and satisfactory understanding
of the dynamics of the high temperature regime of QCD, a fully non-perturbative approach is
essential up to temperatures as high as the electro-weak scale [1–3]. Here we present a strategy, first
introduced for the Yang-Mills theory in Ref. [2] and then generalized to QCD in Ref. [3], which
allows to simulate the theory of strong interactions up to very high temperatures from first principles
with a moderate computational effort. As a first concrete implementation in QCD, we report the
results that we have obtained for the hadronic screening masses with 𝑁 𝑓 = 3 massless quarks in a
temperature interval ranging from 𝑇 ∼ 1 GeV up to ∼ 160 GeV [3, 4]. Those observables probe
the exponential fall-off of two-point correlation functions of hadronic interpolating operators in the
spatial directions and are the inverses of spatial correlation lengths, which characterize the response
of the plasma when hadrons are injected into it.

2. Non-perturbative thermal QCD at very high temperatures
Renormalization and lines of constant physics − A hadronic scheme is not a convenient choice
to renormalize QCD non-perturbatively when considering a broad range of temperatures spanning
several orders of magnitude. This would require to accommodate on a single lattice both the
temperature and the hadronic scale which may differ by orders of magnitude, making the numerical
computation extremely challenging. A similar problem is encountered when renormalizing QCD
non-perturbatively, and it was solved many years ago by introducing a step-scaling technique [5].

In order to solve our problem, we have built on that knowledge by considering a non-perturbative
definition of the coupling constant, �̄�2

SF(𝜇), which can be computed precisely on the lattice for values
of the renormalization scale 𝜇 which span several orders of magnitude. Making a definite choice, in
this section we use the definition based on the Schrödinger functional (SF) [5], however, notice that
other theoretically equivalent choices are available. In particular, in our lattice setup we also made
use of the gradient flow (GF) definition of the running coupling [6, 7], see appendix B of Ref. [3].
Once �̄�2

SF(𝜇) is known in the continuum limit for 𝜇 ∼ 𝑇 [6, 8], thermal QCD can be renormalized
by fixing the value of the running coupling constant at fixed lattice spacing 𝑎, 𝑔2

SF(𝑔
2
0, 𝑎𝜇), to be

𝑔2
SF(𝑔

2
0, 𝑎𝜇) = �̄�2

SF(𝜇) , 𝑎𝜇 � 1 . (1)

This condition fixes the so-called lines of constant physics, i.e. the dependence of the bare coupling
constant 𝑔2

0 on the lattice spacing, for values of 𝑎 at which the scale 𝜇 and therefore the temperature𝑇
can be easily accommodated. For a more complete discussion on how this technique is implemented
in practical lattice simulations we refer to appendix B of Ref. [3].
Shifted boundary conditions − The thermal theory is defined by requiring that the fields satisfy
shifted boundary conditions in the compact direction [9–11], while we set periodic boundary
conditions in the spatial directions. The former consist in shifting the fields by the spatial vector
𝐿0 𝝃 when crossing the boundary in the compact direction, with the fermions having in addition the
usual sign flip. For the gauge fields they read

𝑈𝜇 (𝑥0 + 𝐿0, 𝒙) = 𝑈𝜇 (𝑥0, 𝒙 − 𝐿0𝝃) , 𝑈𝜇 (𝑥0, 𝒙 + �̂� 𝐿𝑘) = 𝑈𝜇 (𝑥0, 𝒙) , (2)
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while those for the quark and the anti-quark fields are given by

𝜓(𝑥0 + 𝐿0, 𝒙) = −𝜓(𝑥0, 𝒙 − 𝐿0𝝃) , 𝜓(𝑥0, 𝒙 + �̂� 𝐿𝑘) = 𝜓(𝑥0, 𝒙) ,
�̄�(𝑥0 + 𝐿0, 𝒙) = −�̄�(𝑥0, 𝒙 − 𝐿0𝝃) , �̄�(𝑥0, 𝒙 + �̂� 𝐿𝑘) = �̄�(𝑥0, 𝒙) , (3)

where 𝐿0 and 𝐿𝑘 are the lattice extent in the 0 and 𝑘-directions respectively. In the thermodynamic
limit, a relativistic thermal field theory in the presence of a shift 𝝃 is equivalent to the very same
theory with usual periodic (anti-periodic for fermions) boundary conditions but with a longer

extension of the compact direction by a factor
√︃

1 + 𝝃2 [11], and thus the standard relation between

the length and the temperature is modified as 𝑇 = 1/(𝐿0

√︃
1 + 𝝃2). Shifted boundary conditions

represent a very efficient setup to tackle several problems that are otherwise very challenging both
from the theoretical and the numerical viewpoint. Some recent examples are provided by the SU(3)
Yang-Mills theory Equation of State (EoS) which was obtained with a permille precision up to
very high temperatures [2, 12] and more recently in 𝑁 𝑓 = 3 QCD with a novel computation of
the renormalization constant of the flavour-singlet local vector current [13]. The same setup is
currently in use to carry out the first non-perturbative computation of the EoS at large temperatures
in thermal QCD [14, 15].
Finite-volume effects − At asymptotically high temperatures, the mass gap developed by thermal
QCD is proportional to 𝑔2𝑇 . On the other hand, at intermediate temperatures, provided that the
temperature is sufficiently large with respect to ΛQCD, the mass gap of the theory is always expected
to be proportional to the temperature times an appropriate power of the coupling constant. As
a consequence, when 𝐿𝑇 → ∞ finite-size effects are exponentially suppressed in 𝐿𝑇 times a
coefficient that decreases logarithmically with the temperature. For this reason, we have always
employed large spatial extents, i.e. 𝐿/𝑎 = 288, so that 𝐿𝑇 ranges always from 20 to 50.
Restricting to the zero-topological sector − At high temperature, the topological charge distribution
is expected to be highly peaked at zero. For QCD with three light degenerate flavours of mass 𝑚,
the dilute instanton gas approximation predicts for the the topological susceptibility 𝜒 ∝ 𝑚3𝑇−𝑏

with 𝑏 ∼ 8. The analogous prediction for the Yang–Mills theory has been verified explicitly on
the lattice [16]. Similarly, computations performed in QCD seem to confirm the 𝑇-dependence
predicted by the semi-classical analysis even though the systematics due to the introduction of
dynamical fermions is still difficult to control [17]. As a result, already at low temperatures,
namely at 𝑇 ∼ 1 GeV, the probability to encounter a configuration with non-zero topology in
volumes large enough to keep finite volume effects under control is expected to be several orders of
magnitude smaller than the permille or so. For these reasons, we can safely restrict our calculations
to the sector with zero topology.

3. Screening spectrum
As a concrete application of the strategy outlined in section 2, we have performed numerical

simulations at 12 values of the temperature, 𝑇0, . . ., 𝑇11 covering the range from approximately
1 GeV up to about 160 GeV. For the 9 highest ones, 𝑇0, . . ., 𝑇8, gluons are regularized with the
Wilson plaquette action, while for the 3 lowest temperatures, 𝑇9, 𝑇10 and 𝑇11, we adopt the tree-level
improved Lüscher-Weisz gauge action. The three massless flavours are always discretized by the
𝑂 (𝑎)-improved Wilson–Dirac operator. In order to extrapolate the results to the continuum limit,
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Figure 1: Left: pseudoscalar (red) and vector (blue) screening masses versus �̂�2. The bands represent
the best fits in Eqs. (5) and (7), while the dashed line is the analytically known contribution. Right: the
vector-pseudoscalar mass difference, normalized to 2𝜋𝑇 , versus �̂�4. Red bands represent the best fits of the
data as explained in the text.

several lattice spacings are simulated at each temperature with the extension of the fourth dimension
being 𝐿0/𝑎 = 4, 6, 8 or 10.
Mesonic screening masses−The mesonic screening masses have been computed with a few permille
accuracy in the continuum limit. Within our statistical precision, the screening masses associated
to the pseudoscalar and to the scalar density are found to be degenerate and a similar discussion
holds for the screening masses of the vector and of the axial current as expected in the presence
of chiral symmetry restoration. Given the high accuracy of our non-perturbative data, it has been
possible to parameterize the temperature dependence of the masses. In order to do that, we have
introduced the function �̂�2(𝑇) defined as

1
�̂�2(𝑇)

≡ 9
8𝜋2 ln

2𝜋𝑇
ΛMS

+ 4
9𝜋2 ln

(
2 ln

2𝜋𝑇
ΛMS

)
, (4)

where ΛMS = 341 MeV is taken from Ref. [18]. It corresponds to the 2-loop definition of the
strong coupling constant in the MS scheme at the renormalization scale 𝜇 = 2𝜋𝑇 . For our purposes,
however, this is just a function of the temperature 𝑇 that we use to analyze our results and which
makes it easier to compare with the known perturbative results.

The temperature dependence of the pseudoscalar mass has been parameterized with a quartic
polynomial in �̂� of the form

𝑚𝑃

2𝜋𝑇
= 𝑝0 + 𝑝2�̂�

2 + 𝑝3�̂�
3 + 𝑝4�̂�

4 . (5)

The leading and the quadratic coefficients have been found to be compatible with the free theory
value and the next-to-leading order correction, i.e. 𝑝0 = 1 and 𝑝2 = 0.0327 [19]. Once 𝑝0 and 𝑝2
have been fixed to their corresponding perturbative values, we obtain for the cubic and the quartic
fit parameters 𝑝3 = 0.0038(22) and 𝑝4 = −0.0161(17) with cov(𝑝3, 𝑝4)/[𝜎(𝑝3)𝜎(𝑝4)] = −1.0
with an excellent 𝜒2/dof = 0.75. Such a polynomial is displayed, as a red band, together with the
non-perturbative data in the left panel of Figure 1. It is clear that the quartic term is necessary to
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explain the behaviour of the non-perturbative data in the entire temperature range. In particular, at
the highest temperatures it contributes for about 50% of the total contribution due to the interactions,
while at low temperature it competes with the quadratic coefficient to bend down 𝑚𝑃/2𝜋𝑇 .

The mass difference between the vector and the pseudoscalar mass is due to spin-dependent
contributions which are of 𝑂 (𝑔4) in the effective field theory. By plotting our results versus �̂�4, see
right panel of Figure 1, these turn out to lie on a straight line with vanishing intercept in the entire
range of temperature. We then parameterized the temperature dependence with

(𝑚𝑉 − 𝑚𝑃)
2𝜋𝑇

= 𝑠4 �̂�
4 (6)

and we obtain 𝑠4 = 0.00704(14) with 𝜒2/dof = 0.79. It is remarkable that, even at the highest
temperatures which was simulated, the mass difference is clearly different from zero, a fact which
is not expected by the next-to-leading order estimate obtained in the effective field theory. The best
parameterization for the vector screening mass is thus given by

𝑚𝑉

2𝜋𝑇
= 𝑝0 + 𝑝2 �̂�

2 + 𝑝3 �̂�
3 + (𝑝4 + 𝑠4) �̂�4 , (7)

with covariances cov(𝑝3, 𝑠4)/[𝜎(𝑝3)𝜎(𝑝4)] = 0.08 and cov(𝑝4, 𝑠4)/[𝜎(𝑝4)𝜎(𝑝4)] = −0.07. In
the vector channel the quartic contribution appearing in Eq. (7) is responsible for about 15% of the
total contribution due to interaction at the electro-weak scale. Moreover, the quartic coefficient for
the vector mass is about 50% smaller than the corresponding coefficient for the pseudoscalar channel.
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ĝ2

1.00

1.02

1.04

1.06

1.08

1.10

m
N

+
/3
π
T

1 GeV2 GeV10 GeV80 GeV

PT = 1 + 0.046ĝ2
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Figure 2: Nucleon screening mass versus �̂�2. The
band represent the best fit to Eq. (8), while the dashed
line is the analytically known contribution.

As a consequence, its contribution is not large
enough to compete with the quadratic coeffi-
cient and to bend down the value of the vector
mass at low temperature. For a detailed analy-
sis of the results see section 7 of Ref. [3].
Baryonic screening masses − In contrast with
the mesonic case, there are very few studies
on the baryonic sector both on the lattice and
in the three dimensional effective theory and,
for what concerns lattice calculations, no con-
tinuum limit extrapolation has ever been per-
formed. In Ref. [4] we have computed the
baryonic screening masses for the first time in
the continuum limit and with a final accuracy
of a few permille from 1 GeV up to the electro-
weak scale. As expected in a chirally symmetric
regime, the positive and the negative parity screening masses are found to be degenerate in the entire
range of temperatures. For this reason, in the following we only focus on the positive parity mass
𝑚𝑁 + . The final results are shown in Figure 2 as a function of �̂�2(𝑇).

As it is clear from the plot, the bulk of the baryonic screening mass is given by the free field
theory 3𝜋𝑇 plus a 4 − 8% positive contribution due to interaction. It is rather clear that from
𝑇 ∼ 160 GeV down to 𝑇 ∼ 5 GeV the perturbative expression is within half a percent with respect to
the non-perturbative data. The full set of data, however, shows a distinct negative curvature which
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requires higher orders in the coupling constant to be parameterized. Similarly to the case of the
mesonic screening masses, the temperature dependence of the baryonic screening mass has been
parameterized with the ansatz

𝑚𝑁 +

3𝜋𝑇
= 𝑏0 + 𝑏2 �̂�

2 + 𝑏3 �̂�
3 + 𝑏4 �̂�

4 . (8)

The coefficients 𝑏0 and 𝑏2 turn out to be compatible with the free-theory and the next-to-leading
values, i.e. 𝑏0 = 1 and 𝑏2 = 0.046 [20]. Then, by enforcing those values and fitting again, we obtain
𝑏3 = 0.026(4), 𝑏4 = −0.021(3) and cov(𝑏3, 𝑏4)/[𝜎(𝑏3)𝜎(𝑏4)] = −0.99 with 𝜒2/dof = 0.64,
which is the best parameterization of our results over the entire range of temperatures explored.
Notice that, in general, other parameterizations of the lattice data are possible as well. These, how-
ever, result in the disagreement between the fit result for 𝑏2 and the 1-loop perturbative correction.
For a more detailed discussion on such parameterizations we refer to section 5 of Ref. [4].

We conclude by noticing that the evaluation of the EoS in a similar temperature range, computed
with the strategy outlined in Ref. [15], is almost completed. Preliminary results shown at the
conference are not reported here for lack of space.
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