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Abstract

Network data often exhibit block structures characterized by clusters of nodes
with similar patterns of edge formation. When such relational data are com-
plemented by additional information on exogenous node partitions, these
sources of knowledge are typically included in the model to supervise the
cluster assignment mechanism or to improve inference on edge probabilities.
Although these solutions are routinely implemented, there is a lack of formal
approaches to test if a given external node partition is in line with the endoge-
nous clustering structure encoding stochastic equivalence patterns among the
nodes in the network. To fill this gap, we develop a formal Bayesian test-
ing procedure which relies on the calculation of the Bayes factor between a
stochastic block model with known grouping structure defined by the exoge-
nous node partition and an infinite relational model that allows the endoge-
nous clustering configurations to be unknown, random and fully revealed
by the block—connectivity patterns in the network. A simple Markov chain
Monte Carlo method for computing the Bayes factor and quantifying un-
certainty in the endogenous groups is proposed. This strategy is evaluated
in simulations, and in applications studying brain networks of Alzheimer’s
patients.

AMS (2000) subject classification. Primary 62-XX; Secondary 62F15.
Keywords and phrases. Bayes factor, Brain network, Chinese restaurant
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1 Introduction

There is an extensive interest in learning grouping structures among the
nodes in a network (see, e.g. Fortunato and Hric, 2016). Classical solu-
tions to this problem focus on detecting community patterns via algorith-
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mic approaches that cluster the nodes into groups characterized by a high
number of edges within each community and comparatively few edges be-
tween the nodes in different communities (Newman and Girvan, 2004; Blon-
del et al., 2008; Fortunato, 2010). Despite being routinely implemented,
these procedures do not rely on generative probabilistic models and, there-
fore, face difficulties when the focus is not just on point estimation, but
also on hypothesis testing and uncertainty quantification. This issue has
motivated several efforts towards developing model-based representations
for inference on grouping structures, with the stochastic block model (SBM)
(Holland et al., 1983; Nowicki and Snijders, 2001) providing the most notable
contribution within this class. Such a statistical model expresses the edge
probabilities as a function of the node assignments to groups and of block
probabilities among such groups, thus allowing inference on more general
block—connectivity patterns beyond classical community structures. The
success of sBMs in different fields has motivated various extensions (e.g.
Kemp et al., 2006; Airoldi et al., 2008; Karrer and Newman, 2011; Geng
et al., 2019) and detailed theoretical studies on their asymptotic properties
(e.g. Zhao et al., 2012; Gao et al., 2018; van der Pas and van der Vaart,
2018; Ghosh et al., 2020); see Schmidt and Morup (2013), Abbe (2017), &
Lee and Wilkinson (2019) and the references therein for a comprehensive
overview.

When node—specific attributes are available, the above block models have
been generalized in different directions to incorporate such external informa-
tion in the edge formation mechanism. Common proposals address this goal
via the inclusion of nodal attributes within the generative model for the
cluster assignments (e.g. Tallberg, 2004; White and Murphy, 2016; Newman
and Clauset, 2016; Stanley et al., 2019), or by defining the edge probabil-
ities as a function of block—specific parameters, as in classical sBMs, and
of pairwise similarity measures among node attributes (e.g. Mariadassou
et al. 2010; Choi et al. 2012; Sweet 2015; Roy et al. 2019). Such formula-
tions are powerful approaches to assist the cluster assignment mechanism
and, typically, improve the estimation of the edge probabilities. However,
when categorical node attributes are available, less attention has been paid
to the development of formal Bayesian testing procedures to assess whether
the exogenous partitions identified by the labels of the categorical node at-
tributes are in line with the endogenous grouping structure revealed by the
block—connectivity behaviors in the network. For example, in structural
brain network applications it is often of interest to understand if exogenous
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anatomical partitions of the brain regions can accurately characterize the
endogenous block structures of brain networks (e.g. Sporns, 2013; Faskowitz
et al. 2018). This goal could be partially addressed by the aforementioned
models via inference on the posterior distribution for the parameters regu-
lating the effect of the node—specific attributes, but these formulations are
prone to identifiability and computational issues.

Motivated by the above discussion, we propose a formal and simple
Bayesian testing procedure to compare a stochastic block model with known
grouping structure, fixed according to a given exogenous node partition,
and an infinite relational model (Kemp et al., 2006) where the node assign-
ments are unknown, random and modeled through a Chinese Restaurant
Process (CRP) prior (Aldous, 1985), which allows the total number of non—
empty clusters H to be inferred. Such a Bayesian nonparametric represen-
tation allows flexible learning of the endogenous clustering configurations
as revealed by the common connectivity behaviors within the network and,
hence, provides a suitable reference model against which to assess the ability
of a pre—specified exogenous partition to characterize the block—connectivity
structures within the network. In a sense, our goal is related to those of
Bianconi et al. (2009) and Peel et al. (2017). However, such contributions
compute, under a frequentist perspective, the entropy of a stochastic block
model whose groups coincide with the external node partition, and compare
it with the distribution of the entropies derived under the same network
with grouping structure given by a random permutation of the exogenous
node labels. Besides taking a Bayesian approach to inference, our procedure
quantifies proximities to endogenous block structures rather than studying
departures from a random partition. This allows, as a byproduct, inference
on node groupings supported by the data. In fact, leveraging the recent
inference methods for Bayesian clustering (Wade and Ghahramani, 2018)
brought into the network field by Legramanti et al. (2020), we complement
the results of the proposed testing procedures with an analysis of the credible
balls for the grouping structure under the infinite relational model.

In Section 2 we describe the proposed testing procedure, based on the
calculation of the Bayes factor (e.g. Kass and Raftery, 1995) among the
two competing models, and discuss methods for uncertainty quantification
on the inferred endogenous clustering. In Section 3, we derive a collapsed
Gibbs sampler to obtain samples from the posterior of the endogenous parti-
tion, thus allowing Monte Carlo estimation of the marginal likelihood (New-
ton and Raftery, 1994; Raftery et al., 2007) required to compute the Bayes
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factor. As illustrated in simulations in Section 4 and in an application to
Alzheimer’s brain networks in Section 5, the Gibbs sampler is also use-
ful to perform inference on the endogenous groups. Codes to implement
the proposed methods can be found at https://github.com/danieledurante/
TESTsbm.

2 Model Formulation, Bayesian Testing and Inference

2.1. FEndogenous and FExogenous Models Let Y denote the n X n sym-
metric adjacency matrix associated with an undirected binary network with-
out self-loops, so that ¥y, = Yy = lifnodesv =2,... ,;nandu=1,...,v—1
are connected, and y,, = Yy = 0 otherwise. The absence of self-loops im-
plies that the diagonal entries of Y are not considered for inference. Recalling
our discussion in Section 1, we consider a stochastic representation partition-
ing the nodes into exhaustive and non—overlapping groups, where nodes in
the same group are characterized by equal patterns of edge formation. More
specifically, let z = (z1,...,2,)T € Z be the vector of cluster membership
indicators for the n nodes, with Z being the space of all the possible group
assignments, so that z, = h if and only if the vth node belongs to the hth
cluster. Letting H be the number of non—empty groups in z, we denote with
© the H x H symmetric matrix of block probabilities with generic elements
Oni € (0,1) indexing the distribution of the edges between the nodes in clus-
ter h and those in cluster k. To characterize block—connectivity structures
within the network, we assume

(You | 20 = h, 2y =k, Onx) ~ Bern(6py),

independently for each v = 2,...,n and v = 1,...,v — 1, with Oy ~
Beta(a, b), independently for every h = 1,...,H and k = 1,...,h. This
formulation recalls the classical Bayesian SBM specification (Nowicki and
Snijders, 2001) and leverages a stochastic equivalence property that relies
on the conditional independence of the edges, whose distribution depends
on the cluster membership of the associated nodes. Indeed, by marginaliz-
ing out the beta—distributed block probabilities which are typically treated
as nuisance parameters in the sBM (e.g. Kemp et al. 2006; Schmidt and
Morup 2013), the likelihood for Y given z is

h

H
B(a + mpk, b+ mpy
p(Y|z)=]]]I Ba D) ), (2.1)
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where mp; and my denote the number of edges and non—edges among nodes
in clusters h and k, respectively, whereas B(:,-) is the beta function. Ex-
pression (2.1) is derived by exploiting beta—binomial conjugacy, and, as we
will clarify later in the article, is fundamental to compute Bayes factors
and to develop a collapsed Gibbs sampler which updates only the endoge-
nous cluster assignments while treating the block probabilities as nuisance
parameters. Moreover, as is clear from Eq. 2.1, p(Y | z) is invariant un-
der relabeling of the cluster indicators. Therefore p(Y | z) is equal to
p(Y | z) for any relabeling z of z, meaning that also the Bayes factors
computed from these quantities are invariant under relabeling. Hence, in
the rest of the paper, z will denote any element of the equivalence class of
its relabelings, whereas Z will correspond to the space of all the partitions
of {1,...,n}.

Recalling Section 1, our goal is develop a formal Bayesian test to as-
sess whether assuming z as known and equal to an exogenous assignment
vector z* produces an effective characterization of all the block structures
in Y, relative to what would be obtained by letting z unknown, random
and endogenously determined by the stochastic equivalence relations in Y.
The first hypothesized model M* can be naturally represented via a SBM
as in Eq. 2.1 with a fixed and known exogenous partition z*, whereas the
second model M requires a flexible prior distribution for the indicators z in
Eq. 2.1 which is able to reveal the endogenous grouping structure induced by
the block—connectivity patterns in Y, without imposing strong parametric
constraints. A natural option would be to consider a Dirichlet—multinomial
prior as in classical sBMs (Nowicki and Snijders, 2001), but such a specifi-
cation requires the choice of the total number of groups, which is typically
unknown. This issue is usually circumvented by relying on BIC metrics that
require estimation of multiple sBMs (e.g. Saldana et al., 2017). To avoid
these computational costs and increase flexibility, we rely on a Bayesian
nonparametric solution that induces a full-support prior on the total num-
ber H of non—empty groups in z. This enables learning of H, which is not
guaranteed to coincide with the number H* of non—-empty groups in z*. A
widely used prior in the context of SBMs is the CRP (Aldous, 1985), which
leads to the so—called infinite relational model (Kemp et al., 2006; Schmidt
and Morup, 2013). Under such a prior, each group attracts new nodes in
proportion to its size, and the formation of new groups depends only on the
size of the network and on a tuning parameter o > 0. More specifically,
under model M, we assume the following prior over cluster indicators for
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the vth node, given the memberships z_, = (21,...,2y-1, Zv+1,---,2n)T Of
the others

Zh—v if h=1,...,H_,,

— — n—1+4+a
pr(z, =h|z_,) { e i h=H_,+1

(2.2)

In Eq. 2.2, H_, is the number of non-empty groups in z_,,, the integer nj,__,
is the total number of nodes in cluster h, excluding node v, whereas o > 0
denotes a concentration parameter controlling the expected number of non—
empty clusters. The urn representation in Eq. 2.2 is induced by the joint
probability mass function p(z) = o [T, (ny — DT, (v — 1 4 )] 71,
which shows that the CRP is exchangeable. See also Gershman and Blei
(2012) for an overview of CRP priors.

2.2.  Bayesian Testing To compare the ability of the endogenous (M)
and exogenous (M™*) formulations in characterizing the block structures in
Y, we define a formal Bayesian test relying on the Bayes factor. More
specifically, assuming that the two competing models are equally likely a
priori, i.e. p(M) = p(M*), we compare M against M* via

_ (Y M) Dezp(Y [ 2)p(2)
B ST T Y ) 29

where > - p(Y | z)p(z) and p(Y | z*) are the marginal likelihoods of Y
under M and M*. Recalling, e.g., Kass and Raftery (1995), Eq. 2.3 defines
a formal Bayesian procedure to assess evidence against M™* relative to M,
with high values suggesting that the exogenous assignments in z* are not
as effective in characterizing the endogenous block structures in Y as the
posterior for z under M. Under the assumption that p(M) = p(M*), the
Bayes factor in Eq. 2.3 coincides with the posterior odds p(M | Y)/p(M* |
Y). When p(M) # p(M*), it suffices to rescale Baqp+ by p(M)/p(M*) to
assess posterior evidence against M™* relative to M.

To evaluate (2.3), note that the quantity p(Y | z*) can be computed
by evaluating (2.1) at z = z*. In contrast, model M requires the calcu-
lation of p(Y | z) and p(z) for every z € Z. Although both quantities
can be evaluated in closed form as discussed in Section 2.1, this approach
is computationally impractical due to the huge cardinality of the set Z,
thus requiring alternative strategies relying on Monte Carlo estimation of
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p(Y | M) = > ,c2p(Y | z)p(z). Here, we consider the harmonic mean
approach (Newton and Raftery, 1994; Raftery et al., 2007), thus obtaining

R -1
PYIM= |53 err>] , (24)
where z(D, ... 27 are samples from the posterior distribution of z and

p(Y | 2()) is the likelihood in Eq. 2.1 evaluated at z = z("), for every r =
1,..., R. Although recent refinements have been proposed to address some
shortcomings of the harmonic estimate (e.g. Lenk, 2009; Pajor, 2017), here
we consider the original formula which is computationally more tractable
and has proved stable in our simulations and applications; see Figs. 2 and 4.

Leveraging (2.1) and (2.4), our estimate of the Bayes factor in Eq. 2.3 is

H™ B(a,b)

Bainc p(Y | M) 7 ot I Tl L Bla+m) b+ml}) (2.5)
’ Y * Ba+m: b+mr,) ’ ’
P( ‘M ) ”h 1 k 1W

where mgfk) and mﬁfk) are the counts of edges and non—edges among nodes

in groups h and k induced by the rth MCcMC sample of z, whereas mj, and
my,. denote the number of edges and non-edges among the nodes in clusters
h and k induced by the exogenous assignments z*. Finally, H(") and H* are
the total numbers of unique labels in z(™ and z*. Section 3 describes the
collapsed Gibbs algorithm to sample the assignment vectors z(V), ... z(f)
from the posterior p(z | Y) under model M. These samples are required to
compute (2.5) and, as discussed in Section 2.3, also allow inference on the
posterior distribution of the endogenous partitions.

2.8.  Inference and Uncertainty Quantification on the Endogenous Par-
tition When the Bayes factor discussed in Section 2.2 provides evidence in
favor of model M, it is of interest to study the posterior distribution of z
leveraging the Gibbs samples z(1), ...,z Common strategies address this
goal by first computing the posterior co—clustering matrix C with elements
Cou = Cyp Measuring the relative frequency of the Gibbs samples in which
nodes v = 2,...,nand u = 1,...,v — 1 are in the same cluster, and then
apply a standard clustering procedure to such a similarity matrix. However,
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this approach provides only a point estimate of z and, hence, fails to quan-
tify posterior uncertainty. Legramanti et al. (2020) recently covered this gap
by adapting the novel inference methods for Bayesian clustering in Wade
and Ghahramani (2018) to the network field. These strategies rely on the
variation of information (VI) metric, which quantifies distances between two
partitions by comparing their individual and joint entropies.

Under this framework, a point estimate z for z coincides with that par-
tition having the lowest posterior averaged VI distance from all the other
clusterings. Moreover, a 1 —J credible ball around z can be obtained by col-
lecting all those partitions with a vI distance from z below a given threshold,
with this threshold chosen to guarantee the smallest—size ball containing at
least 1 — § posterior probability. Such inference is useful to complement
the results of the test in Section 2.2. Namely, to get further reassurance
about the output of the proposed test, we may also study whether the ex-
ogenous clustering z* is plausible under the posterior distribution for the
endogenous partition z by checking if z* lies inside the credible ball around
z. Refer to Wade and Ghahramani (2018), Legramanti et al. (2020) and to
the codes at https://github.com/danieledurante/ TESTsbm for more details
on the aforementioned inference methods and their implementation.

Finally, although the block probabilities are integrated out, a plug—in
estimate for these quantities can be easily obtained. Indeed, by leveraging
beta—binomial conjugacy, we have that (6% | Y,z) ~ Beta(a+mpk, b+mpg).
Hence, a plug—in estimate of the block probabilities 8 for h =1, ... ,ﬁ and
k=1,...,his

a+ Mpk

One = E[0hs | Y, 2] = —,
hi [Oni | ] P ———

where 7y, and my;, denote the number of edges and non-edges between
nodes in groups h and k, respectively, induced by the posterior point estimate
z of z.

3 Posterior Computation via Collapsed Gibbs Sampling

The posterior samples of z under model (2.1) with CrRP prior (2.2) can
be obtained via a simple collapsed Gibbs sampler which updates the group
assignment of each node v conditioned on those of the others by sampling
from the full-conditional distribution p(z, | Y,z_,) (Schmidt and Morup,
2013). By collapsing out the beta priors for the block probabilities, this
procedure reduces the computational time in avoiding the updating of 0
foreach h =1,...,H and k = 1,..., h, while improving mixing (Neal, 2000).
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Algorithm 1 provides the detailed steps of one cycle of the Gibbs sampler.
Note that since (2.1) is the joint probability for a large set of binary edges,
manipulating this quantity within Algorithm 1 and in computing the Bayes
factor in Eq. 2.5 may lead to practical difficulties due to the need to deal
with quantities very close to zero. In these settings, we suggest to work
with the logarithm, when possible, and to exploit the log—sum—exp identity
log[>; exp(v;)] = d + log[>_, exp(v; — d)], where d usually coincides with
max; v;.

Algorithm 1 One step of the Gibbs sampler for z under M.

forv=1,...,ndo
Update each z, conditionally on z_, and Y as follows

1. Remove node v from the node set.

2. If no other node belongs to the cluster of v, such a cluster is

removed.

3. Reorder the cluster indices so that 1,..., H_, are non—empty,
and sample z, from the categorical variable with

full-conditional probabilities

Np, —y
_ i p(Y | 2o = hyz—y), if h=1,... H ,
pr(zv h|Y,z7v)o<{ Ca (Y |z = hyzoy), O h=H_, +1,

where p(Y | z, = h,z_,) is computed as in Eq. 2.1

conditioned on z, = h and z_,.

return z = (z1,...,2,)7

4 Simulation Studies

We consider an illustrative simulation to assess the performance of the
new inference procedures presented in Section 2, and to evaluate the ability of
model M to recover underlying endogenous partition structures. Consistent
with this goal, we simulate a symmetric binary adjacency matrix Y from a
stochastic block model with n = 60 nodes partitioned into Hy = 3 groups
of equal size. In particular, we let zg = (210 = 1,...,2200 = 1,2210 =
2,...,2400 = 2,2410 = 3,..., 20,0 = 3)7T, and simulate each y,, = Yy, for
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v=2....,n, u=1,...,v— 1 from a Bernoulli with probability 0.8 if nodes
v and u are in the same group, and 0.2 otherwise.

In performing posterior inference on the endogenous clustering structure
under model M, we set a = b = 1 to induce a uniform prior on the block
probabilities. This choice is theoretically supported (e.g. Ghosh et al., 2020)
and has been widely employed in routine implementations of sBMs (Nowicki
and Snijders, 2001; Kemp et al., 2006; Geng et al., 2019). As for « in prior
(2.2), we set it equal to 1 following default specifications of the CRP, thus
circumventing the need to include a hyper—prior which could affect mixing
and convergence of Algorithm 1. Such a default specification has proved
effective both in simulations and in applications, and we found the results
robust to moderate changes in . For instance, setting o = 0.1 or « = 10
did not change the final conclusions of our testing procedures.

Figure 1 shows the simulated adjacency matrix Y paritioned in blocks
according to the estimated z under model M. Such an estimate relies on
15000 MmcMc samples produced by Algorithm 1, after a burn—in of 2000. As
shown in Fig. 2, such settings are sufficient for good convergence and mixing
according to the MCcMC diagnostics of key measures for posterior inference,
covering the traceplot of the log—likelihood in Eq. 2.1 under model M and the
trajectory of the logarithm of the harmonic mean estimate for the associated
marginal likelihood in Eq. 2.4. As is clear from the block partition of Y in
Fig. 1, the posterior for z under model M is able to concentrate around
the true underlying endogenous partition and allows learning of the correct
number of non—empty groups. These results support the use of M as a
benchmark model to test for differences between endogenous and exogenous
partitions under the methods presented in Section 2.

To assess the quality of such strategies, we consider four external assign-
ment vectors zg, z1, zs and z3 evaluated in Table 1. In particular, zg denotes
the true generative partition, z; is obtained by a random permutation of the
indices in zg, while zo and z3 define a refined and a coarsened partitioning
of zg, respectively, in which each cluster is either divided in two additional
ones (z2) or collapsed with others to form a single group (z3). Due to this,
we expect to obtain evidence in favor of the exogenous partition only in the
scenario with z* = zg. Table 1 confirms our expectations when compared
with the thresholds in Kass and Raftery (1995). Note that, although z = z,
we obtain a negative Bayes factor in the first scenario, which leads to a
strong preference for model M* relative to M. Indeed, even if the point
estimate z for z under M exactly recovers zg, there is still some amount
of posterior uncertainty induced by the CRP prior on z. On the contrary,
M* is defined in the first scenario by conditioning on the true underlying



118 S. Legramanti et al.
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Figure 1: Graphical representation of the simulated adjacency matrix Y
partitioned in blocks according to the estimated endogenous assignments 2.
Black and white cells denote edges and non—edges, respectively, whereas the
first colored column represents the true partition zy. See the online article
for the color version of this figure

partition with no uncertainty, thus providing a formulation much closer to
the true data—generative mechanism relative to M. All the remaining ex-
ogenous partitions z1,zo and z3 are, instead, not as effective as model M
in characterizing the endogenous block structures within Y. As expected,
this is especially true for the random partition (z1), but also those obtained
from refinements (z2) or coarsening (z3) operations on zg are not plausible
according to the results of the tests. Such results confirm the ability of our
procedures to provide accurate conclusions under various configuration of
z*. For instance, although the partition zs still leads to homogenous blocks
in Y, the additional refinements in zy provide an unnecessary addition of
further groups which are not required to characterize the block—connectivity
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Traceplot of the log-likelihood Trajectory for the logarithm of the harmonic mean estimate
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Figure 2: MoMmcC diagnostics for the simulation study. Left: traceplot for
the logarithm of the likelihood in Eq. 2.1 computed at the MCMC samples
of z after burn—in. Right: trajectory of the logarithm of the harmonic mean
estimate in Eq. 2.4 for growing R

patterns in Y, thus leading the test to provide evidence in favor of M rather
than M* when z* = z,.

The vi1 distances between the estimated z under model M and the four
exogenous partitions confirm the results of the tests. In particular, the
only external assignment vector with a vI distance from z lower than the
estimated 0.428 threshold of the 95% credible ball around 2z is zg.

5 Application to Brain Networks of Alzheimer’s Individuals

There is an intensive research effort aimed at finding the sources of the
Alzheimer’s disease in human brain networks. Such an increasing interest is
motivated by recent developments in brain imaging technologies and by the
constant growth of elderly population in the age interval mostly affected by
Alzheimer’s, thus making such a disease a major concern, both in terms of
disability and mortality, especially for countries with longer life expectancy
(Ashford et al., 2011a, b; Stam, 2014). Here, we focus on studying struc-
tural brain networks encoding the presence or absence of white matter fibers

Table 1: Results of our proposed procedure for testing to what extent four
different exogenous partitions z* are as effective as the infinite relational
model M in characterizing the endogenous block structures within Y

z* zo (True) z; (Random) zy (Refined) z3 (Coarsened)
2log Bmmx —5.17 522.27 25.68 260.40
vi(z, z*) 0.00 3.16 1.00 0.67

The vI distances between the estimated partition z under the infinite relational model and
the exogenous ones are also displayed
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among anatomical regions in human brains. Such connectivity data have
been a source of major interest in several recent studies mostly focused on
topological summary measures of Alzheimer’s brains and on how these mea-
sures change as the disease progresses (Daianu et al., 2013; Sulaimany et
al., 2017; John et al., 2017; Martensson et al., 2018). Instead, we consider a
different perspective by studying the endogenous block structures in a rep-
resentative Alzheimer’s brain network, while assessing whether exogenous
region partitions of interest can effectively characterize the block structures
within the network.

%HFH%W%HBHWH Lobe

frontal
insular
limbic
occipital
parietal
temporal

Hemisphere

1nlﬁﬂfg‘m

s BRI ER

Figure 3: Graphical illustration of a representative brain network Y for
Alzheimer’s individuals. Brain regions are re—ordered and partitioned in
blocks according to the estimated endogenous assignments z. Black and
white cells denote edges and non—edges, respectively, whereas the first two
colored columns represent the two exogenous anatomical brain partitions
into lobes and hemispheres. See the online article for the color version of
this figure
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Consistent with the above goal, we apply methods in Sections 2-3 to
the 68 x 68 binary adjacency matrix Y encoding the presence or absence of
white matter fibers among anatomical regions in a representative Alzheimer’s
brain network provided by Sulaimany et al. (2017). In this study, brain re-
gions are defined by the Desikan atlas (Desikan et al., 2006), which provides
additional information on hemisphere and lobe memberships (Kang et al.,
2012); see Sulaimany et al. (2017) for additional details on the construction
of Y. Figure 3 provides a graphical representation of Y with brain regions
suitably reordered and organized in blocks according to the estimated en-
dogenous assignments z. The latter are obtained by considering the same
MCMC settings and hyper—parameters of the simulation study, which proved
effective and robust also in this application; see Fig. 4. As shown in Fig. 3,
we learn H = 12 endogenous groups equally divided between the two hemi-
spheres and showing an overall coherence of the partition structure across
left and right regions. As expected, there is an evident block—connectivity
within hemispheres, although some groups also display a tendency to con-
nect across hemispheres. For example, brain regions in the frontal lobe tend
to create two highly interconnected clusters, one in each hemisphere, with
these two blocks showing also a preference to create bridges among the two
hemispheres. Despite these anatomical homophily structures, as highlighted
in Fig. 3 and in Table 2, hemisphere and lobe partitions are not sufficient
to fully characterize the endogenous block structures in Alzheimer’s brains.
There are, in fact, various sub—blocks within each hemisphere and these
clusters typically comprise regions in different lobes.

We conclude by assessing whether the clustering structures inferred from
representative brains of individuals in three ordered stages of cognitive

Traceplot of the log-likelihood Trajectory for the logarithm of the harmonic mean estimate
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Figure 4: McMmcC diagnostics for the application. Left: traceplot for the
logarithm of the likelihood in Eq. 2.1 computed at the MCMC samples of
z after burn—in. Right: trajectory of the logarithm of the harmonic mean
estimate in Eq. 2.4 for growing R
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Table 2: Results of our proposed procedure for testing to what extent exoge-
nous brain partitions z* are as effective as model M in characterizing the
endogenous block structure for a representative brain network of Alzheimer’s
individuals

Anatomical Cognitive decline progression
z* Hemispheres Lobes Normal Early Late
Aging Decline Decline
21log B, m 713.57 1291.74 156.25 101.45 41.12
vI(z,2z*) 2.29 3.37 1.46 1.33 1.10

Here, we focus on anatomical partitions and on grouping structures identified in represen-
tative brains of individuals characterized by three ordered cognitive decline stages. The
VI distances between the estimated partition z under the infinite relational model and the
exogenous ones are also displayed

decline can effectively explain the endogenous block structures in Alzheimer’s
brains. To accomplish this goal, we first apply Algorithm 1 to the represen-
tative adjacency matrices of individuals characterized by normal aging, early
and late cognitive decline (Sulaimany et al., 2017), and then quantify, via the
Bayes factors in Table 2, whether these partitions are also effective in model-
ing the block structures within the Alzheimer’s brain. Although 2 log BM,M*
is above the threshold in Kass and Raftery (1995) suggesting strong evidence
against this hypothesis for all the three stages, it is interesting to notice how
2log B M, M+ decreases as cognitive decline progresses towards Alzheimers’
disease. This means that the inferred partitions could be used, with cau-
tion, as a diagnostic strategy to identify the progress of the disease. The VI
distances between the estimated z and these external partitions confirm the
evidence provided by the Bayes factors.

To further validate the suitability of M as a flexible model for Y, we also
compute the in—sample missclassification error when predicting each y,,, with
égmgu. Such a measure is 0.1, thus confirming that M can be regarded as a
suitable model for this application.

6 Discussion and Future Developments

This article introduces a formal Bayesian testing procedure to assess the
ability of a fixed exogenous node partition in characterizing block structures
in a network, relative to an infinite relational model. To accomplish this goal,
we compare an harmonic mean estimate of the marginal likelihood under
this latter representation with the one induced by a stochastic block model
conditioned on the external partition of interest. From a computational
perspective, we rely on a collapsed Gibbs sampler which additionally allows
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Bayesian inference and uncertainty quantification on endogenous partitions.
As illustrated in simulations and applications to brain networks, our proposal
provides a simple yet effective procedure to obtain further insights on the
effects of categorical node attributes on network structures.

There are several directions for future developments. For example,
weighted networks comprising counts or continuous measures of strength
in the relationship can be easily incorporated within our strategy by simply
replacing the likelihood in Eq. 2.1 with a suitable one. This can be obtained
by leveraging Poisson—gamma or Gaussian—Gaussian conjugacy, as done for
the beta—binomial case. Moreover, while throughout the paper we have con-
sidered the problem of testing model M against model M* given a single
observed network Y, one may be interested in the same test given a sample
of N exchangeable networks. This is feasible under our proposed framework
and only requires to substitute p(Y | z) in Eq. 2.1 with p(Y1,..., YN | 2).
It is also possible to compare two exogenous partitions, rather than an ex-
ogenous and an endogenous one. This task is even simpler than the one
analyzed in this article, since the likelihood in Eq. 2.1 can be computed in
closed form for both the external partitions under comparison, thus avoiding
the need of MCMC methods. For example, one may be interested in com-
paring an external assignment z* with a random permutation of the indices
in such a vector to assess whether z* offers improvements in modeling net-
work block structures or has no effect. Therefore, the perspective taken by
Bianconi et al. (2009) and Peel et al. (2017) can be seen as a special case of
our more general solution.
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